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Multi‑block data integration 
analysis for identifying 
and validating targeted N‑glycans 
as biomarkers for type II diabetes 
mellitus
Eric Adua1,2,8*, Ebenezer Afrifa‑Yamoah3,8*, Emmanuel Peprah‑Yamoah4, 
Enoch Odame Anto2,5, Emmanuel Acheampong2, Kwaafo Akoto Awuah‑Mensah6 & 
Wei Wang7

Plasma N‑glycan profiles have been shown to be defective in type II diabetes Mellitus (T2DM) and 
holds a promise to discovering biomarkers. The study comprised 232 T2DM patients and 219 healthy 
individuals. N‑glycans were analysed by high‑performance liquid chromatography. The multivariate 
integrative framework, DIABLO was employed for the statistical analysis. N‑glycan groups (GPs 
34, 32, 26, 31, 36 and 30) were significantly expressed in T2DM in component 1 and GPs 38 and 
20 were related to T2DM in component 2. Four clusters were observed based on the correlation of 
the expressive signatures of the 39 N‑glycans across T2DM and controls. Cluster A, B, C and D had 
16, 16, 4 and 3 N‑glycans respectively, of which 11, 8, 1 and 1 were found to express differently 
between controls and T2DM in a univariate analysis (p < 0.05) . Multi‑block analysis revealed that 
trigalactosylated (G3), triantennary (TRIA), high branching (HB) and trisialylated (S3) expressed 
significantly highly in T2DM than healthy controls. A bipartite relevance network revealed that 
HB, monogalactosylated (G1) and G3 were central in the network and observed more connections, 
highlighting their importance in discriminating between T2DM and healthy controls. Investigation of 
these N‑glycans can enhance the understanding of T2DM.

Type II diabetes mellitus (T2DM), characterised by persistent rise in plasma  glucose1,2, may have existed over 
two centuries ago. At the time, the disease could kill within weeks or months of  diagnosis3. After several decades, 
investments in T2DM research enhanced understanding of the condition, resulting in the development of treat-
ments that improved quality of life and increased  longevity3. Sadly, the path to cure the disease has been slow 
despite significant achievements and, in fact, the disease is still recognised as the fastest chronic condition that 
reduces the life expectancy of millions of people  worldwide3.

It is a public knowledge that effective biomarkers can promote early detection, which in turn, can stimulate a 
timely intervention, and delay the onset of  T2DM2,4. However, efforts to obtain robust biomarkers for the condi-
tion have been hindered by the complex nature of the condition. Indeed, the disease is the outcome of genetic, 
epigenetic, and environmental triggers, all of which complicates detection, diagnosis, and  prediction5. Complex 
sugars, hereafter called glycans, represent an intermediate phenotype, linking our genetic architecture and the 
 environment5–7. At the molecular level, glycans through the concerted actions of glycosidases and glycosyltrans-
ferases in the endoplasmic reticulum and Golgi apparatus, attach to  proteins5,7,8 in a process termed glycosylation.
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Amongst the multiple glycosylation types including O-linked, C-linked and S-linked, the present study 
focuses on N-glycan, which involves the binding of complex sugars to the asparagine residues of amino  acids8,9. 
When complexed to proteins, N-glycans can change protein conformation, function and  solubility10,11. Moreover, 
since their biosynthesis are largely influenced by the condition of the cell, profiling N-glycan signatures can allow 
for capturing the changes associated with pathophysiological state of the  body7,11,12. Hence, the overwhelming 
evidence that N-glycan aberrations result in multiple diseases including  cancers13, rheumatoid  arthritis14, sys-
temic lupus  erythematosus15,  hypertension16 as well as  T2DM5,17,18.

The process of identifying N-glycan biomarkers depends heavily on sophisticated and high-throughput 
instruments including ultra-performance liquid chromatography (UPLC)5, mass spectrometry (MS)19, capil-
lary electrophoresis (CE)20,21 and nuclear magnetic resonance imaging (NMR)22. These technologies are not 
only useful for the quantitative detection or measurement of traits in biological  samples8, they also generate a 
global wealth of N-glycan data that are only interpretable with statistical methods. Examples of such methods 
include univariate analysis (e.g. ANOVA, t-tests), conventional multivariate analysis, logistic regression, or cox-
regression  methods23.

While these methods unravel defective biomarkers in diseased states, their biological interaction are not 
revealed in real time. This is partly because, the big data generated from complex technologies such as those men-
tioned poses formidable statistical modelling challenges including data over-fitting, curse of dimensionality, and 
 multicollinearity24,25. It is even worsened with the N-glycan heterogeneity and variability of individual expression 
of glycans  traits5,7. Moreover, for OMICS datasets, the number of variables exceeds the number of  observations26.

Over the years, data integration methods such as Bayesian methods, network analysis, matrix factorisation 
methods and correlation-based analysis can circumvent some of these challenges and allow a more compre-
hensive and system level means of interrogating data. Moreover, such methods are suitable for interrogating 
any form of dataset, be it categorical, binary, or continuous. In addition, data integration addresses issues with 
missing data, systematic bias, and high error rates. The benefit of using integrative method is that it reduces 
the dimensions of global data, allows variables in complex data to be interrogated, enables the revelation of 
hidden structures, the determination of correlation trends, does not require a priori biological knowledge and 
the interpretation of trends in sample datasets. For example, dimension reduction techniques such as principal 
component analysis (PCA) permits changes of metabolites to be  visualised27, to provide comprehensive insight 
into biological systems. However, a limitation of these standard methods is their failure to fully explore the con-
nectivity of multiple  networks28,29.

Recently, Singh et al.30 proposed the Data Integration Analysis for Biomarker discovery using Latent cOm-
ponents (DIABLO) to reveal potential biomarkers from multi-omics assays. DIABLO is a supervised multi-
omics method that simultaneously identifies key biomarkers in an integrated process by discriminating distinct 
groups. With this method, researchers have gained insight into the molecular patterns spanning across biological 
domains or characterizing certain phenotypes, and thus can identify multi-block biomarkers that are predictive 
of diseases. In a multivariate integrative framework, DIABLO uses a multi-step approach to concatenate all data, 
maximizes common information between multi-block datasets and applies a classification model to each block 
of the data. With powerful visualization capabilities, multiple phenotypes can be expressed in definitive plots to 
aid easy interpretation of the multiplicity of relationships in a multi-block dataset.

In this study, we attempt to assess the added value of DIABLO to holistically construct an integrated network 
that captures all possible of N-glycan-glycan interactions in T2DM and healthy controls. Understanding the 
interaction between N-glycan datasets can offer useful insights in glycan mechanisms.

Methods and study design
In this cross-sectional study, we recruited 232 T2DM and 219 age-gender matched healthy controls. T2DM 
individuals were purposively sampled from the Diabetic Unit of the Komfo Anokye Teaching Hospital (KATH), 
Kumasi, Ghana whereas the controls were recruited by convenient sampling from three suburbs within the 
Kumasi metropolis (Fig. 1). The Committee on Human Research, Publication and Ethics (CHRPE) of Kwame 
Nkrumah University of Science and Technology (KNUST), Ghana, and the Human Research Ethics Committee 
(HREC) of Edith Cowan University (ECU) reviewed all aspects of the study and approved it. Written informed 
consent was obtained from all participants. All aspects of the study were conducted in consistence with the 
principles of the Helsinki’s Declaration.

Inclusion criteria. T2DM was established based on the international classification of disease 10 (ICD-10) 
criteria and known history of anti-diabetes medication use. The controls, however, were individuals who were 
not suffering from T2DM and/or hypertension and had no history of anti-diabetes or antihypertensive medi-
cation use. In both groups, we excluded participants who were suffering from other chronic diseases related 
to the genitourinary, digestive, respiratory and haematological systems. The age range for all participants was 
30–80 years.

Anthropometric examination. Participants supplied their demographic information by completing 
a brief questionnaire after which anthropometric measurements including weight, height, Body mass index 
(BMI), Waist-to-hip ratio (WHR), Waist-to-height ratio (WHtR), systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) were measured by standard methods (Fig. 1).

Clinical data. Briefly, venous fasting blood samples were collected from each participant into tubes contain-
ing EDTA (ethylene diamine tetraacetic acid), fluoride oxalate and gel separator. Different clinical tests including 
Fasting plasma glucose (FPG), glycosylated haemoglobin (HbA1c), total cholesterol (TC), high density lipopro-
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tein cholesterol (HDL-c), Low density lipoprotein cholesterol (LDL-c), triglycerides (TG) and very low-density 
lipoprotein cholesterol (VLDL-c) were measured on the automated chemistry analyser (Roche Diagnostics, 
COBAS INTEGRA 400 Plus, USA). WHtR was then calculated. Aliquots of processed plasma samples were 
stored at − 80 °C until N-glycan analysis (Fig. 1).

N‑glycan release and labelling. Plasma samples were first randomised on multiple plates to avoid bias 
and experimental errors. Plasma samples aliquoted in 96-well plates were denatured, following which, glycans 
were released, fluorescently labelled, purified/washed/cleaned up as described in our previous  studies5,31,32. 
Hydrophilic interaction liquid chromatography on a Waters Acquity ultra-performance liquid chromatogra-
phy (UPLC) instrument (Waters Corporation, Milford, MA, USA) was employed for the separation and analy-
sis of eluted glycans. This high throughput instrument generated a total plasma N-glycome chromatogram of 
39 N-glycan peaks. Each glycan peak’s relative abundance was expressed as a percentage of the total integrated 
area (Fig. 2). Twenty-one (21) derived traits were calculated then calculated from the 39 N-glycan peaks (Sup-
plementary Table 1).

Statistical analysis. Batch correction and normalisation on the UPLC data was performed to control for 
non-biological variability. To explore batch effects, data tables were created for each plate that compared T2DM, 
age and gender. Glycome experiments were designed to control for important factors between the different 
plates. These factors (type II diabetes vs healthy control, male vs female, age separated at the median, timepoint 
of data collection) were evenly distributed among the experimental batches. During data processing, experi-
mental artefacts were removed by using the ComBat method for batch correction. Thereafter, data was normal-

Questionnaire
administration

Participant recruitment

Fasting blood
sampling, blood

processing,
aliquoting and

storage

Demographic
and

anthropometric
data collection

Biochemical analysis:
Lipid profiles, liver

function tests, kidney
function tests, plasma
glucose tests using

automated chemistry
analyser

Data entry in
Microsoft Excel

Plasma aliquots loading and
denaturation

Pre-batch
correction

quality control

N-glycan release, labelling,
elution, separation by HILIC-

UPLC

Data integration
Data

preparation,
manipulation
and merging

Batch
correction by

empirical Bayes
method

Data cleaning and export to
SPSS and R. Data analyses
using different statistical

methods

Screening and
removal of
outliers

Figure 1.  Flow chart of N-glycan data processing. Participants with no prior history of T2DM were recruited 
from the Kumasi metropolis. Ethics was approved and each participant was asked to complete a questionnaire. 
After this, demographic and anthropometric data were obtained, and fasting blood samples were collected for 
biochemical and N-glycan analysis. Statistical analyses were performed in SPSS and R.
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ised using median quotient normalisation. Finally, all glycan data was rank transformed before analyses. Also, 
PCA was performed to check for clustering of plate samples. Variables that were positive for batch effects were 
adjusted according to the recommendations of Leek et al.33.

Kolmogorov Smirnoff test and QQ plots was viewed to ascertain where the data was normally distributed 
or not. Continuous data was represented as mean ± standard deviation (Mean ± SD) while categorical variables 
were expressed as frequencies (percentages). Groups comparisons for continuous variables performed either by 
Student-t tests or Mann–Whitney U-tests whereas categorical variables were compared using Chi-square tests. 
The Benjamini–Hochberg (BH) method was used to control the false discovery rate (q). Spearman correlational 
analysis was carried out to establish associations among the biochemically N-glycan measurements. Agglomera-
tive hierarchical clustering was derived using the Euclidean distance as the similarity measure and Ward meth-
odology. The dendrogram for the columns indicated four possible clusters for the biochemical measurements.

Multivariate integrative framework. DIABLO extends the ideas of sparse generalized canonical cor-
relation analysis (sGCCA). Let X(1), . . . ,X(J) denote J normalized, cantered, and scaled datasets of dimensions 
(N × P1), . . . ,

(

N × PJ
)

 , measuring the expression levels of P1, . . . ,PJ multi-block variables on the same sample 
N . sGCCA identifies relevant dimensions, d = 1, . . . ,D, of the multi-block dataset by maximizing the variance–
covariance function
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Figure 2.  Workflow of N-glycan analysis with UPLC-FLR. Plasma samples were aliquoted into 96 well plates 
and denatured with sodium dodecyl sulphate (SDS). The plate was sealed and incubated at 65 °C for 10 min. 
IGEPAL CA-630 was added and sample mixed by pipetting up and down. This was then followed by incubation 
at room temperature. Glycans were freed from their bound glycoproteins by adding peptide N-glycosidase F 
(PN-Gase F) and incubation at 37 °C for 18 h. glycans were then fluorescently labelled with 2-aminobenzamide 
and incubated for 2 h at 65 °C. This was followed by four-step washing procedure with acetonitrile and 2AB 
glycans were eluted using ultra-pure water. Samples were injected into the UPLC and analysed under the 
following conditions: solvent A = 100 Mm ammonium formate, solvent B = acetonitrile, flow rate 0.1 ml/min, 
pH = 4.4. Structural assignments and normalisation of glycan peaks were then performed.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10974  | https://doi.org/10.1038/s41598-022-15172-z

www.nature.com/scientificreports/

where a(j)d  is the loading vector on dimension d associated with the residual matrix X(j)d  of the dataset X(J). 
C =

{

ci,h
}

i,h
 is a J × J design matrix that indicates the connections among multi-block dataset. Elements in C 

can be interpreted as correlations where zero indicates that the blocks of data are not connected, and one indicates 
that they are fully connected. �(j) is a non-negative parameter that controls the amount of shrinkage, indicating 
the number of non-zero coefficients in a(j)d  , for each component score s(j)d = X

(j)
d a

(j)
d .

The data was partitioned to create two separate sets of data, one for training the models and one for testing 
their predictive performance. This division occurred at an 80/20 proportion of the data. K-fold cross-validation 
(CV) was used to evaluate and compare the different models to each other. Analysis was performed in R statis-
tical software. DIABLO was implemented in the ‘mixOmics’ R Bioconductor package which has functions for 
parameters’ choice and visualization to assist in the interpretation of the integrative analyses.

Table 1.  Characteristics of participants with and without T2DM. Data presented as Mean ± SD and n (%). ^χ2 
test of independence, tStudent’s t-test, uMann Whitney U tests. Tests of significance were two tailed (*p < 0.05); 
**q < 0.05F significant after correction for FDR and are bold.

Variable Control Case Statistic p q

Age (mean ± SD) 55.10 ± 9.27 56.54 ± 9.89  − 1.466t 0.0648 0.1102

Age (years)

31–40 years 8 (3.7) 14(6.0) 8.57^ 0.073 0.1128

41–50 years 70(32.0) 50(21.6

51–60 years 83(37.9) 87(37.5)

61–70 years 44(20.1) 63(27.2)

71–80 years 14(6.4) 18(7.8)

Gender

Female 135 (61.4) 133 (57.30)

BMI (kg/m2) 1.302^ 0.729 0.8262

Underweight 11(5.0) 7(3)

Normal 91(41.6) 102(44.2)

Overweight 74(33.8) 77(33.0)

Obese 43(19.6) 45(19.5)

Education 9.838^ 0.043 0.0812

Tertiary 29(13.3) 40(17.2)

Senior high 72(33.0) 53(22.8)

Junior high 71(32.6) 76(32.8)

Lower primary 28(12.8) 28(12.1)

No formal education 18(8.3) 35(15.1)

Occupation 26.743^ 0.0001* 0.0003**

Employed 147(67.4) 152(65.8)

Retired 21(9.6) 27(11.7)

Keeping house 14(6.4) 23(10.0)

Unemployed 26(16.6) 29(12.5)

Physical activity

Sedentary 30(13.8) 53(22.9) 9.772^ 0.021 0.0446**

Moderate activity 114(52.3) 94(40.7)

Active 74(34.0) 84(36.3)

Clinical/biochemical data

WHtR 0.56 ± 0.08 0.56 ± 0.08 24057u 0.4933 0.599

SBP (mmHg) 145.96 ± 24.3 139.78 ± 24.91 20,863.5u 0.0035* 0.0084**

DBP (mmHg) 84.70 ± 14.42 82.52 ± 13.10 22652u 0.0925 0.131

FPG (mmol/l) 5.86 ± 0.95 9.24 ± 4.26 9871.5u 0.0000* 0.0001**

HbA1c (mmol) 5.45 ± 1.00 8.23 ± 2.09 9768.3u 0.0000* 0.0001**

TC (mmol/l) 4.69 ± 1.26 4.66 ± 1.26 21,918.5u 0.9604 0.9604

TG (mmol/l) 1.35 ± 0.97 1.24 ± 0.54 22,012.5u 0.8518 0.905

HDL-c (mmol/l) 1.24 ± 0.33 1.35 ± 0.33 17868u 0.0003* 0.0010**

LDL-c (mmol/l) 2.88 ± 1.05 2.74 ± 1.16 20,545.5u 0.254 0.3322
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Results
The demographic and anthropometric information detailed in Table 1 shows that there were more female par-
ticipants (61.4%), along with a mean age of controls and cases been 56.54 ± 9.89 and 55.10 ± 9.27, respectively. 
Majority of the participants in both groups had some form of education (χ2 = 9.83, q = 0.0812) and employ-
ment (χ2 = 26.74, q = 0.0003). BMI (q = 0.8262), TC (U = 21,918; q = 0.9604), LDL-c (U = 20,545; q = 0.3322), TG 
(U = 22,012, q = 0.9050) was not statistically different in both groups. Both HbA1c (U = 9768.3; q = 0.0001) and 
FBS (U = 9871.5; q = 0.0001) were high in T2DM compared to control but surprisingly, there was a higher SBP 
(U = 20,863.5, q = 0.0084) and a higher HDL-c (178.68, q = 0.0010) in controls and cases, respectively.

Discriminating signature for N‑glycans on T2DM and healthy controls. The nature of associations 
and patterns of clustering for the 39 N-glycans were explored for cases and controls. Hierarchical cluster analysis 
identified four clusters in the correlation of the expressive signatures of the 39 N-glycans across healthy controls 
and T2DM cases (Fig. 3A). For example, cluster A had 16 N-glycans (Table 2), of which 11 were found to express 
significantly different (Fig. 3B) between healthy controls and T2DM cases (K = 16; k = 11, p < 0.05) . Similarly, 
16 glycans were clustered as B, of which 8 were found to express significantly different between healthy controls 
and T2DM cases (K = 16; k = 8, p < 0.05) . Cluster C and D had 4 and 3 glycans respectively and in each of 
them only 1 was found to express significantly different between healthy controls and T2DM cases (Table 2). No 
clear pattern was observed in how the clusters relate the canonically derived traits displayed in Supplementary 
Table 1.

Feature selection is important in the refinement of biological and biochemical hypotheses. We identified a 
combination of discriminative features from a disparate block of glycans. N-glycans loaded differently along the 
two principal components (PC), with estimates of positive and negative weights (Fig. 4). A large absolute value 
indicates the importance of the variable to the PC and the colour codes indicate how prominent the biomarker 
expressed in the cases of Type II diabetes mellitus and healthy controls. To discriminate between T2DM and 
healthy controls, the optimal model identified the N-glycans signatures and expressed their contributions in 
classifying between T2DM and healthy controls for 10 out of 39 N-glycans in each component. The top 10 

Figure 3.  (A) Glycans correlation analysis for healthy controls and T2DM cases. The matrix presented are 
hierarchically clustered to highlight the signature of glycans expression in healthy controls and T2DM cases. (B) 
Expression of glycans in healthy controls and T2DM, ranked in terms of significant differing expression.

Table 2.  Analysis of N-glycans expressive signatures between T2DM cases and healthy controls across the 
four clusters. NB: Bold text indicates the glycan expression is significantly different between T2DM cases and 
healthy controls, compared at 5% level of significance.

Clusters N-glycans Univariate analysis

A GP 32, GP 31, GP 34, GP 26, GP 24, GP 28, GP 30, GP 37, GP 36, GP 38, GP 19, GP 14, GP 20, 
GP 12, GP 18, GP 29 K = 16; k = 11, p < 0.05

B GP 21, GP 8, GP 15, GP 3, GP 9, GP 1, GP 2, GP 7, GP 6, GP 11, GP 17, GP 10, GP 16, GP 13, GP 
4, GP 5 K = 16; k = 8, p < 0.05

C GP 39, GP 35, GP 27, GP 33 K = 4; k = 1, p < 0.05

D GP 25, GP 22, GP 23 K = 3; k = 1, p < 0.05
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discriminatory glycans for each PC were ranked from the most important (top) to the least important. Sample 
plot of the final DIABLO model displayed a better discrimination of T2DM and healthy controls with plasma 
glucose measures compared (Fig. 4). For example, in component 1, GPs 34, 32, 26, 31, 36 and 30 were found to 
significantly express highly in T2DM, whereas GPs 10, 4, 16 and 5 were significantly expressed in the healthy 
controls. On the second principal axis, GPs 19, 37, 29, 13 and 18 were highly expressed in the healthy controls, 
whilst GPs 38, 1, 2, 25 and 20 were dominant in T2DM. Based on the results from the PCA, the 10 glycans that 
highly contributed to component 1, were used in a discriminant analysis. A data split of 80% and 20% were used 
for training and validation purposes. The area under the curve (AUC) for the training phase was 0.72, which 
improved to 0.83 for the test data, highlighting a good learning rate for the discriminant model.

Multivariate integrative analysis. We investigated the clustered image map (CIM) to highlight the 
strength and direction of pair-wise association structures between the two groups and the canonically derived 
traits. We then selected the important features between multi-block derived traits of the N-glycan measure-
ments. CIM based on a hierarchical clustering simultaneously operated on the rows and columns using a simi-
larity matrix to produce a 2-dimensional coloured image (Fig. 5). The dendrogram for the columns indicated 
six possible clusters for the canonically derived traits of biochemical N-glycans measurements, reflecting the six 

Figure 4.  Principal component and discrimination analysis of top expressive glycans in T2DM and healthy 
controls. Feature selections are important in the refinement of biological and biochemical hypotheses. We 
identified a combination of discriminative features from a disparate block of N-glycan data set. N-glycan peaks 
loaded differently along the two principal components (PC), with estimates of positive and negative weights. 
A large absolute value indicates the importance of the variable to the PC and the colour codes indicate how 
prominent the biomarker expressed in T2DM and healthy controls. Selected variables were ranked from the 
least important to the most important. The classification accuracy the training and testing of the discriminant 
function formulated using the 10 glycans associated with component 1 reveals a model with good learning rate.
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unique characterisations of branching, degree of branching, level of galactosylation, level of sialylation, sialyla-
tion of biantennary and position of fucose.

Multi-block analysis of the canonically N-glycan derived traits is presented in a circos plot (Fig. 6A), with 
links between or within blocks indicating positive and negative correlations at a cut-off correlation of |0.5|. This 
threshold was arbitrarily chosen to obtain interpretable networks that were neither too sparse nor too dense. We 
observed significant difference of expression (p < 0.05) of S1, BAMS, A2G and G2 being expressed highly in the 
healthy control group compared to T2DM cases, whereas G3, TRIA, HB and S3 expressed significantly highly 
in T2DM cases compared to healthy controls (Fig. 6A).

Using a pairwise similarity matrix directly obtained from outputs of sGCCA and PLS, bipartite network was 
inferred (Fig. 6B). One relevant component was obtained when the threshold was set to 0.5, linking the corre-
sponding correlated subsets in the independent and dependent data. The network model representing the bivari-
ate partial correlation matrix between the 21 canonically derived traits, comprises both positive (red lines) and 
negative (green lines) correlations (Fig. 6B). HB, G1 and G3 were central in the network and observed more con-
nections than the others, highlighting their importance in discriminating between T2DM and healthy controls.

Discussion
Comprehensive understanding of spectral N-glycan data from UPLC analysis is anchored on advanced statisti-
cal methods. Integrative methods offer comprehensive means to dissect data, with the goal of transforming the 
data into a clinically useful information. For the first time, we have applied a powerful and advanced integrative 
method DIABLO, to explore N-glycan profiles interaction in real time.

Prior to applying the DIABLO method, univariate, and multivariate statistical methods (e.g., student t tests 
and Mann Whitney U tests and chi-square test) have been used to reveal the association between T2DM and 
biochemical measures such as plasma glucose and lipid profiles. Surprisingly, the control group had a higher 
blood pressure than the cases, and this can be attributed to the medication use (glucose, lipid and blood pressure 
lowering drugs) among the cases (Table 1). Moreover, this highlights the proportion of the population who have 

Figure 5.  Hierarchical clustering of derived N-glycans traits in cases and controls. Hierarchical clustering of 
the cases and control samples using the measurement of sugars and lipids from block sPLSDA-reg network. 
Agglomerative hierarchical clustering was derived using the Euclidean distance as the similarity measure and 
Ward methodology. The red colour indicates that the row-column clusters are positively correlated, and the light 
blue colour indicates a negative correlation, whereas yellow indicate weaker correlation values.
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raised blood pressure, but they are unaware of it. WHO reports that an estimated 45% of hypertensive adults are 
not aware of it, although the control group in the current study cannot be said to be hypertensive. This is because 
hypertension is established after repeated measures of blood pressure above normal threshold (140 mmHg). 
In the present study, blood pressure was only measured once. It is not clear why the control group had a lower 
HDL-c but it may be attributed to genetic factors or defects in cholesterol efflux.

Medication use in T2DM can potentially affect their N-glycome. Singh et al.30 found that statin use was 
linked to a decrease in all fucosylated traits including diantennary and triantennary structures (A2EF, A2LF, 
A3EF, A3L0F). In addition, statin use was associated with an increased galactosylation in diantennary non-fuco-
sylated (A2F0G) and in sialylated diantennary (A2SG) glycans. The study further stated that statin use negatively 
correlated with Alpha2,6-sialylation of triantennary (A3E) and fucosylated tetra-antennary glycans (A4FGE). 
Similarly, metformin correlated with a decreased fucosylation in diantennary, triantennary and tetra-antennary 
traits and an increase of galactosylation in diantennary  glycans34.It is widely known that T2DM develops several 
years before clinical diagnosis. Mild symptoms such as weight loss or weight gain, fatigue, increased hunger 
would progressively result in persistent high plasma glucose and complications. However, because of limited 
sensitive, and robust biomarkers, T2DM diagnosis is often delayed. This problem appears to be solved with the 
advent of N-glycans. First, the GST2D score was used to predict T2DM development 6–8 years before clinical 
 manifestation35. In another study, Cvetko et al.36 reported that individuals who were healthy at baseline but 
developed insulin resistance and T2DM over time, were characterised by complex and highly branched N-glycan 
structures. Specifically, the study identified alterations in eight N-glycans: GP10, GP16, GP18, GP19, GP20, GP26, 
GP32 and  GP3436; with GP 32 and GP34 being the most significant in the continuum of insulin resistance and 
T2DM. Increasing evidence shows that T2DM patients can be distinguished from healthy individuals depend-
ing on the composition of their respective total N-glycome5,18. Thus, we explored the N-glycan traits whose 
expression were different in cases and controls. The present study validates that of Cvetko et al.36 and Clemens 
et al.35, we identified GPs 34, 32, 26, 31, 36 and 30 to be highly expressed in T2DM in the first principal axis and 
on the second principal axis, GPs 38, 1, 2, 25 and 20 were dominant in T2DM. Sialylated glycans (GP26, GP32, 
GP35 and GP36) are expressed on a1-acid glycoprotein, whereas GP18 and GP20 originates from glycoproteins 
a-antitrypsin. A-antitrypsin is a protease inhibitor with at least three glycosylation sites for biantennary glycans 
without fucosylation (site asparagine 70), bi-, tri- and tetra-antennary glycans with core and antennary fucosyla-
tion (at site asparagine 107) and site asparagine 271 is occupied by bi- and tri-antennary glycans with core- and 
antennary-fucosylation37. A-antitrypsin protects β-cells from apoptosis and triggers insulin secretion, hence 
important for preventing type I  diabetes38.

Clerc et al.39, further states that triantennary (GP 30, GP 31 and GP 32) and tetraantennary (e.g., GP 26, GP34, 
36) glycans are expressed on kininogen-1 and histidine-rich glycoproteins. Kininogens are proteins with multiple 
functions including antidiuretic, antiangiogenic, antithrombotic, profibrinolytic and proinflammatory proteins. 
Abnormal expression of this glycoprotein is linked to  diabetes40. Histidine-rich glycoproteins bind to ligands 
including heparan sulfate, plasminogen, heme amongst others and regulates multiple processes such as cell adhe-
sion, fibrinolysis, cell chemotaxis. A deficiency of this protein has been associated with thrombosis, but its role in 

Figure 6.  Correlation and relevance N-integrative supervised analysis with DIABLO. (A) Circos plots showing 
inter-block correlations. Spearman rank correlations were calculated for each pairwise comparison of variables. 
Variables with r = 0.5 between-block correlation were presented, (B) relevance network visualisation of the 
selected features.
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diabetes has also been  reported41. Similarly, abnormal activities of a-antitrypsin, transferrin and hemopexin are 
all implicated in diabetes. Of particular interest is three glycan groups (GP30, GP36 and GP38) that have been 
shown to have clinical relevance in maturity onset diabetes of the young (MODY)42. In fact, Juszczak et al.42, 
documented that GP30, GP36 and GP38 had the best discriminative power between HNF1A-MODY and early-
onset type 2 diabetes. The authors explained that HNF1A is a transcription factor for the inflammatory marker 
C-reactive protein (CRP) and a master regulator of fucosylation; with variations in HNF1A triggering MODY. 
With a sensitivity of 88% and specificity of 80%, was the best amongst the three glycan groups in discriminating 
between individuals with damaging HNF1A alleles from those with early-onset nonautoimmune diabetes but 
lacked HNF1A variants. The study showed that subjects with deleterious HNF1A allele had reduced levels of 
these glycans than those who lacked the rare HNF1A  allele42.

The findings of the current study build upon that of Keser et al.17 who also suggested that the increased 
branched N-glycans in T2DM can be due to dysregulation of the hexosamine biosynthesis pathway (HBP). HBP 
has been found to be involved in the metabolism of glucose. This pathway under normal conditions, metabolises 
up to 3% glucose of the total glucose in the body. However, when homeostatic mechanism is disturbed, such 
as in T2DM, the metabolism of glucose is heightened, producing uridine diphosphate N-acetylglucosamine 
(UDP-G1cNAc). UDP-G1cNAc is a substrate for glycosyltransferases that catalyses the elongation and branch-
ing of glycan chains in glycosylation. GNTs are encoded by MGAT3 [mannosyl (β-1,4-)-glycoprotein β-1,4-N-
acetylglucosaminyltransferase] but specifically, GNT-I, -II, -IV and -V catalyses the biosynthesis of mono, bi, 
tri and tetra-antennary glycans whereas GNT extends the 1–6 arm of the glycan core with GlcNAc residue. A 
defective GNT glycosyltransferase in the pancreatic islets results in impaired insulin action, impaired glucose 
tolerance and eventually, hyperglycaemia.

Aberration of fucosylation, be it core or antennary has been implicated in our results just as stated in multi-
ple chronic  diseases43–45. For example, Herrera et al.46 identified core-fucosylated tetra-antennary glycan to be 
associated with poor breast cancer prognosis. Then Testa et al.44, showed that core-α-1,6-fucosylated diantennary 
glycans was associated with T2DM. Sialic acids (N-acetylneuraminic acids) are pinned to the non-reducing ends 
of N-glycans by way of 2,3-, ,2,6- linkages. When bound, they play crucial roles in the pathological conditions 
including cancers and viral infections, while sialic acid complex glycans have been suggested to have anti-
inflammatory  properties47. Removal of UDP-N-GlcNAc 2-epimerase/ N-acetylmannosamine (ManNAc) kinase, 
an enzyme required for the biosynthesis sialic acids, led to glomerula proteinuria in  mice48. In addition, other 
studies have found that upregulation of β-galactoside α-2,6-sialyltransferase 1, an enzyme that catalyses terminal 
α2,6-sialylation, was associated with worse patient outcomes in  cancer49. Other studies have also indicated that 
an increase in α-(2 → 3)-sialic acid correlates with tumor metastasis. For example, intravenous administration 
of a sialidase (enzyme that cleaves sialic acids) blocking agent caused an increase release of insulin in pancreatic 
 islets50. It is known that hyposialylated IgG glycans stimulates endothelial FcγRIIb, which has been previously 
associated with insulin resistance in obese mice. In the present study, the T2DM was associated with terminal 
sialylation. Recently, increased sialic acids on N-glycans has been implicated in T2DM  development17. The 
absence of sialic acids on plasma LDL-c has been shown to induce cholesterol ester accumulation in cells and 
hence implicated in cardiometabolic diseases. This could be a possible reason why plasma LDL-c was highly 
loaded in cases compared to  controls51.

The main limitation of the study relates to the small sample, and which means, the results cannot be gener-
alised. Also, there is a possibility of biological variations related to gene expression in the samples, but that was 
not investigated. Already a genome wide association study has identified HNFA1 α as the master regulator of 
 fucosylation52. Moreover, Cohain et al.27 analysis on cardiometabolic tissues revealed multiple genes that code 
for clinical markers including total cholesterol (DHCR7, FADS1, FADS2, MMAB, and MVK), (FLVCR1, LSS, 
MMAB, MVK, DHCR7, FADS1, FADS2 and VPS37D), LDL-c (FADS1, FADS2, and LSS), HDL-c (FLVCR1, 
MMAB, MVK, FADS1, FADS2), and TG (VPS37D, FADS1, FADS2).  Zaytseva53 also reported that most of the 
highly heritable N-glycan peaks such as GP1, GP2, GP4-6, GP10-11, GP16, and GP17 were core-fucosylated 
biantennary with reduced sialylation whereas GP 20 and GP 14 had a low heritability. We intend to use path 
analysis and confirmatory factor analysis to determine gene-glycan relationships.

The present study has only provided information about glycans in biological samples (glycome), without 
highlighting downstream changes in the transcriptome, metabolome, lipidome and proteome. Thus, combining 
and analysing multiomics simultaneously will provide a clearer understanding of the mechanism that underly 
T2DM pathogenesis.

Conclusion
DIABLO is a robust method that captures the N-glycan-glycan interactions in T2DM and healthy controls. T2DM 
is associated with highly branched N-glycan structures including trigalactosylated, triantennary, high branch-
ing (HB) and trisialylated that are derived from glycoproteins. Glycan groups identified to discriminate T2DM 
from healthy controls can be exploited further to unearth their potential for T2DM diagnosis and prognosis.
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