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An improved group teaching 
optimization algorithm for global 
function optimization
Yanjiao Wang1, Jieru Han1* & Ziming Teng2

This paper proposes an improved group teaching optimization algorithm (IGTOA) to improve the 
convergence speed and accuracy of the group teaching optimization algorithm. It assigns teachers 
independently for each individual, replacing the original way of sharing the same teacher, increasing 
the evolutionary direction and expanding the diversity of the population; it dynamically divides 
the students of the good group and the students of the average group to meet the different needs 
of convergence speed and population diversity in different evolutionary stages; in the student 
learning stage, the weak self-learning part is canceled, the mutual learning part is increased, and the 
population diversity is supplemented; for the average group students, a new sub-space search mode 
is proposed, and the teacher’s teaching method is improved to reduce the diversity in the population 
evolution process. and propose a population reconstruction mechanism to expand the search range 
of the current population and ensure population diversity. Finally, the experimental results on the 
CEC2013 test suite show that IGTOA has clear advantages in convergence speed and accuracy over the 
other five excellent algorithms.

In many engineering areas, in order to obtain the maximum economic or social benefits, the best solution needs 
to be sought under certain conditions, such as: In the issue of cargo transport, the planned transport scheme 
meets both the quantity and loading conditions and minimizes total transport cost; In the process of product 
production, it is required to reduce the use of manpower and equipment to maximize the profit while meeting the 
product specifications. Mathematically, the essence of this process is the solution of optimization  problems1. Due 
to the increasingly complex optimization problems proposed in the fields of science, engineering, and economics, 
even if complex mathematical models are built, it is difficult to obtain more desirable results. However, scholars 
have found that creatures in nature can accomplish complex tasks such as predation, risk avoidance, and evolu-
tion by assembling in groups, collaborating with each other, interacting, and other simple  actions2. It presents a 
kind of group intelligence from which people take inspiration and design multiple evolutionary algorithms that 
can better solve optimization problems. Therefore, the swarm intelligence evolutionary algorithm has become 
the most effective and widely used method at  present3.

At present, in engineering application fields, such as surface roughness modeling and optimization of 
tungsten-copper alloys in micro-milling  processes4; a decision-making framework for dynamic scheduling of 
cyber-physical production systems based on digital  twins5; evolving fuzzy models of shape memory alloy wire 
 actuators6, the representative group intelligent evolution algorithm is mainly as follows: Genetic algorithm (GA), 
Differential Evolution (DE) algorithm , Particle Swarm Optimization (PSO) algorithm, Whale Optimization 
algorithm (WOA), Grey Wolf Optimizer (GWO), Artificial Bee Colony Algorithm (ABC) algorithm. Among 
them, the  GA7 is a biological evolution process that simulates the natural selection and genetic mechanism of 
Darwin’s theory of biological evolution, chromosomes are the main carrier of genetic material, that is, a collec-
tion of multiple genes, constitutes the genetic operation of genetic algorithm through selection, crossover and 
mutation. The  DE8 is proposed based on the evolutionary idea of genetic algorithm, algorithm variant vectors 
are generated by the parent difference vector and crossed with the parent individual vector to generate new indi-
vidual vectors, selected directly with its parent individual. The PSO  algorithm9 is inspired by the social behavior 
of flocks or fish, each individual in a particle population is called a particle, representing a position or possible 
candidate solution in a multidimensional search space, updating positions by cooperating with each other until 
the optimal solution is found. The  WOA10 is based on the behavior of whale prey, the location of each whale 
represents a viable solution, and during each generation of swimming, the whales randomly choose driving 
or rounding up to gradually approach their prey. The  GWO11 is a group intelligent optimization algorithm for 
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simulating its predator behavior, the algorithm assigns predation tasks such as encircling, chasing, and attacking 
gray wolves to different levels of gray wolves according to the gray wolf ’s social level to complete the predation 
behavior, thereby achieving global optimization. The ABC  algorithm12 is inspired by the honey harvest behavior, 
where bees conduct different activities according to their respective division of labor, and realize the sharing 
and communication of swarm information, so as to find the optimal solution to the problem. The teaching and 
Learning Optimization (TLBO)  algorithm13 simulates the class-based learning method, and individual students 
reserve knowledge through two stages: "Teaching" and "Learning", so as to improve the ability of each individual.

In order to meet the requirements of the solution accuracy and speed in the engineering application field, the 
scholars have made a more profound exploration of the group intelligence evolution algorithm, mainly focusing 
on the following two aspects:

On the one hand, the existing group intelligence evolution algorithm is improved to further improve its opti-
mization performance. The more representative algorithms are as follows: In 2017, Wei Sun et al. proposed an 
all-dimensional particle swarm algorithm with randomly selected  neighbors14 (ADN-RSN-PSO). This algorithm 
early adopted the randomly selected neighborhood (RSN) learning strategy to improve group diversity, and 
later adopted the all-dimensional neighborhood (ADN) learning strategy to improve the convergence rate. In 
2018, Deng Xianli et al. proposed a multiple group based self-adaptive migration PSO algorithm (MSMPSO)15, 
the algorithm integrates two commonly used neighbor topology to give individuals more information sources, 
based on the parallel evolution of multiple sub-populations, gives different search characteristics to each sub-
population, realize the collaboration and reasonable allocation of sub-population resources, and finally improve 
the comprehensive performance of the algorithm. In 2019, Gurcan Yavuz and Dogan Aydın proposed an algo-
rithm for artificial swarm based on self-adaptive search equations  (SSEABC)16, the algorithm integrates self-
adaptive strategies, local search strategies, incremental population size strategies, and conversion conditions for 
local and internal search, showing some advantages through comparative experiments. In 2019, Juan Li et al. 
proposed an improved adaptive knowledge-learning cuckoo search algorithm (I-PKL-CS)17, the proposed algo-
rithm introduces a learning model with individual history knowledge and group knowledge in the original CS 
algorithm, and adopts threshold statistical learning strategies to develop the potential of individual knowledge 
learning and group knowledge learning, providing a good trade-off for exploration and development. In 2020, 
an efficient dual-adaptive random standby enhanced whale optimization algorithm (RDWOA)18 was proposed 
by Huiling Chen et al. the algorithm introduces two strategies in the original algorithm: one is random standby 
or random replacement strategy to improve the convergence speed of the algorithm; the other is to introduce 
double adaptive weight strategy to improve the overall search ability of the algorithm. In 2021, An improved 
artificial tree algorithm with two populations (IATTP)19 was proposed by Yaping Xiao et al., The algorithm pro-
poses the competition mechanism between populations, and the migration can expand the population, reduces 
the inefficient population size, and realizes the reasonable interaction between the population and the branches 
In 2022, Zhongkai Feng et al. proposed an enhanced sine cosine algorithm (ESCA)20, the algorithm uses reverse 
learning strategy to expand the search scope, adaptive evolution strategy to improve global exploration, com-
munity search strategy to increase population diversity, and greedy selection strategy guarantees solution quality, 
thus improving the convergence accuracy of the algorithm.

On the other hand, many new types of group intelligent evolution algorithms with excellent performance 
have emerged, such as: In 2020, Selim Yilmaz and Sevil Sen proposed the electric fish optimization (EFO) 
 algorithm21 according to the way that the electric fish determine the prey orientation and transfer information 
to each other, the active and passive electric positioning ability of such fish are thought to be able to well balance 
local and global search. In 2020, a Side-Blotched Lizard Algorithm(SBLA)22 was proposed for the polymorphic 
populations of lizards simulated by Oscar Maciel et al., the algorithm utilizes three operators to embody the lizard 
state and uses a sub-population management strategy to simulate the variation of each state lizard population 
over time. In 2021, Zhang Kaifeng et al. inspired by the modern corporate teamwork behavior and proposed a 
Cooperation Search Algorithm (CSA)23, it uses team communication, reflection learning, and internal competi-
tion to complete the global optimization during repeated iterations. In 2020, Yiying Zhang and Zhigang Jin were 
inspired by the group teaching mechanism to propose the Group Teaching Optimization Algorithm (GTOA)24 
which is different from the TLBO algorithm, which only includes two stages of "Teaching" and "Learning", GTOA 
includes four phases: Teacher assignment phase, Ability group phase, Teacher phase, and Student phase, it adopts 
different teaching methods for students with different amounts of knowledge. Experimental results show that 
the convergence speed and convergence accuracy of GTOA are significantly better than those of  PSO25,  DE26, 
 WOA27,  NNA28,  SCA29 and  TLBO13.

Extensive experiments show that compared with the classical swarm intelligence evolutionary algorithm, the 
recently proposed evolutionary algorithm usually has higher convergence accuracy and faster convergence speed. 
However, for more complex optimization problems, they also inevitably have many defects, such as insufficient 
population diversity, easy to fall into local optimal. In order to meet the requirements of practical engineering 
applications, it is necessary to further improve the optimization performance of the proposed evolutionary 
algorithm, which is bound to become a research hot-spot in the field of evolution and engineering applications 
in recent years. Based on the above background, this paper only studies GTOA, proposes an improved group 
teaching optimization algorithm, and further improves its ability to solve complex optimization problems. First, 
assign teachers independently to each body, replace the original way of sharing the same teacher, increase the 
evolutionary direction, and expand population diversity. Second, dynamically divide the good group of students 
and average group students to replace the original fixed distribution model to meet the different needs of different 
evolutionary stages for convergence speed and population diversity. Third, the student learning phase cancels 
the self-learning part with weak effect, increases the mutual learning part, and supplements the population 
diversity. Fourth, for the average group of students, a new sub-space search model is proposed, and the teaching 
method of teachers is improved to reduce the loss of diversity in the process of population evolution. Fifth, a new 
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population reconstruction mechanism is proposed to increase the possibility of population jumping out of local 
optimum. Tested on the CEC2013 test set, the results show that IGTOA has certain advantages in convergence 
speed, convergence accuracy and stability compared with the other five optimization algorithms.The remaining 
structure of this article is as follows: The “GTOA” Section introduces how the original algorithm GTOA works. 
In the “IGTOA” Section, the improved algorithm IGATOA is proposed, and its overall structure and improve-
ment methods are elucidated. The “Experiment and analysis” Section will improve the algorithm and the original 
algorithm and other excellent algorithms, based on the CEC2013 test function simulation experiments, and 
obtain results. Finally, “Conclusion” Section provides a concluding overview.

GTOA

In 2020, Zhang Yiying et al. proposed the GTOA through the simulation group teaching mechanism to solve the 
continuous function optimization problem. In this algorithm, the decision variable is equal to the discipline, and 
the individual is equal to the student, that is, the individual student is composed of multiple disciplines, and the 
fitness value is equal to the knowledge level of the student. For solving the minimization problem, the smaller 
the fitness value of the individual, the higher the knowledge level of the student. Group the students according to 
their knowledge level, combine the characteristics of the group, adopt different learning methods, and constantly 
increase the amount of knowledge of the students in the process of evolution. The pseudo-code of the GTOA is 
shown in Algorithm 1, and its key operations are described below.

Population initialization. Assume that the population size is N, and the dimension of the problem to 
be optimized is D, the i-th individual in the initial population X0 = [X0

1 , X
0
2 , ... , X

0
N ]

T can be described as 
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Xo
i = [x0i,1, x

0
i,2, ..., x

0
i,D](i = 1,2,…,N; j = 1,2,…,D), its j-th dimension xi,j is randomly generated according to 

Eq. (1):

Among them, Um and Lm are the upper and lower limits of the search range of the optimization problem, 
respectively, and rand(0,1) is a random number between 0 and 1.

Teacher assignment. For the current population Xt , a teacher is determined according to Eq. (2) to teach 
students in each iteration.

Among them, Xt
1 , X

t
2 and Xt

3 are respectively the three students with the best fitness value, and t is the current 
number of iterations.

Update good student group. The individual update of the good students group needs to go through the 
teacher teaching phase and the student learning phase in turn, as follows.

Teacher teaching phase. Generally, students in good group have strong ability to accept knowledge, and teach-
ers pay attention to improving the average knowledge of the whole group when teaching. In view of this, the 
GTOA designed the teacher teaching method as shown in Eq. (3).

Among them,Xt+1
GTi

 represents the individual update of student Xt
Gi after the teacher’s teaching; F is the teaching 

factor, with a random value of 1 or 2; a, b, c are random numbers in [0,1], and b + c = 1; Mt is the average subject 
knowledge of students in the good group in the t iteration process, as shown in Eq. (4).

If the knowledge level of students is improved after teaching, the subject knowledge of students should be 
updated; otherwise, the original students should remain unchanged. The details are shown in Eq. (5).

Student learning phase. According to Formula (6), students learn from each other within the group to acquire 
new knowledge of each subject, and decide whether to update the current individual students according to the 
method described in Eq. (7).

Among them, e and g are two random numbers within [0,1]; Xt+1
GSi

 is the individual updated by Xt+1
GTi

 after 
learning through the student phase during the t + 1 iteration; Xt+1

GTj
 is another individual student randomly 

selected in this group, and j ≠ i.

Update average student group. Similar to the good group, the individual renewal of the students in the 
average group also needs to go through the teaching phase and the learning phase successively. Among them, the 
learning phase of the students in the average group is exactly the same as that of the good group. And according 
to the differences in the knowledge level of the two groups, the teaching phase of the teachers is different, which 
is as follows.

In view of the relatively poor knowledge level of students in the average group, teachers are more inclined to 
improve the knowledge level of individual students in the learning process. The GTOA has developed a teaching 
plan for the students in the average group, such as Eq. (8). Similar to the teaching of good group teachers, after 
the teaching, they should also judge whether to update their existing subject knowledge according to Eq. (5).

(1)xi,j = rand(0, 1)× (Um− Lm)+ Lm

(2)Tt =







Xt
1 , f

�

Xt
1+Xt

2+Xt
3

3

�

≥ f (Xt
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3
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�

(3)Xt+1
GTi

= Xt
Gi
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{

Xt+1
GTi

, f (Xt+1
GTi

)<f (Xt
Gi)

XGt
i , f (Xt+1

GTi
)≥f (Xt

Gi)

(6)Xt+1
GSi

=







Xt+1
GTi

+ e × (Xt+1
GTi

− Xt+1
GTj

)+ g × (Xt+1
GTi

− Xt
Gi
) , f (Xt+1

GTi
) < f (Xt+1

GTj
)

Xt+1
GTi

− e × (Xt+1
GTi

− Xt+1
GTj

)+ g × (Xt+1
GTi

− Xt
Gi
) , f (Xt+1

GTi
) ≥ f (Xt+1

GTj
)

(7)Xt+1
GSi

=

{

Xt+1
GTi

, f (Xt+1
GTi

)<f (Xt+1
GSi

)

Xt+1
GSi

, f (Xt+1
GTi

)≥f (Xt+1
GSi

)

(8)Xt+1
ATi

= Xt
Ai

+ 2d × (Tt − Xt
Ai
)



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11267  | https://doi.org/10.1038/s41598-022-15170-1

www.nature.com/scientificreports/

Among them, d is a random number in the range of [0,1]; Xt+1
ATi

 is the individual student Xt+1
ATi

 updates by 
learning from the teacher Tt during the t + 1 iteration.

IGTOA
A large number of experiments show that for more complex function problems, similar to other swarm intel-
ligence evolutionary algorithms, GTOA also has shortcomings such as slow convergence speed and easy to fall 
into local optimum. This paper deeply analyzes the reasons for the above problems, and proposes an improved 
group teaching optimization algorithm (IGTOA), the flow chart of which is shown in Fig. 1.

Teacher assignment. As described in “Teacher assignment” Section in the teacher assignment stage of 
the GTOA, from the optimal individual and the average of the three better individuals, the winner is selected as 
the teacher of all students, and all students in the subsequent teaching stage of the good group and the teaching 
phase of the average group are selected. Students learn only from that teacher. Obviously, such a single-teacher 
learning mode will make individuals approach to it quickly, resulting in a single direction of individual explora-

Start
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Update the number of function evaluations FEs=FEs+N

Start the population 
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Grouped according to Section 3.2
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Good group teacher teaching stage Average  group teacher teaching stage
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Figure 1.  IGTOA flow chart.
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tion, rapid decline of population diversity, and easy to fall into local optimal. In order to solve the above prob-
lems, in IGTOA, all students independently select teachers for learning in the following way, as shown in Eq. (9).

Among them, Tt represents the teacher assigned to the students during the teacher teaching stage; P_teacher 
represents teacher assignment probability. Generally, P_teacher = 0.5 can achieve better results.

By the Eq. (9) can be seen, each individual is independent of choosing the best individual and one of the 
three is the center of the optimal individual as a teacher, and learn from it, evolutionary direction is no longer 
a single individual, can better maintain the population diversity, and the best individual and all three is the 
center of the optimal individual carries the better the evolution of the information, will not be too much lower 
convergence speed. In short, this new allocation method of independent teachers can balance the convergence 
rate and population diversity.

Adaptive grouping. In GTOA, according to the fitness of individuals, half of the individuals with better 
fitness value in the whole population are divided into good group, and the rest are divided into average group. 
Through the overall analysis of GTOA, it can be found that the evolution of average students is relatively slow, 
and the main function is to provide evolutionary information for good students to explore and develop new 
positions, so that they can quickly approach the global optimal position. In short, the average group focused 
on maintaining population diversity, while the good group was mainly responsible for exploration and search.

Generally, different evolutionary stages have different requirements for algorithm performance: In the early 
stage of iteration, the fitness value gap between individuals is large, and the population diversity is good. Usually, 
it is hoped that the algorithm will quickly converge to the region where the optimal solution is located. As the 
evolution progresses, the fitness value gap between individuals is decreasing. , the individuals become more and 
more similar, and the population diversity gradually deteriorates. It is expected that the algorithm can increase 
the population diversity in order to have the ability to jump out of the local optimum. In order to better meet 
the needs of different evolutionary stages of the algorithm, in the early stage of evolution, the scale of the aver-
age group should be appropriately reduced and the scale of the good group should be expanded; and vice versa. 
Based on the above ideas, this paper proposes a dynamic allocation method of the number of good group and 
average group students as shown in Eq. (10), and the allocation process is shown in Fig. 2.

Among them, NA
t and NG

t represent the number of students in the average group and the good group in the 
t-th iteration respectively; P_group is the grouping ratio, generally, P_group = 0.1 can achieve better results; ⌊•⌋ repre-
sents rounding; t is the current iteration number of times; max_t maximum number of iterations.

As can be seen from Fig. 2, in the process of 1500 iterations, the number of students in the good group was 
significantly higher than that in the average group in the early stage of evolution. With the increase of iterations, 
the number of students in the good group gradually decreased, in line with the different needs of good group 
size and average group size in different evolutionary stages.

Improvement of update method for good group in student learning phase. GTOA divides the 
population into good and average groups according to the merits of the fitness value, and each group goes 

(9)T t ≡







Xt
1 , if rand < P_teacher

Xt
1 + Xt

2 + Xt
3

3
, otherwise

(10)







Nt
A = P_group× N +

�

N − 2× P_group× N
�

×
t

max _t

Nt
G = N − Nt

A

Figure 2.  Individual number of students in the two groups changed.
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through the teacher teaching phase and the student learning phase accordingly, and the two groups share the 
same student learning strategy. Unlike the teacher phase, the student learning phase does not learn from good 
teachers, but from other individuals in the group and themselves. Therefore, the student learning phase is mainly 
responsible for maintaining the population diversity within the group. An in-depth analysis of the way in which 
individuals are updated at the student learning stage as shown in Eq. (6) shows that the new individual is actu-
ally constituted by "Original individual + Mutual learning + Self-learning". Among them, the mutual learning 
part randomly selects other individuals in the group to learn, which can provide population diversity to a certain 
extent; the self-learning part is that the current individual learns from the individual who has not undergone 
the teacher stage, if the individual is not retained after going through the teacher stage, the current individual 
is exactly the same as the individual who experienced the teacher stage before. Obviously, self-learning is com-
pletely meaningless, and if the individual is retained after going through the teacher stage, the current individual 
is better than the individual before the teacher stage, and it is difficult to learn from it to produce new individuals 
who are better than themselves, then the self-learning stage will still not play a role. In short, the self-learning 
component of GTOA is extremely weak. In order to further enhance its population diversity, the self-learn-
ing part is abolished, learning from other individuals is added, and the new student learning stage individual 
renewal method is proposed as shown in Eq. (11).

where Xt+1
GSj

,Xt+1
GTk

 are two different individuals randomly selected in the good group, i ≠ j ≠ k, respectively, and 
the definitions of parameters a and b are shown in Eq. (12).

where, sgn(•) is a symbolic function.

Improvement of update method for average student group. As described in “Adaptive grouping” 
Section, the good group in GTOA is mainly responsible for exploration and search, while the average group 
focuses on maintaining population diversity. Similar to the updating method of students in the good group, 
students in the average group also conduct a complete search in the D-dimensional search space. Such a wide 
range of communication in the search space is very likely to make the population quickly close to several supe-
rior individuals and gather in a certain area or several regions, resulting in a serious loss of population diversity. 
If the average group of students does not conduct a complete large-scale search in the D-dimensional search 
space, but only conducts a small-scale search in some dimensions, it is easy to overcome the above shortcomings.

Based on the above analysis, average group of students in teachers’ teaching and students’ learning phase are 
small range subspace search, among them, the average group of students to study with good group of students 
learning phase in the same way, and the new design of ordinary teachers teaching phase and sub-space model 
way choice of dimension to search in the specific as follows.

Dimension selection in subspace patterns. In order to maintain the diversity of the population as much as possi-
ble, in the subspace search mode we designed for the average group of students to update, the number of dimen-
sions to be updated by each individual and the specific dimensions are randomly generated, as follows: First, for 
each individual, a random integer k is randomly generated in [1,D], which is the total number of dimensions that 
the individual needs to update; Then, k random integers are randomly generated in the dimension space [1,D], 
and the subsequent subspace search will be performed in its corresponding dimension.

To further understand the dimension selection in the above subspace pattern, a concrete example is shown in 
Fig. 3. Given that the dimension of the problem to be optimized is 30, for example, for individual X2, the number 
of randomly generated dimensions to be updated is 5, and 5 random integers are randomly generated within 
[1, 30], which are {4,12,5,29,17} respectively, indicating that individual X2 will only search on the dimension 
{4,12,5,29,17} when conducting subspace search, the other dimensions don’t change.

Improvement of teacher teaching phase. It can be seen from Algorithm 1 that the students in the good group and 
the average group in GTOA only rely on the students in this group to update their subject knowledge. When the 
next iteration is regrouped, the good group and the average group can exchange information with each other. 
However, since the students in the good group are better than the students in the average group, after the knowl-
edge update, the students in the good group are basically better than the students in the average group. Therefore, 
even after regrouping, only a very small number of students from the average group entered the good group. 
Obviously, students in the good group only absorbed a very small amount of the evolutionary information of 
the average group, and did not really get the diversity supplement. Basically, they still relied on their original 
evolutionary information to evolve, which was easy to quickly converge to a local optimum. In order to make 
the good group get the full diversity supplement, it is necessary to further improve the subject knowledge of the 
students in the average group and increase the opportunity for them to enter the good group. In view of this, the 
teaching methods of average group teachers are improved as follows, as shown in Eq. (13).

(11)Xt+1
GSi

= Xt+1
GTi

+ a× (Xt+1
GTj

− Xt+1
GTi

)+ b× (Xt+1
GTk

− Xt+1
GTi

)

(12)
a = rand × sgn(f (Xt+1

GTi
)− f (Xt+1

GTj
))

b = rand × sgn(f (Xt+1
GTi

)− f (Xt+1
GTk

))

(13)Xt+1
ATi,j

= Xt
Ai,j

+ F1 × ((a× Tt+1
j + (1− a)× Xt+1

GTm,j
)− Xt

Ai,j
)



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11267  | https://doi.org/10.1038/s41598-022-15170-1

www.nature.com/scientificreports/

where T t+1
j  represents the teachers assigned according to Eq. (10), and one teacher is independently selected 

from each dimension; Xt+1
GTm,j

 represents an individual selected randomly from Xt+1
GT  , and likewise, an individual 

selected independently from each dimension; F1 is the random number between [1, 2], and a is the random 
number between [0,1].

A comparison of Eqs. (8) and (13) can be found that: First, in the GTOA, the learning objects in the average 
group are all teachers. In this section, all the students of the teachers in the good group are also listed as the 
learning objects. Because the good group students are the result of learning from teachers, the gap between the 
average group and the good group is further shortened, and the possibility of the average group gene flowing into 
the good group is increased. Second, compared with only learning from teachers themselves, the new teaching 
method of teachers has more combinations of learning objects, which greatly improves the diversity of students 
in the average group. Although the evolutionary information of some outstanding group students will be mixed 
into the average group students, the evolutionary genes flowing in different dimensions come from different 
outstanding students, and the genes of the average group students are completely preserved in the dimension 
without subspace search, so that there is a big difference between the evolutionary information of the average 
group students and the evolutionary information of the good group students. Therefore, when the students of 
the average group flow into the good group, they can be supplemented with a certain population diversity. To 
sum up, the new teaching method of average group teachers proposed in this section has certain advantages.

In order to further understand the subspace search mode of teacher teaching phase and student learning phase 
in the average group, a specific example is given in Fig. 4. Given that the dimension of optimization problem is 
10 and the number of individuals is 5. In the teacher teaching phase, the number of dimensions to be updated in 
the randomly generated subspace of individual XA2 is 3, and 3 dimensions are randomly selected for subspace 
search, including {2, 5, 9}, and other dimensions remain unchanged. For dimension 2, random teacher T1 and 
good group student XG2 learn from their 2-nd dimension according to formula (13); for dimension 5, teacher 
T2 and the 5th dimension of good group students XG3 were randomly selected for learning; and for dimension 
9, the teacher T1 and the 9-th dimension of good group XG4 were randomly selected for learning. Assuming 
that the newly generated individual is superior to the original, the original individual will update its knowledge 
of each subject, otherwise unchanged.

It should be noted here that the students in the average group adopt the same learning method as the good 
group students in the learning stage, as shown in Eq. (11). The difference is that they do not use the full space 
search mode, but use the subspace search mode.

Population reconstruction mechanism. A large number of experimental studies have shown that, simi-
lar to other swarm intelligence evolutionary algorithms, for very complex optimization problems, with the pro-
gress of evolution, GTOA also has the defects of slow evolution and difficulty in obtaining the global optimal 
solution. In order to solve this problem, this section proposes a new population reconstruction mechanism, 
which mainly includes the starting conditions of the population reconstruction mechanism and the population 
reconstruction strategy. The details are as follows.
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Figure 3.  Dimension selection in subspace search mode.
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Initiating conditions of population reconstruction mechanism. As we all know, swarm intelligence evolutionary 
algorithm will show the following obvious characteristics when it evolves slowly: in the process of successive 
iterations, the optimal value obtained by the population does not change. Therefore, this excerpt uses the change 
of global optimal value as the starting condition of population reconstruction mechanism. Specific methods are 
as follows: Initialization parameters change_flag = 1 and flag, where change_flag is used to record the number of 
times that the global optimal value does not change continuously, flag is the threshold that determines the local 
optimal value; Then, the Euclidean distance of the globally optimal individual in two consecutive iterations is 
calculated according to Eq. (14), if move = 0, change_ flag = change_ flag + 1, otherwise, change_ flag = 1. When 
change_ flag = flag, the population reconstruction policy is started and change_ flag is set to 1.

Among them, bestXt and bestXt−1 represent the optimal individuals in the t-th and (t-1)-th iterations, 
respectively.

Population reconstruction strategy. Experimental results show that for complex optimization problems, the 
improved algorithm proposed in this paper has a good ability to maintain population diversity. Even if the phe-
nomenon of slow evolution occurs, the individual differences in the current population are relatively obvious, 
and the clustering and high similarity of individuals are not presented. Through in-depth analysis of the overall 
optimization process of GTOA, it is not difficult to find the essential reasons for the above phenomenon as fol-
lows: At the beginning of its evolution, GTOA started from a very limited number of individuals. Under the 
guidance of excellent teachers, it drove each individual to move from the area to the better area, and gradually 
narrowed the search range, so that outstanding individuals could use the help of a smaller range. Other indi-
viduals conduct further in-depth and refined exploration, thereby stimulating better evolutionary information 
to improve teachers. However, for very complex optimization problems, there are often multiple local optimal 
solutions, and the global optimal solution is hidden in a narrow region. In the huge search space, each individual 
will be drawn to several local optimal regions with a high probability, because the local optimal values are rela-
tively similar, it is difficult for each individual to jump out of the local optimal region. Although good popula-
tion diversity can be maintained, the search area cannot be reduced, thus it is difficult to provide motivation for 
teachers to further fine exploration. To sum up, in order to force teachers to have the motivation to search care-
fully, the search scope must be appropriately narrowed and other evolutionary information must be introduced.

Generally, GTOA in slow evolution of several iterations, the better individual has acquired when the area 
before the local optimum, obviously, compared with extensive search in large search space, surrounded by 

(14)move =

√

√

√

√

D
∑

i=1

(bestXt(i)− bestXt−1(i))2

Figure 4.  Subspatial learning mode of teacher teaching stage of average group individual XA2.
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individual only in multiple local optimal point exploration of smaller scope, it is easier to search the global 
optimal peak of the narrow scope. In addition, references 30 and 31 have known that the reverse learning strategy 
of replacing the original candidate solution by the relative points of the candidate solution is a better estimation 
of the original candidate solution, and generally achieves better optimization results compared with the method 
of replacing the original candidate solution by random points. Based on the above reasons, a new population 
reconstruction method is proposed in this section, as shown in Fig. 5, as follows: Firstly, the population was 
divided into three parts according to fitness, including pop1, pop2 and pop3, and the numbers of sub-populations 
were N1 = 0.1 N, N2 = 0.4 N and N3 = 0.5 N, respectively. Then, the individuals in the sub-population pop1 are 
retained directly as pop1’, individuals in the sub-population of pop2 randomly choose the dimensions to learn 
backwards to form the pop2’ according to the Eq. (15), and the individuals in the population pop3 are combined 
into new individuals by randomly selecting different dimensions of the individuals in pop1 according to formula 
(16), thereby forming pop3’. Finally, sub-populations pop1’, pop2’ and pop3’ were merged to form a new popula-
tion, newpop, to participate in the next iteration. It should be noted that the reconstructed population does not 
preferentially retain the original population, but directly participate in the evolution of the next generation.

where l is the scaling coefficient of the lens, typically, l = 10.

where k is a random integer of [1, N1].
The above population reconstruction methods have the following advantages: First, in several iterations, 

although the optimal value has not changed, sufficient communication has been carried out between individuals, 
and effective evolutionary information in poor individuals has been contained in excellent individuals. Therefore, 
retaining some excellent individuals and removing half of the poor individuals can basically represent the cur-
rent evolutionary information and will not affect the exploration ability of the population. Second, the reverse 
learning is carried out on the individuals in the sub-population pop2, which not only further effectively narrows 
the search range, but also introduces other evolutionary information, which further provides the impetus for 
the evolution of outstanding individuals. Third, the individual parts and even all dimensions of the population 
pop3’ are randomly selected from the best part of the individuals, and obviously, they all belong to the partially 
sampled individuals in the region formed by the best part of the individuals. It not only effectively reduces the 
search area, but also because they are the recombination of the various dimensions of the better individuals, 
although they contain part of the evolutionary information of the better individuals, they are quite different 
from them, which supplements the population diversity to a certain extent, so that the algorithm has the power 
to further fine-tune the search.

Figure 6 shows the comparison before and after population reconstruction. Assuming that the number of 
individuals is 50, the problem to be optimized is a sphere function with a dimension of 2. It can be seen that 
the search range is significantly reduced after population reconstruction, and it is closer to the global optimum.

The complexity analysis of the algorithm. The population size of IGTOA algorithm is N; the number 
of students in excellent and ordinary groups is Ngood and Naverage respectively; and the problem dimension is D. As 
shown in Fig. 1, the IGTOA algorithm includes the following four main steps: good group teacher stage (T_gt), 
good group student stage (T_gs), general group teacher stage (T_at), general group student stage (T_as). The time 
overhead of the IGTOA algorithm also mainly comes from these four operations. At each generation of the 
IGTOA algorithm runs, the worst-time complexity of the above four operations is analyzed as follows:

The good group teacher stage (T_gt) needs to calculate Ngood × D times at most formula (3), so its corresponding 
worst time complexity is O(Ngood × D); the good group student stage (T_gs) needs to calculate Ngood × D times at 
most formula (11), so its corresponding worst time complexity is O(Ngood × D); the average group teacher stage 

(15)pop2
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Figure 5.  Population reconstruction mechanism.
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(T_at) needs to calculate Naverage × D times formula (13) at most, so its corresponding worst time complexity is 
O(Naverage × D); the average group student stage (T_as) needs to calculate Naverage × D times formula (11) at most, 
so its corresponding worst time complexity is O(Naverage × D).

Therefore, the worst time complexity required for each generation of IGTOA running in the evolutionary 
process should be O(Ngood × D) + O(Ngood × D) + O(Naverage × D) + O(Naverage × D)) ≈O(2 N × D).

Experiment and analysis
In this part, we test the performance of the proposed IGTOA algorithm through four experiments: the first is 
the parameter sensitivity analysis; the second is the effectiveness of each improvement strategy; and the third is 
the performance comparison with other excellent intelligent optimization algorithms. The fourth is to compare 
the results of each algorithm in engineering applications.

“Effect of the parameters on the algorithm”, “Proof of the effectiveness of the improvement measures”, “Com-
pared with other excellent algorithms” Sections is tested on a CEC2013 test set containing 28 functions. Accord-
ing to the characteristics of these functions, they can be divided into three groups: the first group is the unimodal 
function F1-F5, the second group is the multimodal function F6-F20, and the third group is the combination 
function F21-F28. Detailed information about this test set can be found in the  literature32. Meanwhile, the algo-
rithms are implemented in Matlab 2021a. All the tests are conducted on a personal computer equipped with a 
core i7-11800H CPU (2.30 GHz) and a 16.0-GB memory.

Effect of the parameters on the algorithm. The proposed algorithm IGTOA adds to the original 
GTOA algorithm with the following parameters: including change_flag, Pg, l, N1 and N2. When examining the 
influence of one of the above parameters on the performance of the IGTOA algorithm, the parameter is set to 5 
sets of values, and the other parameters remain unchanged. In all experiments, the population size N = 50, the 
problem dimension D = 30, the maximum function evaluation number MaxFEs = 5000*D, and the other param-
eters were set as follows:

(1) When examining the effect of change_flag on the performance of the IGTOA algorithm, change_flag is set 
to 10, 30, 50, 70 and 100, respectively. Other parameters are set as follows: Pg = 0.1, l = 10, N1 = N2 = 0.2*N.

(2) In the new improvement strategy, the number of people in the average group should be greater than 2, so the 
minimum Pg should be 0.06. When examining the effect of Pg on the performance of the IGTOA algorithm, 
Pg was set to 0.06, 0.1, 0.4, 0.7, and 0.9, respectively. Other parameters are set as follows: change_flag = 30, 
l = 10, N1 = N2 = 0.2*N.

(3) When examining the effect of l on the performance of the IGTOA algorithm, l was set to 5, 10, 20, 30, and 
50, respectively. Other parameters are set as follows: change_flag = 30, Pg = 0.1, N1 = N2 = 0.2*N.

(4) When examining the effect of N1 and N2 on the performance of IGTOA algorithm, N1 and N2 are set to 
the following five values: 0.1*N and 0.2*N, 0.2*N and 0.2*N, 0.3*N and 0.2*N, 0.2*N and 0.1*N, 0.2*N and 
0.4*N. Other parameters are set as follows: change_flag = 30, Pg = 0.1, l = 10.

All of the above experiments were run independently 30 times on the CEC2013 test set, and the average value 
of the optimal value obtained from each independent run when the same number of preset function evaluation 
times was reached was counted. The specific data are shown in Tables 1 and 2. In Tables 1 and 2, the parameters 
that perform best on each function are shaded, and the number of functions is calculated on the last line. In 
order to further compare the performance of the algorithm, the parameters of the data in Tables 1 and 2 are 
shown as in Fig. 7, in which the height of the bar graph represents the size of the average rank of each algorithm, 
the higher the bar graph, the higher the average rank and the higher the rank, the overall performance of the 
algorithm of the parameter at the value.  

According to the data in Table 1, when change_flag = 30, the relatively best results are achieved on the 22 
functions; when change_flag is 10 or 70, it works relatively best on 16 functions; and when the change_flag = 50 

Figure 6.  Comparison of individual distribution before and after population reconstruction.
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or 100, the relatively best results are achieved on 14 and 13 functions, respectively. As can also be seen from the 
results in Fig. 7a, IGTOA algorithm performance is optimal when change_flag = 30, when change_flag = 10,50 
and 70, IGTOA algorithm performance is little different, but it is inferior to IGTOA algorithm performance 
when change_flag = 30, while when change_flag = 100, IGTOA algorithm performance is not satisfactory. In 
“Conclusion” Section, the IGTOA algorithm is more sensitive to the parameter change_flag, and it performs 
the best when change_flag = 30. Analyzing other data in Tables 1 and 2 and Fig. 7 in the same way, we can find 
that the IGTOA algorithm is sensitive to both parameters l and N1 and N2, with slightly decreased sensitivity 
to parameter Pg, and the IGTOA algorithm performs best when Pg = 0.1, l = 10 and N1 = N2 = 0.2*N. To sum up. 
when the parameters change_flag, Pg, l, N1, N2 are set to 30, 0.1, 10, and 0.2 N,0.2 N, respectively, IGTOA has 
a good optimization effect. If you want to obtain a better effect for a certain actual optimization problem, the 
above parameters can also be adjusted several times.

Proof of the effectiveness of the improvement measures. To verify the effectiveness of each 
improvement measure in Parts 3.1–3.3, a corresponding improvement strategy was removed in IGTOA, five new 
improvement algorithms were formed, including the improved algorithm for removing the teacher allocation 
strategy of “Teacher assignment“ Section in IGTOA, the improved algorithm for removing the adaptive group-
ing strategy of “Adaptive grouping” Section in IGTOA, the improved algorithm for removing the good group 
improvement strategy of “Improvement of update method for good group in student learning phase” Section 
in IGTOA, the improved algorithm for removing the common group improvement strategy of “Improvement 
of update method for average student group” Section in IGTOA and improved algorithms for the population 
reconstruction strategy of removing “Improvement of teacher teaching phase” Section in IGTOA. For simplic-
ity, the above five new algorithms are called IGTOA1, IGTOA2, IGTOA3, IGTOA4 and IGTOA5, respectively.

The above five improved algorithms and IGTOA were compared on the CEC2013 test set. To ensure the 
fairness of the comparison, the parameters of each algorithm are set exactly the same, as follows: population 
size N = 50, problem dimension D = 30, maximum evaluation number MaxFEs = 5000*D, change_flag = 30, 
Pg = 0.1, l = 10, N1 = N2 = 0.2*N. The mean and variance of the optimal values obtained by running the algorithms 

Table 1.  Effect of parameters change_flag and Pg on IGTOA. Note: The parameters that perform best on each 
function are bolded.

Function

change_flag Pg

10 30 50 70 100 0.06 0.1 0.4 0.7 0.9

F1 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F2 7.58E + 05 7.42E + 05 8.06E + 05 8.07E + 05 8.84E + 05 8.26E + 05 7.42E + 05 9.35E + 05 1.22E + 06 2.17E + 06

F3 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F4 4.76E + 03 4.79E + 03 7.54E + 03 7.99E + 03 1.04E + 04 5.64E + 03 4.79E + 03 7.32E + 03 8.12E + 03 7.55E + 03

F5 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F6 3.18E + 01 2.44E + 01 3.68E + 01 2.88E + 01 3.08E + 01 1.94E + 01 2.44E + 01 2.47E + 01 3.27E + 01 2.97E + 01

F7 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F8 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01

F9 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F10 2.50E − 01 2.13E − 01 2.16E − 01 2.06E − 01 2.28E − 01 2.23E − 01 2.13E − 01 1.98E − 01 1.62E − 01 1.50E − 01

F11 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F12 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F13 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F14 3.99E + 02 4.32E + 02 5.24E + 02 5.91E + 02 9.13E + 02 3.73E + 02 4.32E + 02 4.15E + 02 2.78E + 02 2.70E + 02

F15 6.57E + 03 6.34E + 03 6.87E + 03 6.59E + 03 6.82E + 03 6.95E + 03 6.34E + 03 6.82E + 03 7.19E + 03 7.05E + 03

F16 2.61E + 00 2.55E + 00 2.65E + 00 2.67E + 00 2.64E + 00 2.65E + 00 2.55E + 00 2.68E + 00 2.70E + 00 2.56E + 00

F17 1.13E + 01 1.70E + 01 1.97E + 01 2.35E + 01 3.11E + 01 1.80E + 01 1.70E + 01 1.24E + 01 1.09E + 01 1.08E + 01

F18 1.95E + 02 1.84E + 02 1.84E + 02 1.87E + 02 1.93E + 02 1.89E + 02 1.84E + 02 1.88E + 02 1.87E + 02 1.89E + 02

F19 6.15E + 00 4.96E + 00 7.44E + 00 8.02E + 00 1.13E + 01 4.86E + 00 4.46E + 00 6.56E + 00 1.08E + 01 9.07E + 00

F20 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F21 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02

F22 4.43E + 02 3.57E + 02 6.87E + 02 9.43E + 02 1.59E + 03 4.37E + 02 3.57E + 02 5.32E + 02 1.06E + 03 2.47E + 02

F23 7.16E + 03 6.48E + 03 6.88E + 03 6.82E + 03 6.79E + 03 6.30E + 03 6.48E + 03 6.95E + 03 7.16E + 03 7.21E + 03

F24 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02

F25 2.23E + 02 2.22E + 02 2.22E + 02 2.18E + 02 2.20E + 02 2.32E + 02 2.22E + 02 2.20E + 02 2.18E + 02 2.19E + 02

F26 2.77E + 02 2.68E + 02 2.72E + 02 2.87E + 02 2.86E + 02 2.83E + 02 2.68E + 02 2.80E + 02 2.83E + 02 2.77E + 02

F27 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03

F28 8.81E + 02 8.67E + 02 8.62E + 02 8.61E + 02 8.66E + 02 8.42E + 02 8.67E + 02 8.32E + 02 8.52E + 02 8.49E + 02

16 22 14 16 13 15 20 14 14 17
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independently 30 times on each function are counted, and the specific results are shown in Table 3. Among 
them, the data from outside and in parentheses represent the mean and standard deviation of the optimal val-
ues obtained in 30 independent experiments, respectively. The bold value indicates that the performance of the 
other improved algorithms are significantly worse than IGTOA on the corresponding functions, counting the 
number of functions for which the improved algorithm is significantly worse than IGTOA in the penultimate 
row, and giving the average rank and the ranking results of IGTOA and the other five improved algorithms for 
Friedman test in the last two lines.

As can be seen from Table 3, the functions of the five improved algorithms performing perform IGTOA 
performance are 14, 10, 15, 14 and 11 respectively. This shows that the five improvements proposed in “Teacher 
assignment“, “Adaptive grouping”, “Improvement of update method for good group in student learning phase”, 
“Improvement of update method for average student group” , “Improvement of teacher teaching phase” Sections 
have some effectiveness. Furthermore, the rank of each algorithm obtained by Friedman detection is visible, with 
the smallest rank of the corresponding improvement algorithm after removing the good group improvement 
strategy of “Improvement of update method for good group in student learning phase” Section compared to 
IGTOA. This shows that among the five improvements, the improvement measure in “Improvement of update 
method for good group in student learning phase” Section has the greatest impact on the performance of the 
IGTOA algorithm, while several other improvement algorithms have little difference on the performance of 
IGTOA algorithm.

Compared with other excellent algorithms. In order to fully investigate the performance of IGTOA 
algorithm, the algorithm, basic GTOA and four recently proposed representative optimization algorithms are 
analyzed in four aspects of convergence accuracy, convergence speed, stability and running time. Algorithms 
for comparison include IATTP(2021)16; MSMPSO(2018)12; ADN-RSN-PSO(2017)11; ESCA(2022)17. To ensure 
the fairness of the algorithm, the number of individuals in the population is N = 50, the test problem dimen-

Table 2.  Effect of parameters l and N1, N2 on IGTOA. Note: The parameters that perform best on each 
function are bolded.

Function

l N1, N2

5 10 20 30 50
0.1 N
0.2 N

0.2 N
0.2 N

0.3 N
0.2 N

0.2 N
0.1 N

0.2 N
0.4 N

F1 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F2 7.27E + 05 7.42E + 05 8.85E + 05 8.51E + 05 8.99E + 05 8.08E + 05 7.42E + 05 7.69E + 05 8.17E + 05 7.91E + 05

F3 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F4 5.57E + 03 4.79E + 03 5.66E + 03 6.62E + 03 6.37E + 03 5.17E + 03 4.79E + 03 6.25E + 03 4.86E + 03 8.55E + 03

F5 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F6 3.69E + 01 2.44E + 01 2.59E + 01 2.49E + 01 4.47E + 01 3.62E + 01 2.44E + 01 3.06E + 01 2.28E + 01 3.14E + 01

F7 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F8 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01 2.10E + 01

F9 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F10 2.14E − 01 2.13E − 01 2.26E − 01 2.31E − 01 1.92E − 01 2.49E − 01 2.13E − 01 1.99E − 01 2.79E − 01 2.16E − 01

F11 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F12 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F13 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F14 3.86E + 02 4.32E + 02 4.11E + 02 4.68E + 02 5.31E + 02 6.15E + 02 4.32E + 02 4.50E + 02 5.84E + 02 4.05E + 02

F15 6.76E + 03 6.34E + 03 6.81E + 03 6.64E + 03 6.60E + 03 5.71E + 03 6.34E + 03 6.76E + 03 6.48E + 03 6.08E + 03

F16 2.64E + 00 2.55E + 00 2.66E + 00 2.65E + 00 2.54E + 00 2.64E + 00 2.55E + 00 2.71E + 00 2.51E + 00 2.63E + 00

F17 1.76E + 01 1.70E + 01 1.74E + 01 1.75E + 01 2.02E + 01 2.21E + 01 1.70E + 01 1.80E + 01 2.12E + 01 1.86E + 01

F18 1.87E + 02 1.84E + 02 1.88E + 02 1.93E + 02 1.85E + 02 1.88E + 02 1.84E + 02 1.87E + 02 1.90E + 02 1.90E + 02

F19 6.33E + 00 4.96E + 00 6.04E + 00 6.08E + 00 5.07E + 00 5.46E + 00 4.96E + 00 6.37E + 00 7.20E + 00 4.43E + 00

F20 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F21 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02 4.00E + 02

F22 5.46E + 02 3.57E + 02 4.35E + 02 4.95E + 02 4.81E + 02 5.54E + 02 3.57E + 02 4.83E + 02 5.07E + 02 3.96E + 02

F23 6.89E + 03 6.48E + 03 6.86E + 03 6.89E + 03 6.51E + 03 6.17E + 03 6.48E + 03 6.70E + 03 6.62E + 03 6.69E + 03

F24 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02 2.00E + 02

F25 2.19E + 02 2.22E + 02 2.29E + 02 2.23E + 02 2.19E + 02 2.27E + 02 2.22E + 02 2.13E + 02 2.26E + 02 2.29E + 02

F26 2.73E + 02 2.68E + 02 2.87E + 02 2.80E + 02 2.87E + 02 2.77E + 02 2.68E + 02 2.83E + 02 2.77E + 02 2.93E + 02

F27 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.61E + 03 1.63E + 03 1.61E + 03

F28 8.45E + 02 8.67E + 02 8.70E + 02 8.75E + 02 8.64E + 02 8.52E + 02 8.67E + 02 8.66E + 02 8.74E + 02 9.40E + 02

17 23 13 13 15 16 19 15 15 15



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11267  | https://doi.org/10.1038/s41598-022-15170-1

www.nature.com/scientificreports/

sions D = 30, 100, the maximum function evaluation times MaxFEs = 5000*D, and the remaining parameters are 
shown in Table 4.

Comparative experiment on algorithm convergence. Tables 5 and 6 respectively show the experimental results of 
each algorithm for solving the 30-and 100-dimensional function problems on the CEC2013 test set, with in-and 
out-parenthesis values being the standard deviation and mean of the optimal values obtained in 30 independent 
experiments. Among them, the bold data indicates that the corresponding algorithm has obtained the best solu-
tion effect on the test function, and the last line counts the number of functions for obtaining the best perfor-
mance of each algorithm. To further compare the performance differences of the above algorithms, a Friedman 
test with a significant level of 0.05 was performed on the above data, and the specific results are shown in Table 7. 
Among them, the size of the p-value reflects the difference between the two algorithms in the current function. 
When the p-value is less than 0.05, it indicates that the IGTOA and the corresponding comparison algorithm 
have obvious differences in the current function, while otherwise, there is no significant difference between the 
two algorithms. In addition, the "+/=/−" in the last row indicates the number of functions that the IGTOA algo-
rithm is significantly better than, not significantly different from, and significantly inferior to the corresponding 
comparison algorithm, respectively.

As can be seen from the data in Tables 5, 6 and 7, when the dimension of the test function is 30, compared 
with the IGTOA algorithm, the basic GTOA only achieved significantly better results on F15 and F23, in addition 
to 9 functions, including F3, F7, F8, F9, F16, F21, F24, F26 and F27, while achieving significantly worse results 
on the remaining 17 functions; the IATTP algorithm only achieved significantly better results on F4 and F27, in 
addition to comparable results on 9 functions, including F3, F7, F9, F11, F12, F13, F20, F25 and F26, and achieved 
significantly worse results on the remaining 17 functions; the MSMPSO algorithm has achieved significantly 

Figure 7.  Results of the Friedman test for each parameter.
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Table 3.  Comparison results of each improvement strategy with IGTOA on the 30-dimensional CEC2013 test 
suite. Note: The parameters that perform best on each function are bolded.

D = 30 (vs. IGTOA)

Function IGTOA IGTOA1 IGTOA2 IGTOA3 IGTOA4 IGTOA5

F1 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

2.85E − 27 (8.91E 
− 27)

0.00E + 00 
(0.00E + 00)

F2 7.42E + 05 
(2.91E + 05)

7.83E + 05 
(3.23E + 05)

1.08E + 06 
(4.55E + 05)

2.53E + 05 
(1.05E + 05)

6.22E + 05 
(2.91E + 05)

7.45E + 05 
(2.69E + 05)

F3 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00( 
0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

F4 4.79E + 03 
(1.51E + 03)

4.87E + 03 
(1.74E + 03)

7.42E + 03 
(2.23E + 03)

3.67E + 03 
(1.86E + 03)

4.29E + 03 
(2.11E + 03)

1.37E + 04 
(3.76E + 03)

F5 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

5.70E − 35 (3.08E 
− 34)

3.08E − 18 (1.37E 
− 17)

0.00E + 00 
(0.00E + 00)

F6 2.44E + 01 
(2.47E + 01)

3.33E + 01 
(2.89E + 01)

2.83E + 01 
(2.71E + 01)

3.79E + 01 
(2.90E + 01)

3.38E + 01 
(2.82E + 01)

2.75E + 01 
(2.57E + 01)

F7 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

F8 2.10E + 01 (4.81E 
− 02)

2.10E + 01 (5.04E 
− 02)

2.10E + 01 (5.68E 
− 02)

2.10E + 01 (4.28E 
− 02)

2.10E + 01 (5.58E 
− 02)

2.10E + 01 (4.53E 
− 02)

F9 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

6.28E − 01 
(3.44E + 00)

0.00E + 00 
(0.00E + 00)

F10 2.13E − 01 (9.69E 
− 02)

2.29E − 01 (9.43E 
− 02)

2.26E − 01 (1.18E 
− 01)

1.20E − 01 (7.26E 
− 02)

1.78E − 01 (9.01E 
− 02)

2.13E − 01 (1.07E 
− 01)

F11 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

7.30E − 01 
(1.50E + 00)

2.98E − 01 
(1.63E + 00)

0.00E + 00 
(0.00E + 00)

F12 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

4.79E + 01 
(6.05E + 01)

4.52E + 01 
(6.17E + 01)

0.00E + 00 
(0.00E + 00)

F13 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

6.27E + 01 
(7.44E + 01)

4.86E + 01 
(7.05E + 01)

0.00E + 00 
(0.00E + 00)

F14 4.32E + 02 
(1.84E + 02)

4.40E + 02 
(2.31E + 02)

2.98E + 02 
(1.33E + 02)

6.70E + 02 
(1.95E + 02)

6.38E + 02 
(2.37E + 02)

2.93E + 03 
(1.59E + 02)

F15 6.34E + 03 
(1.65E + 03)

6.41E + 03 
(1.16E + 03)

7.14E + 03 
(2.99E + 02)

3.59E + 03 
(1.59E + 03)

3.44E + 03 
(7.93E + 02)

6.78E + 03 
(2.38E + 02)

F16 2.55E + 00 (2.90E 
− 01)

2.63E + 00 (2.96E 
− 01)

2.61E + 00 (2.73E 
− 01)

2.60E + 00 (2.76E 
− 01)

2.46E + 00 (4.30E 
− 01)

2.68E + 00 (3.21E 
− 01)

F17 1.70E + 01 
(5.38E + 00)

1.88E + 01 
(7.44E + 00)

1.22E + 01 
(5.95E + 00)

8.66E + 01 
(4.49E + 01)

5.46E + 01 
(2.34E + 01)

6.96E + 01 
(6.97E + 00)

F18 1.84E + 02 
(1.72E + 01)

1.91E + 02 
(2.08E + 01)

1.86E + 02 
(1.74E + 01)

2.01E + 02 
(2.99E + 01)

6.67E + 01 
(2.11E + 01)

1.89E + 02 
(2.00E + 01)

F19 4.96E + 00 
(3.23E + 00)

5.22E + 00 
(4.28E + 00)

7.18E + 00 
(5.48E + 00)

7.58E + 00 
(2.83E + 00)

7.06E + 00 
(5.19E + 00)

1.36E + 01 
(3.22E + 00)

F20 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

2.94E + 00 
(4.22E + 00)

2.05E + 00 
(3.51E + 00)

0.00E + 00 
(0.00E + 00)

F21 4.00E + 02 
(0.00E + 00)

4.00E + 02 
(0.00E + 00)

4.00E + 02 
(0.00E + 00)

4.00E + 02 
(0.00E + 00)

4.00E + 02 (5.02E 
− 13)

4.00E + 02 
(0.00E + 00)

F22 3.57E + 02 
(1.63E + 02)

4.45E + 02 
(1.64E + 02)

3.16E + 02 
(1.72E + 02)

7.35E + 02 
(2.75E + 02)

8.76E + 02 
(2.68E + 02)

3.17E + 03 
(2.76E + 02)

F23 6.48E + 03 
(1.30E + 03)

6.91E + 03 
(4.48E + 02)

7.04E + 03 
(3.51E + 02)

3.54E + 03 
(1.08E + 03)

3.76E + 03 
(6.76E + 02)

6.87E + 03 
()3.25E + 02

F24 2.00E + 02 (4.62E 
− 02)

1.90E + 02 
(3.06E + 01)

2.00E + 02 (2.65E 
− 02)

2.00E + 02 (9.58E 
− 02)

2.00E + 02 (7.21E 
− 02)

2.00E + 02 (2.88E 
− 02)

F25 2.22E + 02 
(1.68E + 01)

2.22E + 02 
(1.44E + 01)

2.20E + 02 
(2.86E + 01)

2.52E + 02 
(3.76E + 01)

2.32E + 02 
(2.73E + 01)

2.20E + 02 
(1.51E + 01)

F26 2.68E + 02 
(6.13E + 01)

2.93E + 02 
(2.54E + 01)

2.93E + 02 
(2.54E + 01)

2.99E + 02 
(2.07E + 01)

2.93E + 02 
(2.53E + 01)

2.87E + 02 
(3.34E + 01)

F27 1.61E + 03 
(1.23E + 00)

1.61E + 03 
(1.57E + 00)

1.62E + 03 (9.42E 
− 01)

1.66E + 03 
(1.48E + 02)

1.61E + 03 
(2.46E + 00)

1.61E + 03 
(3.58E + 00)

F28 8.67E + 02 
(1.54E + 01)

8.74E + 02 
(1.63E + 01)

8.33E + 02 
(1.39E + 02)

1.03E + 03 
(6.30E + 02)

8.61E + 02 
(2.09E + 02)

9.65E + 02 
(4.66E + 02)

Count( − ) – 14 10 15 14 11

Avg.Rank 2.66 3.46 3.25 4.21 3.64 3.77

Sort 1 3 2 6 4 5
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better results only on F26 and F27, in addition to comparable results on 3 functions, including F8, F9 and F16, 
while achieving significantly worse results on the remaining 23 functions; the ADN-RSN-PSO algorithm has 
achieved significantly better results only on F15, F23 and F27, except in F3, F11, F 11 and F16, but in the remain-
ing 22 functions; and the ESCA algorithm showed similar performance on only 5 functions, including F3, F7, 
F9, F11 and F13, but performed significantly worse on the remaining 23 functions. When the dimension of the 
test function is 100, the basic GTOA shows significantly better performance on only 2 functions compared with 
the IGTOA algorithm, but shows worse performance on all 23 functions; the IATTP algorithm was significantly 
better on only 3 functions but worse on 19 functions; the MSMPSO algorithm was not significantly better on 
any function but significantly worse on 25 functions; the ADN-RSN-PSO algorithm was significantly better on 
4 but worse on 22 functions and the ESCA was significantly worse on 25 functions. In Conclusion Section, we 
show that IGTOA has obvious advantages in convergence accuracy over the remaining five algorithms. In addi-
tion, as the dimension of the optimization problem increases, the advantages of the IGTOA algorithm are also 
greater. To further compare the comprehensive performance of each algorithm on all functions, Table 8 presents 
the results of Friedman detection.

As can be seen from the Friedman test results in Table  8, the rank of IGTOA is significantly lower 
than the other five methods, indicating that the IGTOA algorithm performs best in terms of con-
vergence accuracy.For 30-dimensional function optimization problems, the comprehensive per-
formance of each algorithm is IGTOA > GTOA > IATTP > ADN-RSN-PSO > MSMPSO > ESCA; for 
100-dimensional function optimization problems, the comprehensive performance of each algorithm is 
IGTOA > IATTP > GTOA > ADN-RSN-PSO > MSMPSO > ESCA.

Comparative test of the convergence rate of the algorithm. In order to compare the convergence rate of the algo-
rithm more intuitively, Fig. 8 gives the iterative process curve where each algorithm is run randomly once when 
the test function dimension is 30.The horizontal and vertical coordinates represent the logarithm of the function 
evaluation times and the fitness values, respectively.Parameter settings for each algorithm are performed as in 
Table 4.

As can be seen in Fig. 8. For the functions F1, F3, F5, F7, F9, F11, F12, F13, and F20, the IGTOA all converge 
to the theoretical optimal results; the ESCA converges to the theoretical optimum on F3, F9, F11, and F13; the 
IATTP algorithm converges to the theoretical optimum on F3, F7, F9, F11, F12, and F13; the GTOA converges 
to the theoretical optimum on the F3, F7, F9, F11, and F13; the ADN-RSN-PSO converges to the theoretical 
optimum only on the F11; while MSMPSO does not obtain the theoretical optimal results on any function. Com-
pared with IGTOA, GTOA and IATTP showed faster convergence on F9, F11 and F13, while ESCA converged 
only faster on F11, while other algorithms converged slower on the remaining functions, including F1, F3, F5, F7, 
F12 and F20. For the remaining 19 functions, each algorithm converged to the local optima, including F2, F4, F6, 
F8, F10, F14-F19 and F21-F28. For F2, F14, F19 and F21, IGTOA only converged slightly slower than GTOA in 
the early evolution, but all faster than the other four algorithms, especially in the late evolution, IGTOA showed 
faster convergence than the other five algorithms. For F4, IGTOA converges slower than IATTP, but faster than 
the other 4 contrast algorithms. For F15, F23 and F26, the IGTOA showed the fastest convergence compared 
with the other five algorithms, whereas the IGTOA decreased.Later in evolution, IGTOA converged only faster 
on F15 than IATTP, slower on F23 than GTOA and ADN-RSN-PSO, and only slightly slower than MSMPSO on 
F26. For F16, IGTOA converges only converged slightly slower than MSMPSO in early evolution, but by later 
evolution, IGTOA showed the fastest convergence. For F24, IGTOA showed the fastest convergence rate in the 
early evolution, slowing down as evolution progressed and being comparable to that of IATTP and GTOA. For 
F27, IGTOA converged slightly slower than MSMPSO and IATTP in the early evolution, the convergence of each 
algorithm decreased, but ADN-RSN-PSO decreased more slowly, and by the later evolution ADN-RSN-PSO, 
MSMPSO and IATTP all converged faster than IGTOA. But for other functions, including F6, F10, F17, F18, F22, 
F25, and F28, IGTOA showed the fastest convergence rate compared to the other five evolutionary algorithms. 
In Conclusion Section, IGTOA has some advantages in convergence speed over the other five algorithms.

Comparative test of the algorithm stability. To intuitively compare the stability of each algorithm, we draw the 
box plot of the optimal results obtained from 30 independent runs of each algorithm.Limited to space, this 
section selects only nine different types of functions for comparison, including: F1, F2 and F5 in uni-modal 
functions; F6, F14 and F16 in multi-modal functions; and F22, F25 and F28 in combined functions. As shown 
in Fig. 9.

Table 4.  Initial parameters setting of each algorithm.

Algorithm Initial parameters

IGTOA change_flag = 30, Pg = 0.1, l = 10, N1 = N2 = 0.2 N

GTOA b = rand(0,1), c = 1-b

IATTP h1 = h2 = h3 = 0.5; h4 = 0.8; m = 50, q = 0.8

MSMPSO pop1: c1 = 2.0, c2 = 1.0, c3 = 0.2; pop2: c1 = 0.1, c2 = 1.0, c3 = 2.0; pop3: c1 = c2 = c3 = 1.0; cycle = 10

ADN-RSN-PSO α1 = α2 = 2.05, ns = 2, rg = 4, sr = 0.6, ρ = 0.4, PAND = 0.2, L0 = 0.35*range, Lmin = 10–8*range, x = 0.7298

ESCA Pc = 0.6, r2 = 2*pi*rand(0,1), r3 = 2*rand(0,1), r4 = r5 = r6 = r7 = r8 = rand(0,1)
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Figure 9 follows from the fact that for the uni-modal functions F2 and F5 and the multi-modal functions 
F22 and F14, IGTOA is more stable than the other five algorithms.For the uni-modal function F1, the stabil-
ity of IGTOA and IATTP was flat, and both significantly outperformed the other four algorithms, including 
GTOA, MSMPSO, ADN-RSN-PSO, and ESCA.For multi-modal function F16, IGTOA is only slightly less stable 
than GTOA; for combined function F25, IGTOA is slightly less stable than ESCA, but its solution accuracy is 

Table 5.  Results of each algorithm on the 30-dimensional CEC2013 test set. Note: The parameters that 
perform best on each function are bolded.

Function IGTOA GTOA IATTP MSMPSO
ADN-RSN
-PSO ESCA

F1 0.00E + 00 
(0.00E + 00)

5.72E − 16 
(3.13E − 15)

4.56E + 00 
(1.69E + 00)

8.39E + 02 
(6.62E + 02)

1.63E + 03 
(5.39E + 03)

3.93E + 03 
(9.25E + 02)

F2 7.42E + 05 
(2.91E + 05)

3.32E + 06 
(1.56E + 06)

1.23E + 07 
(3.74E + 06)

2.44E + 07 
(1.18E + 07)

2.48E + 07 
(5.28E + 07)

1.71E + 08 
(4.14E + 07)

F3 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

5.22E + 06 
(2.86E + 07)

1.51E + 10 
(8.25E + 10)

6.40E + 07 
(2.89E + 08)

F4 4.79E + 03 
(1.51E + 03)

8.89E + 03 
(2.89E + 03)

1.21E + 03 
(7.82E + 02)

1.08E + 04 
(3.53E + 03)

7.36E + 04 
(1.29E + 04)

5.51E + 04 
(4.18E + 03)

F5 0.00E + 00 
(0.00E + 00)

7.40E − 16 
(1.85E − 15)

1.79E + 01 
(1.03E + 01)

7.64E + 02 
(5.20E + 02)

1.49E + 02 
(5.99E + 02)

5.41E + 03 
(1.29E + 03)

F6 2.44E + 01 
(2.47E + 01)

4.47E + 01 
(2.64E + 01)

8.49E + 01 
(3.41E + 01)

2.26E + 02 
(1.20E + 02)

7.31E + 01 
(6.56E + 01)

5.33E + 02 
(1.27E + 02)

F7 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

2.22E + 01 
(4.43E + 01)

1.45E + 05 
(4.45E + 05)

4.39E − 01 
(2.40E + 00)

F8 2.10E + 01 
(4.81E − 02)

2.10E + 01 
(5.67E − 02)

2.11E + 01 
(6.94E − 02)

2.10E + 01 
(4.02E − 02)

2.14E + 01 
(8.15E − 02)

2.10E + 01 
(5.61E − 02)

F9 0.00E + 00 
(0.00E + 00)

2.47E + 00 
(7.58E + 00)

0.00E + 00 
(0.00E + 00)

7.05E − 01 
(3.07E + 00)

2.34E + 01 
(1.49E + 01)

9.61E − 01 
(2.98E + 00)

F10 2.13E − 01 
(9.69E − 02)

5.25E + 00 
(6.98E + 00)

2.74E + 01 
(1.22E + 01)

2.40E + 02 
(1.47E + 02)

3.58E + 01 
(1.88E + 02)

1.06E + 03 
(1.81E + 02)

F11 0.00E + 00 
(0.00E + 00)

3.28E + 00 
(5.80E + 00)

0.00E + 00 
(0.00E + 00)

1.92E + 00 
(3.46E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

F12 0.00E + 00 
(0.00E + 00)

6.99E + 01 
(6.83E + 01)

0.00E + 00 
(0.00E + 00)

1.21E + 02 
(7.07E + 01)

3.14E + 02 
(1.00E + 02)

2.46E + 01 
(6.40E + 01)

F13 0.00E + 00 
(0.00E + 00)

4.47E + 01 
(7.02E + 01)

0.00E + 00 
(0.00E + 00)

1.33E + 02 
(7.77E + 01)

2.85E + 02 
(6.21E + 01)

6.76E + 00 
(3.70E + 01)

F14 4.32E + 02 
(1.84E + 02)

2.76E + 03 
(7.25E + 02)

7.61E + 03 
(4.36E + 02)

4.01E + 03 
(3.18E + 02)

9.03E + 02 
(3.10E + 02)

7.42E + 03 
(3.14E + 02)

F15 6.34E + 03 
(1.65E + 03)

4.86E + 03 
(1.25E + 03)

7.87E + 03 
(6.44E + 02)

7.40E + 03 
(3.83E + 02)

5.48E + 03 
(1.63E + 03)

7.61E + 03 
(3.15E + 02)

F16 2.55E + 00 
(2.90E − 01)

2.56E + 00 
(2.77E − 01)

3.79E + 00 
(6.11E − 01)

2.60E + 00 
(3.28E − 01)

2.77E + 00 
(2.19E + 00)

2.80E + 00 
(3.39E − 01)

F17 1.70E + 01 
(5.38E + 00)

2.66E + 02 
(1.01E + 02)

2.35E + 02 
(2.10E + 01)

4.37E + 02 
(1.17E + 02)

5.55E + 01 
(4.96E + 01)

5.56E + 02 
(6.00E + 01)

F18 1.84E + 02 
(1.72E + 01)

2.43E + 02 
(7.27E + 01)

2.56E + 02 
(2.55E + 01)

5.17E + 02 
(1.30E + 02)

1.01E + 03 
(8.33E + 02)

5.48E + 02 
(5.80E + 01)

F19 4.96E + 00 
(3.23E + 00)

3.22E + 01 
(2.59E + 01)

2.10E + 01 
(1.59E + 00)

2.65E + 02 
(4.83E + 02)

3.45E + 01 
(2.03E + 01)

1.35E + 03 
(1.12E + 03)

F20 0.00E + 00 
(0.00E + 00)

8.60E + 00 
(6.25E + 00)

6.46E − 01 
(2.46E + 00)

1.31E + 01 
(1.71E + 00)

1.47E + 01 
(2.24E − 01)

2.50E + 00 
(5.10E + 00)

F21 4.00E + 02 
(0.00E + 00)

4.00E + 02 
(6.22E − 06)

4.02E + 02 
(4.41E − 01)

5.67E + 02 
(1.06E + 02)

5.75E + 02 
(6.18E + 02)

5.96E + 02 
(3.92E + 01)

F22 3.57E + 02 
(1.63E + 02)

3.05E + 03 
(7.99E + 02)

8.10E + 03 
(5.06E + 02)

4.54E + 03 
(3.82E + 02)

1.76E + 03 
(6.57E + 02)

7.60E + 03 
(4.35E + 02)

F23 6.48E + 03 
(1.30E + 03)

4.57E + 03 
(1.19E + 03)

8.51E + 03 
(4.30E + 02)

7.78E + 03 
(3.86E + 02)

6.14E + 03 
(1.35E + 03)

7.94E + 03 
(4.14E + 02)

F24 2.00E + 02 
(4.62E − 02)

2.39E + 02 
(3.75E + 01)

2.00E + 02 
(7.04E − 02)

2.19E + 02 
(2.13E + 01)

2.58E + 02 
(4.62E + 01)

3.02E + 02 
(1.01E + 01)

F25 2.22E + 02 
(1.68E + 01)

2.72E + 02 
(2.16E + 01)

2.31E + 02 
(2.66E + 01)

3.02E + 02 
(2.04E + 01)

3.24E + 02 
(4.51E + 01)

3.03E + 02 
(3.18E + 00)

F26 2.68E + 02 
(6.13E + 01)

3.15E + 02 
(4.85E + 01)

2.49E + 02 
(4.94E + 01)

2.15E + 02 
(3.42E + 01)

3.70E + 02 
(5.31E + 01)

3.79E + 02 
(4.51E + 01)

F27 1.61E + 03 
(1.23E + 00)

2.02E + 03 
(3.61E + 02)

3.40E + 02 
(1.11E + 02)

8.15E + 02 
(2.08E + 02)

1.22E + 03 
(1.83E + 02)

2.63E + 03 
(3.28E + 01)

F28 8.67E + 02 
(1.54E + 01)

2.02E + 03 
(8.88E + 02)

9.96E + 02 
(1.61E + 02)

2.54E + 03 
(5.32E + 02)

3.30E + 03 
(2.43E + 03)

2.31E + 03 
(2.73E + 02)

23 6 8 2 1 2
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significantly better than ESCA. In Conclusion Section, the IGTOA algorithm has certain stability advantages 
compared to the other five algorithms.

The algorithm running time comparison test. To further compare the complexity of each algorithm, this sec-
tion counts the average running time of IGTOA and other comparison algorithms running independently for 

Table 6.  Results of each algorithm on the 100-dimensional CEC2013 test set. Note: The parameters that 
perform best on each function are bolded.

Function IGTOA GTOA IATTP MSMPSO
ADN-RSN
-PSO ESCA

F1 3.18E − 29 
(7.46E − 29)

5.02E + 02 
(1.13E + 03)

1.04E + 02 
(1.95E + 01)

1.63E + 04 
(6.68E + 03)

1.98E + 04 
(6.10E + 04)

6.60E + 04 
(7.29E + 03)

F2 3.58E + 06 
(6.13E + 05)

4.68E + 07 
(1.49E + 07)

1.02E + 08 
(2.28E + 07)

3.78E + 08 
(1.25E + 08)

5.12E + 07 
(4.28E + 07)

9.46E + 08 
(1.87E + 08)

F3 0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

8.56E + 13 
(1.25E + 14)

7.33E + 15 
(4.01E + 16)

2.86E + 14 
(5.01E + 14)

F4 1.32E + 04 (3.25E + 03) 3.80E + 04 
(9.23E + 03)

8.33E + 03 
(1.64E + 03)

1.02E + 05 
(1.09E + 04)

2.65E + 05 
(2.69E + 04)

2.07E + 05 
(1.06E + 04)

F5 3.75E − 25 
(1.56E − 24)

5.65E + 01 
(1.10E + 02)

4.19E + 02 
(8.29E + 01)

5.60E + 03 
(3.06E + 03)

1.93E − 01 
(8.39E − 01)

5.51E + 04 
(1.16E + 04)

F6 1.36E + 02 
(4.83E + 01)

4.40E + 02 
(7.38E + 01)

5.56E + 02 
(6.52E + 01)

2.41E + 03 
(1.13E + 03)

2.52E + 02 
(8.37E + 01)

7.91E + 03 
(1.60E + 03)

F7 2.22E + 01(3.70E + 01) 3.62E + 03 
(3.12E + 03)

2.07E + 01 
(4.42E + 01)

1.33E + 04 
(7.63E + 03)

4.33E + 07 
(1.58E + 08)

8.77E + 03 
(8.52E + 03)

F8 2.13E + 01 
(2.63E − 02)

2.13E + 01 
(1.65E − 02)

2.13E + 01 
(3.25E − 02)

2.13E + 01 
(2.46E − 02)

2.15E + 01 
(3.21E − 02)

2.13E + 01 
(2.79E − 02)

F9 9.63E + 01 
(5.33E + 00)

1.13E + 02 
(6.92E + 00)

1.13E + 02 
(7.73E + 00)

1.27E + 02 
(5.69E + 00)

1.37E + 02 
(1.02E + 01)

1.26E + 02 
(5.73E + 00)

F10 1.36E − 01 
(8.11E − 02)

4.12E + 02 
(1.56E + 02)

5.40E + 02 
(1.01E + 02)

3.09E + 03 
(1.17E + 03)

1.85E + 03 
(6.28E + 03)

8.29E + 03 
(1.11E + 03)

F11 1.62E + 01 (1.40E + 01) 2.63E + 02 
(7.64E + 01)

7.11E − 01 
(3.90E + 00)

1.46E + 02 
(7.56E + 01)

0.00E + 00 
(0.00E + 00)

0.00E + 00 
(0.00E + 00)

F12 3.77E + 02 
(3.29E + 01)

7.80E + 02 
(1.07E + 02)

6.41E + 02 
(7.48E + 01)

8.98E + 02 
(9.77E + 01)

1.96E + 03 
(6.52E + 02)

1.17E + 03 
(1.27E + 02)

F13 5.71E + 02 
(6.85E + 01)

1.04E + 03 
(1.19E + 02)

6.53E + 02 
(4.35E + 01)

1.10E + 03 
(1.04E + 02)

2.32E + 03 
(6.12E + 02)

1.18E + 03 
(1.24E + 02)

F14 3.96E + 03 
(1.27E + 03)

1.37E + 04 
(1.43E + 03)

2.89E + 04 
(3.99E + 03)

1.95E + 04 
(1.09E + 03)

8.45E + 03 
(2.97E + 03)

2.90E + 04 
(5.48E + 02)

F15 2.88E + 04 (3.39E + 03) 1.88E + 04 
(4.96E + 03)

3.01E + 04 
(8.49E + 02)

3.04E + 04 
(1.06E + 03)

1.90E + 04 
(4.82E + 03)

2.92E + 04 
(9.61E + 02)

F16 4.15E + 00 (2.46E − 01) 4.16E + 00 
(2.31E − 01)

4.08E + 00 
(2.75E − 01)

4.14E + 00 
(2.38E − 01)

3.19E + 00 
(1.80E + 00)

4.28E + 00 
(2.50E − 01)

F17 3.97E + 02 
(1.64E + 02)

2.87E + 03 
4.40E + 02()

1.01E + 03 
(3.89E + 01)

3.25E + 03 
(5.78E + 02)

9.95E + 02 
(2.30E + 03)

4.07E + 03 
(3.43E + 02)

F18 9.27E + 02 
(5.57E + 01)

2.47E + 03 
(4.18E + 02)

1.01E + 03 
(4.21E + 01)

3.39E + 03 
(5.04E + 02)

5.64E + 03 
(3.55E + 03)

4.06E + 03 
(3.70E + 02)

F19 5.75E + 01 
(1.52E + 01)

3.74E + 03 
(2.06E + 03)

1.22E + 02 
(1.76E + 01)

6.07E + 04 
(7.04E + 04)

3.56E + 04 
(1.94E + 05)

1.53E + 05 
(4.83E + 04)

F20 4.99E + 01 
(1.46E − 01)

4.99E + 01 
(1.60E − 01)

5.00E + 01 
(7.57E − 14)

5.00E + 01 
(7.46E − 14)

5.00E + 01 
(0.00E + 00)

5.00E + 01 
(1.96E − 12)

F21 4.00E + 02 
(4.48E − 13)

6.61E + 02 
(2.53E + 02)

5.17E + 02 
(2.42E + 01)

6.20E + 03 
(9.25E + 02)

4.49E + 02 
(3.34E + 02)

5.38E + 03 
(4.38E + 02)

F22 4.74E + 03 
(1.27E + 03)

1.56E + 04 
(2.03E + 03)

3.05E + 04 
(1.52E + 03)

2.12E + 04 
(8.84E + 02)

9.03E + 03 
(2.63E + 03)

2.99E + 04 
(6.42E + 02)

F23 3.05E + 04 (8.50E + 02) 2.23E + 04 
(4.35E + 03)

3.22E + 04 
(7.02E + 02)

3.20E + 04 
(1.52E + 03)

2.43E + 04 
(2.89E + 03)

3.23E + 04 
(6.62E + 02)

F24 3.42E + 02 
(5.81E + 01)

5.74E + 02 
(7.52E + 01)

3.65E + 02 
(1.16E + 02)

5.63E + 02 
(2.46E + 01)

1.03E + 03 
(6.08E + 02)

6.08E + 02 
(7.06E + 00)

F25 5.29E + 02 
(1.98E + 01)

5.68E + 02 
(2.84E + 01)

5.50E + 02 
(2.29E + 01)

6.72E + 02 
(3.26E + 01)

7.51E + 02 
(1.07E + 02)

6.08E + 02 
(5.25E + 00)

F26 4.14E + 02 
(6.88E + 01)

5.92E + 02 
(4.03E + 01)

4.47E + 02 
(1.03E + 02)

5.55E + 02 
(3.09E + 01)

6.74E + 02 
(3.36E + 01)

6.99E + 02 
(5.63E + 00)

F27 3.00E + 03 (6.89E + 02) 5.09E + 03 
(2.62E + 02)

1.88E + 03 
(1.07E + 03)

3.39E + 03 
(3.50E + 02)

4.23E + 03 
(4.98E + 02)

5.70E + 03 
(5.59E + 01)

F28 9.02E + 03 (1.43E + 03) 1.33E + 04 
(7.81E + 02)

8.09E + 03 
(3.06E + 03)

1.49E + 04 
(9.45E + 02)

2.29E + 04 
(6.35E + 03)

1.41E + 04 
(9.39E + 02)

 − 20 5 6 1 2 2
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30 times under the same number of function evaluation times. The specific results are shown in Table 9. The 
dimension of the test function is 30, the maximum number of evaluation is Max_FEs = 5000*D, and the other 
parameter settings are shown in Table 4.

As seen from Table 9, for the unimodal function F1-F20, I GTOA runs for slightly longer times compared to 
GTOA, MSMPSO, ADN-RSN-PSO, and ESCA. For the combined functions F21-F28, the running time of each 
algorithm is not very different. However, the running time of the algorithms is not much different, which means 
that the time complexity of I GTOA is slightly higher compared with G T O A and other contrast algorithms. This 
is due to the multiple improvement strategies employed by IGTOA, requiring more manipulation when looking 
for better individuals. Combined with the convergence rate, with the same convergence accuracy, IGTOA does 
not increase compared with the other algorithms.

Table 7.  Results of the Wilcoxon rank sum test by IGTOA with other algorithms.

p-value (vs. IGTOA)

Function

D = 30 D = 100

GTOA IATTP MSMPSO
ADN-RSN
-PSO ESCA GTOA IATTP MSMPSO

ADN-RSN
-PSO ESCA

F1 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F2 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F3 1.0000 (=) 1.0000 (=) 0.3337 (−) 0.1608 (=) 0.0815 (=) 1.0000 (=) 1.0000 (=) 0.0000 (−) 0.0815 (=) 0.0000 (−)

F4 0.0000 (−) 0.0000 (+) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (+) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F5 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F6 0.0000 −) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F7 1.0000 (=) 1.0000 (=) 0.0003 (−) 0.0000 (−) 0.3337 (=) 0.0000 (−) 0.3953 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F8 0.4697 (=) 0.0000 (−) 0.0831 (=) 0.0000 (−) 0.0076 (−) 0.0030 (−) 0.1028 (=) 0.3353 (=) 0.0000 (−) 0.0030 (−)

F9 0.0815 (=) 1.0000 (=) 0.1608 (=) 0.0000 (−) 0.0815 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F10 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F11 0.0001 (−) 1.0000 (=) 0.0001 (−) 1.0000 (=) 1.0000 (=) 0.0000 (−) 0.0000 (+) 0.0000 (−) 0.0000 (+) 0.0000 (+)

F12 0.0000 (−) 1.0000 (=) 0.0000 (−) 0.0000 (−) 0.0419 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F13 0.0014 (−) 1.0000 (=) 0.0000 (−) 0.0000 (−) 0.3337 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F14 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F15 0.0000 (+) 0.0000 (−) 0.0000 (−) 0.0007 (+) 0.0000 (−) 0.0000 (+) 0.0009 (−) 0.0000 (−) 0.0000 (+) 0.5997 (=)

F16 0.9234 (=) 0.0000 (−) 0.5895 (=) 0.1297 (=) 0.0067 (−) 0.9705 (=) 0.3255 (=) 0.8187 (=) 0.0001 (+) 0.0905 (=)

F17 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.3711 (=) 0.0000 (−)

F18 0.0012 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F19 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F20 0.0000 (−) 0.1608 (=) 0.0000 (−) 0.0000 (−) 0.0110 (−) 0.4113 (=) 0.0419 (−) 0.3414 (=) 0.0419 (−) 0.0419 (−)

F21 1.0000 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0002 (−) 0.0000 (−)

F22 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F23 0.0000 (+) 0.0000 (−) 0.0000 (−) 0.0012 (+) 0.0000 (−) 0.0000 (+) 0.0000 (−) 0.0001 (−) 0.0000 (+) 0.0000 (−)

F24 0.6607 (=) 0.0000 (−) 0.0000 (−) 0.0024 (−) 0.0000 (−) 0.0000 (−) 0.1154 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F25 0.0000 (−) 0.5106 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0013 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F26 0.9821 (=) 0.5591 (=) 0.0303 (+) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0046 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−)

F27 0.1840 (=) 0.0000 (+) 0.0000 (+) 0.0000 (+) 0.0000 (−) 0.0000 (−) 0.0000 (+) 0.0377 (−) 0.0000 (−) 0.0000 (−)

F28 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.0000 (−) 0.7172 (=) 0.0000 (−) 0.0000 (−) 0.0000 (−)

+/=/− 2/9/17 2/9/17 2/3/23 3/3/22 0/5/23 2/3/23 3/6/19 0/3/25 4/2/22 1/2/25

Table 8.  The Friedman detection results for each algorithm.

IGTOA GTOA IATTP MSMPSO
ADN-RSN
-PSO ESCA

D = 30
Avg.Rank 1.63 2.93 3.02 4.05 4.48 4.89

Sort 1 2 3 4 5 6

D = 100
Avg.Rank 1.61 3.07 2.82 4.38 4.07 5.04

Sort 1 3 2 5 4 6
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Comparison of the engineering application effect. In order to further compare the effects of IGTOA 
algorithm and other comparison algorithms in practical application, this section uses each algorithm to handle 
the cooperative beam forming optimization problem. The cooperative beam forming optimization problem is 
a typical problem in the antenna array. By optimizing the amplitude and phase of the emission signal weight of 
each cooperative node, the peak side valve level PSL minimization as shown in formula (17) is realized.

Figure 8.  Convergence curves of each algorithm on the test suit.
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where, AF(θ ,w) represents the array factor, as shown in formula (18). φ is the main beam direction. θSL is the 
direction corresponding to the peak point in the range θ ∈ [−π ,φ) ∪ (φ,π] beam chart except for the main 
lobe peak point, is called the lateral lobe direction. The denominator AF(φ,w) is the main beam power and the 
molecule max |AF(θSL,w)| is the maximum beam power in the side flap.

where, wk is the complex number weight coefficient of the signal emitted by the k-th cooperative node, as shown 
in formula (19).

(17)PSL = 20 log10
max |AF(θSL,w)|

AF(φ,w)

(18)AF(θ ,w) =

k
∑

k=1

wke
j(2π/�)rk[cos (θ−ψk)]

Figure 9.  Box plots of the 6 algorithms on the test function.
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Table 9.  Comparison of time complexity between IGTOA and other algorithms.

Mean-times/s

Function IGTOA GTOA IATTP MSMPSO
ADN-RSN
-PSO ESCA

F1 5.19 1.04 4.29 1.49 0.89 1.40

F2 6.81 2.34 5.32 2.73 2.16 2.64

F3 6.12 1.69 5.27 2.17 1.67 2.16

F4 6.26 1.93 4.92 2.30 1.73 2.21

F5 5.58 1.39 4.35 1.89 1.35 1.81

F6 5.99 1.38 4.24 1.80 1.23 1.72

F7 8.34 3.68 7.13 4.56 4.08 4.65

F8 7.64 3.45 6.26 3.71 3.15 4.65

F9 32.58 28.65 31.71 28.95 28.40 29.51

F10 6.65 2.27 5.33 2.83 2.20 2.57

F11 6.54 2.26 5.24 2.84 2.4121 2.84

F12 8.14 3.39 6.69 4.15 3.46 3.91

F13 8.96 4.72 7.96 5.05 4.60 4.80

F14 6.35 2.01 5.1 9 2.41 1.87 2.41

F15 7.13 2.50 5.54 2.92 2.30 2.82

F16 24.17 19.96 23.11 20.42 19.91 20.29

F17 6.45 1.84 4.33 2.26 1.72 2.08

F18 7.08 2.44 5.11 2.82 2.20 2.62

F19 6.16 1.59 4.02 2.06 1.44 1.88

F20 6.66 2.47 5.28 2.99 2.43 3.19

F21 10.91 6.88 9.40 6.72 6.55 6.67

F22 10.20 6.27 9.39 6.79 6.13 6.58

F23 11.92 7.43 9.70 7.10 6.51 7.32

F24 39.87 35.13 38.11 35.55 34.95 36.23

F25 39.70 35.16 38.08 35.44 34.97 35.73

F26 42.73 38.45 41.52 38.70 38.20 38.73

F27 41.88 37.60 40.04 37.60 37.15 37.73

F28 15.41 11.05 13.82 11.94 11.22 10.61

Figure 10.  Distribution of the cooperative nodes.
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(19)wk = ξke
jαk

Figure 11.  Beam map of IGTOA and each contrast algorithm in a rectangular coordinate frame.
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where, ξk and αk are the amplitude and initial phase of the emission signal weights of the k-th cooperative node, 
respectively, and ξ ∈ [0, 1] , α ∈ [−π ,π].

The beam forming scenario in this section is shown in Fig. 10. Among them, the wavelength of the sending 
signal is � , and the six cooperative nodes are distributed in the circle domain with a radius of 4� , and one coop-
erative node is located in the center of the circle domain. Each algorithm is optimized as the objective function 
shown in formula (17). For comparative fairness, in this experiment, the problem scale N is 50, the maximum 
function evaluation times Max_FEs = 5000*D, the number of nodes k = 6, the polar radius rk = 4, and other 
parameters are shown in Table 4. In order to avoid the adverse effects of contingency on the algorithm evaluation, 
each algorithm runs independently for 10 times, and selects the best collaborative beam optimization scheme 
corresponding to the PSL median of each algorithm is compared. Figure 11 intuitively gives the beam diagram of 
IGTOA and each comparison algorithm in the right Angle coordinate system, and then the PSL corresponding 
to each algorithm is annotated in the graph. 

As can be seen from Fig. 11, for the above collaborative beam forming scenario, the best PSL obtained 
from GTOA, IATTP, MSMPSO, ADN-RSN-PSO, ESCA, and IGTOA are: − 3.7667 dB, − 4.0599 dB, − 3.1973 dB, 
− 4.0369 dB, − 3.7997 dB and − 4.3917 dB, respectively. Each algorithm achieved better cooperative beam opti-
mization than unoptimized (− 1.8909 dB), and IGTOA achieved the best synergistic beam optimization than 
the other five algorithms. In Conclusion Section, the proposed IGTOA also has excellent performance in engi-
neering applications.

Conclusion
This paper proposes an improved algorithm-IGTOA, which assigns teachers by probability and introduces dif-
ferent excellent genes in the group to ensure the population diversity; at the same time, the adaptive grouping 
method, combined with the different learning abilities of students in the two groups, put forward suitable search 
methods and learning methods, balancing the diversity loss rate in the evolution process and the algorithm 
convergence rate; in addition, this paper proposes a population reconstruction mechanism that starts with 
whether the population optimal individual has continuous changes and provides new genes for the population 
while maintaining excellent genes, which ensures the convergence rate of the algorithm and better maintains 
the population diversity; finally, simulation results from multiple experiments of this algorithm in the CEC2013 
test suite show that IGTOA has good comprehensive performance, and IGTOA has obvious advantages in con-
vergence speed and solution accuracy compared with many other comparative algorithms.

Data availability
The datasets used or analysed during the current study available from the corresponding author on reasonable 
request.
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