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Application of machine learning 
methods for the prediction 
of true fasting status in patients 
performing blood tests
Shih‑Ni Chang1,2,8, Ya‑Luan Hsiao3,8, Che‑Chen Lin1, Chuan‑Hu Sun1, Pei‑Shan Chen1, 
Min‑Yen Wu1, Sheng‑Hsuan Chen1, Hsiu‑Yin Chiang1, Chiung‑Tzu Hsiao4, Emily K. King5, 
Chun‑Min Chang6* & Chin‑Chi Kuo1,2,7*

The fasting blood glucose (FBG) values extracted from electronic medical records (EMR) are assumed 
valid in existing research, which may cause diagnostic bias due to misclassification of fasting status. 
We proposed a machine learning (ML) algorithm to predict the fasting status of blood samples. This 
cross‑sectional study was conducted using the EMR of a medical center from 2003 to 2018 and a total 
of 2,196,833 ontological FBGs from the outpatient service were enrolled. The theoretical true fasting 
status are identified by comparing the values of ontological FBG with average glucose levels derived 
from concomitant tested HbA1c based on multi‑criteria. In addition to multiple logistic regression, 
we extracted 67 features to predict the fasting status by eXtreme Gradient Boosting (XGBoost). The 
discrimination and calibration of the prediction models were also assessed. Real‑world performance 
was gauged by the prevalence of ineffective glucose measurement (IGM). Of the 784,340 ontologically 
labeled fasting samples, 77.1% were considered theoretical FBGs. The median (IQR) glucose and 
HbA1c level of ontological and theoretical fasting samples in patients without diabetes mellitus (DM) 
were 94.0 (87.0, 102.0) mg/dL and 5.6 (5.4, 5.9)%, and 92.0 (86.0, 99.0) mg/dL and 5.6 (5.4, 5.9)%, 
respectively. The XGBoost showed comparable calibration and AUROC of 0.887 than that of 0.868 
in multiple logistic regression in the parsimonious approach and identified important predictors of 
glucose level, home‑to‑hospital distance, age, and concomitantly serum creatinine and lipid testing. 
The prevalence of IGM dropped from 27.8% based on ontological FBGs to 0.48% by using algorithm‑
verified FBGs. The proposed ML algorithm or multiple logistic regression model aids in verification of 
the fasting status.

With the universal implementation of electronic medical records (EMRs), researchers have actively leveraged 
real-world EMR data in diabetes research and management in clinical  practice1. The development of algorithms 
to identify patients with prediabetes and diabetes mellitus (DM) with high validity has become increasingly 
fundamental in improving the patients’ quality of care and preventing complications associated with DM. In 
current clinical practice, the phenotypes of DM are defined by various combinations of the different components 
of the EMR, such as diagnostic codes, medication data, and laboratory values related to glucose  homeostasis2. 
Thus, current diagnostic algorithms have yielded significant variation in the validity for identification of  DM2. In 
recent years, several studies have indicated that machine learning (ML) algorithms may better identify diabetic 
status in EMRs for cohort  establishment3,4. Other studies applied ML techniques to predict DM or undiagnosed 
DM based on clinical  information5–8. Systematic reviews reported that most ML studies used the supervised 
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learning approach and a comparison of the approaches indicated that support vector machine (SVM) was the 
most widely used  algorithm9,10. Deep learning (DL) models such as artificial neural networks (ANNs) and deep 
neural networks (DNNs) have been applied and reported in some studies showing superior performance than 
conventional ML approaches in predicting DM-related  phenotypes11,12. However, these studies usually assumed 
that fasting blood glucose (FBG) values are valid if labeled as such by the clinical laboratory, which may lead 
to potential overestimation of fasting  status13. As demonstrated in a survey conducted by Tseng et al., only 
approximately half of the patients reported to have adequately fasted before phlebotomy at a large academically 
affiliated  hospital13. Another study surveyed around 150 outpatients and stated that 40% did not fast before 
going to the hospital for laboratory blood  work14. Both studies pointed out that documentation of fasting state 
before phlebotomy was often non-existent as these data are not routinely collected by healthcare providers or 
the laboratory team and recorded in the EMR. Similarly, information regarding whether patients had been given 
instructions to fast before phlebotomy was also not  recorded13,14. Despite the importance of the fasting status 
in patients undergoing phlebotomy, there has been relatively few research conducted in the current literature 
to verify the fasting status of patients before blood work. The lack of knowledge of the fasting state of patients 
presents a challenge for healthcare providers in determining whether patients had truly fasted before labora-
tory blood testing and may prohibit them from interpreting the results in accordance with diabetes screening 
guidelines, resulting in missed diagnoses of prediabetes and type 2 diabetes.

Misclassification of fasting status negatively influences the clinical accuracy of conventional or ML models in 
screening DM or predicting the risk of  DM15. Verification of fasting blood samples is therefore a significant chal-
lenge in analyzing real-world EMR data for epidemiological research, particularly when the disease diagnostic 
criteria are based on fasting blood samples. The current reference standard for confirmation of the fasting status 
relies on self-reported information from the patients during phlebotomy, which may be influenced by recall and 
awareness biases. To the best of our knowledge, no studies have used EMR data to investigate the discordance 
between prescribed and actual fasting status based on the distribution of BG and concomitant HbA1c values. 
Using a large clinical data repository of more than 2.75 million patient records from a tertiary medical center in 
central Taiwan, we systematically evaluated the distribution of BG values. We used the HbA1c-estimated average 
glucose level to define fasting status, followed by the development of prediction models using ML.

Materials and methods
Study data source and sample selection. The China Medical University Hospital (CMUH) Clinical 
Research Data Repository (CRDR) carefully validated the EMRs of 2,873,887 patients who had sought care 
at CMUH between January 1, 2003, and December 31, 2018. The methodologic details have been published 
 elsewhere16–19. Of the 2,873,887 patients, 945,792 underwent glucose measurements using sera samples from 
inpatient and outpatient services. The sample selection flow is summarized in Fig. 1. All methods in this study 
were performed in accordance with the relevant guidelines/regulations. This study protocol was approved by the 
Big Data Center of China Medical University Hospital and the Research Ethical Committee/Institutional Review 
Board of China Medical University Hospital (CMUH105-REC3-068) and the need to obtain informed consent 
for the present study was waived by the Research Ethical Committee of China Medical University Hospital.

Sociodemographic and clinical variables. The covariables of interest were obtained from the CRDR, 
including patient demographics, specifically age and sex, and body mass index, which was calculated as the 
weight in kilograms divided by the height in square meters. The presence of hypertension or type 2 DM was 
captured based on associated ICD-9/-10 codes or the use of glucose-lowering medications or antihypertensive 
agents. A history of cardiovascular disease was also documented if the patients had a record of coronary artery 
disease, myocardial infarction, stroke or congestive heart failure in EMRs based on International Classification 
of Diseases (ICD) 9th and 10th edition codes. All other coexisting comorbidities were also captured based on 
ICD-9/-10 codes from the repository or EMR data. Additional provider- or patient-level factors such as medica-
tion records, health care provider specialty, and biochemical measures were obtained from repository data or the 
EMRs within a 1-year window prior to enrollment into the study cohort.

Another patient-level factor that we included was the distance from the patients’ home to the hospital as we 
hypothesized that fasting status might be associated with the travel time to the healthcare facility. Currently, no 
studies have investigated the association of distance between healthcare facilities and homes and fasting status. 
However, a few studies have provided evidence that increasing travel distance to the primary care provider may 
affect and decrease glycemic  control20–22.Therefore, we calculated the straight-line distance between hospital to 
home as it is the most common method for this type of  calculation23. The home-to-hospital distance was calcu-
lated in two steps. First, a geocoding application programming interface developed by Google Maps was used 
to transform the map coordinates of the entire study population’s home addresses and locations. The distance 
between the homes and the hospital was calculated using the geographic information system (ArcGIS version 
10; ESRI, Redlands, CA, USA).

Determination of glucose and HbA1c levels. Blood glucose levels were determined by the central 
laboratory using the Beckman Oxygen electrode (glucose oxidase method) with a Beckman  Synchron® LX20 
and Beckman  UniCel® DxC 800 (Beckman Coulter Inc., Brea, CA, USA) from January 1, 2003, to September 30, 
2007, and from October 1, 2007, to December 31, 2018, respectively. The level of HbA1c was measured using 
boronate affinity and high-performance liquid chromatography (HPLC) methods with the Primus CLC385 ana-
lyzer from January 1, 2003, to June 30, 2008, cation exchange HPLC methods with the Tosoh HLC-723 G7 
(Tosoh Corporation, Tokyo, Japan) from July 31, 2008, to December 31, 2013, and boronate affinity and HPLC 
methods with the Trinity Biotech Premier Hb9210 from January 1, 2014, to December 31, 2018.
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From the CMUH-CRDR laboratory database, we selected the glucose measurements specified as fasting glu-
cose (AC, ante cibum), postprandial glucose (PC, post cibum), and random glucose. We excluded data recorded 
as nonnumerical values, values higher than 1000 mg/dL, or zero values. All glucose measurements could also be 
classified as inpatient, outpatient clinic, and emergency department services. Only measurements obtained in 
the outpatient setting were included in the final analysis. The HbA1c-derived averaged glucose level  (ACaverage) 
was defined based on Nathan et al.’s formula as a theoretical upper limit of fasting  glucose24.

Data conditioning steps to determine ontological fasting glucose. To investigate the “true” onto-
logical fasting status on blood glucose measurements, we filtered glucose measurements that were highly likely 
nonfasting in the outpatient setting to derive ontological fasting glucose  (AContological) as follows. Glucose meas-
urements were reclassified as non-AContological if:

1. the data were labeled as post cibum glucose or random glucose,
2. the glucose measurement included additional descriptions/labels such as “one-touch”, “bedside check”, or 

“PC” or contained descriptions indicating active food intake before phlebotomy, regardless of the laboratory 
test prescribed (e.g., fasting glucose),

Figure 1.  Sample selection process from ontological glucose ante cibum (AC) to theoretical fasting 
classification, followed by splitting of the dataset into training and testing datasets.
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3. patients had multiple fasting glucose measurements on the same day; only the first measurement was con-
sidered as non-AContological.

Definition of theoretical fasting status. Three criteria were used to define the theoretical fasting sta-
tus  (ACtheoretical) of patients who underwent concomitant  AContological and HbA1c measurements on the same 
day: (1) an  AContological < 100 md/dL in patients without DM with HbA1c < 5.5%; (2) an  AContological <  ACaverage − 1 
standard deviation of  AContological glucose in patients without DM with an HbA1c between 5.5 and 6.4%; and (3) 
an  AContological <  ACaverage in patients with DM. Once the patients’ glucose AC was defined as  ACtheoretical, the cor-
responding blood samples were defined as fasting samples. Otherwise, they were considered nonfasting samples. 
These criteria are based on the physiological profiling of glucose and insulin variation over 24 h in individu-
als with and without  diabetes25,26. The A1c-derived estimated average glucose  (ACaverage) summarizes the daily 
glucose variation over the past 90 days, depicting an averaged value between the lowest and the highest glucose 
level in this time window among patients with a stable metabolic state. Therefore, if truly obtained in the fast-
ing status, the glucose level should be theoretically less than the level of  ACaverage

27. To verify the validity of our 
proposed criteria, we used the glucose AC from 4519 patients who provided morning fasting samples before the 
procedure of pan-endoscopy in CRDR as the true fasting glucose AC and only 314 measurements (6.95%) were 
misclassified as nonfasting based on our criteria.

Statistical analysis. The clinical characteristics of patients with a theoretical fasting sample and those with 
a theoretical nonfasting sample were compared. The probability densities of glucose levels between fasting and 
nonfasting status were examined based on the diabetic status. We also assessed whether the levels of fasting glu-
cose differed if the glucose measurements were taken at the same time with lipid profiles. Conventional logistic 
regression and ML were applied to develop a tool for predicting whether the glucose measurements were fasting 
measures. We tested model discrimination and calibration using area under the receiver operating characteristic 
(AUROC) statistics and calibration curves.

Machine learning approach and evaluation. To use ML for predicting whether the blood samples were 
obtained in the fasting state, a balanced dataset was curated to obtain a 1:1 ratio of  AContological and  ACtheoretical, 
which was composed of 93,958 patients (Fig. 1). Patients within this balanced dataset were separated into train-
ing and testing sets at an 80/20 proportion while maintaining a 1:1 ratio of  AContological and  ACtheoretical. The 
demographic, clinical, and biochemical information of the patients, such as age, ICD-9 or -10 codes, medication 
histories, and laboratory test results, was then extracted from the CMUH-CRDR. We applied logistic regression 
and eXtreme Gradient Boosting model (XGBoost), a scalable end-to-end tree boosting model proposed by Chen 
and  Guestrin28, to evaluate the performance of predicting fasting status. We additionally experimented with two 
efficient algorithms, CatBoost and ensemble models with H2O AutoML, to better handle the categorical vari-
ables and explore the predictive performance using multiple learning  algorithms29,30. The objective function of 
this binary classification problem was to minimize binary entropy loss; the hyperparameters of our XGBoost 
model were determined using the Tree of Parzen Estimators (TPE)  method31. Taking the implementation of 
XGBoost in Python as an example, the finalized hyperparameters were set as tree depth = 8, learning rate = 0.1, 
gamma = 0.5, minimum sum of instance weight = 7, number of estimators = 300, and the remaining parameters 
were set using the default setting. Detailed parameter ranges for grid search were summarized in Supplementary 
Table 1. To implement ensemble models with H2O AutoML in Python, we stacked various algorithms, such 
as XGBoost, Random Forest, and Gradient Boosting Machines. The model output of XGBoost, CatBoost, or 
Ensemble models was the probability of  ACtheoretical. The performance quantification of each ML algorithm was 
evaluated in terms of AUROC, accuracy, precision, recall, and F1 score using a fivefold cross-validation scheme. 
We used the bootstrapping method with 2000 repetitions to statistically test the difference between the paired 
 AUROCs32. Finally, we compared the proportion of glucose AC ≥ 126 mg/dL calculated with or without the ML 
algorithm to classify the fasting status. We also classified glucose AC ≥ 126 mg/dL, regardless of ontological or 
predicted fasting samples, which did not lead to the diagnosis of diabetes over the study periods as ineffective 
glucose measurements (IGM). All statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., 
Cary, NC, USA), R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria), and Python version 
3.7.3 under a Linux operating system. The Python package version was 1.5.2 for XGBoost, 1.0.4 for CatBoost, 
and 3.36.0.2 for H2O AutoML. The two-sided statistical significance level of α was set at 0.05.

Ethical approval. The study was approved by the Research Ethical Committee/Institutional Review Board 
of China Medical University Hospital (CMUH105-REC3-068).

Results
Distribution of glucose level by fasting and diabetic status. A total of 359,402  AContological data 
points were included in the final analysis, with a mean sample age of 59.7 ± 14.6 years. Approximately half of 
the sample population were female (46.1%). When restricting to only the patients’ first sample in the CRDR 
(n = 93,958), the average age was 54.4 ± 15.5 years, and 45.9% of these patients were female. Of these 93,958 
patients, 29.2% had been diagnosed with DM at the first  AContological. Blood glucose measurements considered 
to be collected during fasting state were observed in younger non-DM patients but not among younger patients 
with DM. Nonfasting samples were more likely to be provided by male patients, regardless of their diabetic 
status. Moreover, samples were more likely to be fasting measures if the lipid profiles of the patients were con-
comitantly examined. Statistical differences were observed for the majority of the biochemical measures between 
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fasting and nonfasting samples. Specifically, levels of triglyceride demonstrated clinically significantly different 
results (> 15 mg/dL) between fasting and nonfasting samples, regardless of the diabetic status (Table 1).

The peak of the density curves of  AContological with and without same-day HbA1c measures was similar at 
approximately 100 mg/dL. However, the width of the distribution of  AContological with HbA1c measures was wider 
than those without the HbA1c measures (Fig. 2A). Peaks of the density curves of  ACtheoretical and nonfasting 
 AContological were separated with a peak value slightly lower than 100 and slightly above 126 mg/dL, respectively 
(Fig. 2B). Among patients without DM, a peak shift to the left to < 126 mg/dL was noted in the nonfasting samples 
compared with the entire sample with concomitant HbA1c (Fig. 2C). By contrast, among patients with DM, the 
peak of the fasting samples shifted right to approximately 126 mg/dL (right-shifting; Fig. 2D). Figure 3 shows 
the scatter plots of  AContological and HbA1c based on diabetic status and highlights the distribution of  ACtheoretical.

Factors associated with nonfasting status. The entire dataset consisted of 67 attributes (Supplemen-
tary Table 2) and details of relevant missingness are provided in Supplementary Table 3. In multiple logistic 
regression, age, male sex, distance from the home to the hospital, the timing of blood sampling, and the cumula-
tive frequency of outpatient visits 1 year prior to the blood sampling were associated with a higher probability 
of being in a nonfasted state. Patients with a history of DM, hypertension or coronary artery disease, statin 
medication, and concomitant lipid and glucose testing were significantly associated with the fasting status. Com-
paring the odds of nonfasting status among patients who visited the Health Management Center, those who 
were ordered glucose measurement in the departments of metabolism and endocrinology, general medicine, 
and nephrology were twice as likely to be in a nonfasted state (Table 2). In addition, patients who underwent 
concomitant glucose and lipid testing were more likely to follow the fasting instruction, with the odds ratio of 
being in a nonfasted state of 0.78 (95% CI 0.76–0.80).

Machine learning performance in fasting status identification. We conducted experiments on fea-
ture selection by building XGBoost models with the top 10, 25, 35, 45 features and found that using all 67 fea-
tures generated the most accurate result. Compared with the predictive performance of multiple logistic regres-
sion for nonfasting status in the testing dataset, XGBoost with full features showed better sensitivity (77.8% 
vs. 76.1%), accuracy (80.9% vs. 78.5%), and F1 score (81.6% vs. 78.0%; Table 3). The top 45 scoring variables 
are summarized in Fig. 4. The level of the  AContological, the distance from home to the hospital, age, height, and 
the level of serum creatinine were the most important features. When we used 14 features of the parsimonious 
model (model 2 in Table 2) in the XGBoost algorithm, the predictive performance was statistically better than 
that of the predictive model derived from multiple logistic regression. By contrast, the precision of the conven-
tional logistic regression model was marginally better than the ML-based models (Table 3). The AUROC and 
calibration performance of our proposed ML methods were generally better than those of the multiple logistic 
regression model (AUROC 0.887 vs. 0.868, p < 0.001; Fig. 5). In the sensitivity analysis of other ML algorithms, 
the predictive performance was consistent with the original XGBoost (Table 3). However, the overall predictive 
performance difference between ML-based and conventional logistic regression models was not clinically rel-
evant. The performance of different ML methods in the training dataset is provided in Supplementary Table 4.

Impact on the prevalence of ineffective glucose measurements. On average, the prevalence of 
glucose measurement ≥ 126 mg/dL dropped from 14.2 to 10.1% by applying algorithm-verified FBGs over the 
years, and this difference was constant throughout the study period (Table 4). The prevalence of IGM dropped 
from 27.8% based on  AContological ≥ 126 mg/dL to 0.48% by using algorithm-verified FBGs ≥ 126 mg/dL. The dif-
ference consistently ranged between 25.9 and 28.5% from 2003 to 2018 (Table 4).

Discussion
Our findings support that fasting status can be well predicted in real-world settings by using parsimonious com-
putation models based on ML or conventional statistical approaches in clinical practice. Using the ML model, 
we found that 78.0% of the 604,639 blood samples could be theoretically classified as fasting samples when we 
defined the fasting status as  AContological less than  ACaverage. The most important features to predict fasting status 
were the levels of  AContological, distance from the home to the hospital, age, height, and concomitant testing of 
serum creatinine. XGBoost yielded statistically better performance in predicting fasting status than conven-
tional logistic regression modeling did, with an AUC of 0.892 and an F1 score of 80.5%. The prevalence of IGM 
decreased from 6.44 to 0.06% among those without DM history. This change is noteworthy, as the prevalence of 
DM was 16.6% regardless of the fasting status and 11.8% when patients with nonfasting status verified by ML 
algorithms were excluded from the sample. ML algorithms, such as XGBoost, may be particularly useful as their 
robustness to missing data, can address one of the most pervasive barriers of real-world data analysis.

In clinical practice and diabetes research, it is common to assume that  AContological is from a fasting sample 
in  EMR33. Our results suggest that implementing fasting status verification algorithms based on a ML or con-
ventional statistical approach is essential for an automated diabetes screening algorithm to better predict DM, 
which may help the regional and national diabetes screening policy and improve care management. There is 
no standardized method to assess whether patients have truly fasted before phlebotomy is performed. When 
patients were asked about their fasting status prior to phlebotomy in a survey study, only 50% reported hav-
ing actually  fasted13. As there is no objective biomarker to verify fasting status, the current reference standard 
merely relies on patients’ self-reports which are inevitably affected by recall bias. Thus, the self-report data pose 
persistent challenges to assessing the epidemiology of  DM13. From the perspective of point-of-care testing, it is 
likely that the current literature has overestimated the prevalence and incidence of prediabetes and DM based 
on the EMR data, particularly the so-called “undiagnosed prediabetes or diabetes.” Information bias, specifically 
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Variables

Non-DM DM

Overall Fasting Nonfasting p Overall Fasting Nonfasting p

n = 118,383 n = 53,080 n = 65,303 n = 241,019 n = 126,621 n = 114,398

Age, years 55.3 (15.0) 50.7 (15.6) 59.1 (13.4) < 0.01 61.9 (13.9) 62.6 (13.3) 61.1 (14.6) < 0.01

Male 66,333 (56.0) 29,147 (54.9) 37,186 (56.9) < 0.01 127,301 (52.8) 66,791 (52.8) 60,510 (52.9) 0.47

BMI, kg/m2 25.4 (4.85) 24.8 (4.83) 26.1 (4.78) < 0.01 26.1 (4.63) 26.2 (4.65) 25.9 (4.60) < 0.01

Sampling tim-
ing of the day < 0.01 < 0.01

7:00–12:59 109,784 (92.7) 48,168 (90.8) 61,616 (94.4) 225,770 (96.7) 119,210 (94.2) 106,560 (93.2)

13:00–17:59 7465 (6.31) 4322 (8.14) 3143 (4.81) 11,761 (4.88) 5805 (4.58) 5956 (5.21)

18:00–22:59 1134 (0.96) 590 (1.11) 544 (0.83) 3488 (1.45) 1606 (1.27) 1882 (1.65)

Interval 
between request 
and sampling 
day, day

32.0 (40.8) 24.9 (37.9) 37.8 (42.2) < 0.01 57.6 (34.2) 58.71 (33.3) 56.39 (35.2) < 0.01

No. of outpa-
tient visits 9.42 (17.6) 7.44 (15.8) 11.0 (18.7) < 0.01 19.56 (24.7) 19.07 (23.7) 20.11 (25.8) < 0.01

Distance to 
hospital, km 15.4 (76.3) 17.7 (89.7) 13.6 (63.9) < 0.01 10.6 (55.4) 10.6 (51.7) 10.59 (59.2) 0.87

Concomitant 
lipid testing 95,750 (80.9) 47,735 (89.9) 48,015 (73.5) < 0.01 147,021 (61.0) 81,320 (64.2) 65,701 (57.4) < 0.01

Division < 0.01 < 0.01

General medi-
cine 19,268 (16.3) 6913 (13.02) 12,355 (18.92) 19,988 (8.29) 10,277 (8.12) 9711 (8.49)

Metabolism/
endocrinology 14,190 (12.0) 3553 (6.69) 10,637 (16.29) 132,971 (55.2) 70,496 (55.67) 62,475 (54.61)

Nephrology 7461 (6.30) 2070 (3.9) 5391 (8.26) 21,015 (8.72) 10,298 (8.13) 10,717 (9.37)

Cardiology 20,837 (17.6) 6260 (11.79) 14,577 (22.32) 36,060 (15.0) 20,265 (16) 15,795 (13.81)

Family medicine 10,810 (9.13) 4708 (8.87) 6102 (9.34) 16,022 (6.65) 8243 (6.51) 7779 (6.8)

Health manage-
ment center 34,572 (29.2) 25,217 (47.51) 9355 (14.33) 766 (0.32) 458 (0.36) 308 (0.27)

Surgery 5469 (4.62) 2782 (5.24) 2687 (4.11) 2915 (1.21) 1552 (1.23) 1363 (1.19)

Pediatrics 1109 (0.94) 710 (1.34) 399 (0.61) 3607 (1.50) 1065 (0.84) 2542 (2.22)

Chinese medi-
cine 4232 (3.57) 735 (1.38) 3497 (5.36) 7226 (3.00) 3753 (2.96) 3473 (3.04)

Other 435 (0.37) 132 (0.25) 303 (0.46) 449 (0.19) 214 (0.17) 235 (0.21)

Comorbidity

Hypertension 33,868 (28.6) 10,916 (20.6) 22,952 (35.2) < 0.01 143,831 (59.7) 76,406 (60.34) 67,425 (58.94) < 0.01

Coronary artery 
disease 12,906 (10.9) 3981 (7.50) 8925 (13.7) < 0.01 46,568 (19.3) 24,982 (19.73) 21,586 (18.87) < 0.01

Stroke 8713 (7.36) 3236 (6.10) 5477 (8.39) < 0.01 31,375 (13.0) 16,602 (13.11) 14,773 (12.91) 0.15

Biochemical variables

Glucose, mg/dL 124 (47.6) 96.9 (19.5) 145 (52.3) < 0.01 163 (62.5) 132 (36.7) 197 (67.1) < 0.01

HbA1c, % 6.48 (1.44) 5.86 (0.98) 6.97 (1.57) < 0.01 7.55 (1.50) 7.59 (1.42) 7.50 (1.58) < 0.01

Hemoglobin, 
g/dL 14.0 (1.97) 14.1 (1.77) 13.7 (2.23) < 0.01 11.8 (2.29) 12.0 (2.21) 11.6 (2.35) < 0.01

Total choles-
terol, mg/dL 191 (41.5) 193 (39.4) 190 (43.6) < 0.01 177 (43.5) 174 (41.6) 180 (45.5) < 0.01

LDL, mg/dL 114 (34.6) 116 (33.7) 111 (35.4) < 0.01 97.2 (33.0) 96.6 (32.2) 97.9 (33.9) < 0.01

HDL, mg/dL 47.8 (13.7) 49.9 (14.1) 45.2 (12.6) < 0.01 43.6 (12.5) 43.6 (12.2) 43.6 (12.8) 0.95

Triglyceride, 
mg/dL 148 (168) 125 (114) 172 (208) < 0.01 179 (231) 160 (191) 200 (269) < 0.01

BUN, mg/dL 14.6 (12.7) 12.3 (8.83) 18.2 (16.3) < 0.01 33.0 (24.3) 31.0 (23.2) 35.0 (25.3) < 0.01

Serum creati-
nine, mg/dL 1.14 (1.51) 1.00 (1.09) 1.28 (1.82) < 0.01 1.63 (2.20) 1.53 (1.99) 1.76 (2.41) < 0.01

Serum sodium, 
mmol/L 139 (3.61) 140 (3.22) 138 (3.86) < 0.01 137 (3.83) 138 (3.41) 136 (4.06) < 0.01

Serum potas-
sium, mmol/L 4.09 (0.52) 4.02 (0.49) 4.15 (0.54) < 0.01 4.33 (0.61) 4.34 (0.58) 4.32 (0.64) < 0.01

AST, IU/L 30.5 (26.0) 27.4 (19.2) 34.9 (32.8) < 0.01 33.1 (29.1) 32.1 (25.6) 34.1 (32.1) < 0.01

ALT, IU/L 33.1 (33.1) 30.0 (29.6) 36.4 (36.0) < 0.01 31.1 (28.7) 30.4 (26.6) 31.9 (30.8) < 0.01

Uric acid, mg/
dL 6.00 (1.59) 5.89 (1.55) 6.13 (1.63) < 0.01 6.29 (1.80) 6.26 (1.78) 6.32 (1.83) < 0.01

Albumin, g/dL 4.50 (0.41) 4.55 (0.35) 4.41 (0.48) < 0.01 3.97 (0.54) 4.03 (0.50) 3.92 (0.56) < 0.01

Continued
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misclassification bias, caused by treating nonfasting glucose as fasting glucose, underestimates the effects of glu-
cose on health outcomes. The findings of a recent study, in which six diabetes phenotyping methods in EMR were 
compared, suggested that solely using abnormal glucose values would overestimate the number of prevalent DM 
cases by approximately 1.5  times34. This magnitude of overestimation cannot be entirely explained by analytical 
variation in glucose measurement; therefore, overestimation of actual fasting status should be considered and 
thoroughly  investigated35.

Table 1.  Comparison of demographic and biochemical profiles of ontologically fasting samples with 
concomitant HbA1c measurement according to DM and theoretical fasting status. Values for continuous 
and categorical variables are expressed as mean (standard deviation) and frequency (%), respectively. Levels 
of glucose, HbA1c, and other biochemical variables were measured on the same day. P value indicates the 
significant difference of variables between theoretically fasting and nonfasting samples. BMI body mass 
index, LDL low-density lipoprotein, HDL high-density lipoprotein, BUN blood urea nitrogen, AST aspartate 
aminotransferase, ALT alanine transaminase.

Variables

Non-DM DM

Overall Fasting Nonfasting p Overall Fasting Nonfasting p

n = 118,383 n = 53,080 n = 65,303 n = 241,019 n = 126,621 n = 114,398

Estimated blood 
osmolality 291 (7.90) 290 (7.02) 293 (8.68) < 0.01 296 (10.1) 294 (9.48) 297 (10.5) < 0.01

Urine specific 
gravity 1.02 (0.01) 1.02 (0.01) 1.02 (0.01) 0.13 1.02 (0.01) 1.02 (0.01) 1.02 (0.01) < 0.01

Urine pH 6.01 (0.68) 6.03 (0.70) 5.98 (0.66) < 0.01 6.01 (0.63) 6.03 (0.65) 5.99 (0.62) < 0.01

Figure 2.  Density plots of ontological glucose AC in selected samples as follows: (A) entire samples stratified 
by the availability of HbA1c measured on the same day; (B) samples with HbA1c measured on the same day, 
stratified by theoretical fasting and nonfasting status; (C) the entire samples with A1c measured on the same 
day, stratified by fasting and nonfasting status in patients without DM; (D) the entire samples with HbA1c 
measured on the same day, stratified by fasting and nonfasting status in patients with DM. The dark blue dashed 
line shows the glucose value at 100 mg/dL, and the red dashed line shows the glucose value at 126 mg/dL.
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Our results showed that lipid profiles, except triglyceride level, were not affected by fasting status. Especially 
among patients without DM, levels of fasting TCHO, LDL-C, and HDL-C were counterintuitively higher than 
those from the nonfasting samples. This finding supports the trends of using nonfasting lipid profiles to facilitate 
risk assessment of atherosclerotic cardiovascular disease and assures the feasibility of our algorithm in classifying 
fasting status by comparing the difference between  AContological and  ACaverage. Our ML approach in identifying 
fasting status can serve as a complementary tool to the questionnaire-based survey and enable clinicians to 
provide personalized instructions for fasting to patients based on their prior fasting records, thereby increas-
ing the accuracy of the true fasting rate improving the precision in identifying DM and monitoring its control. 
We also observed some major contributing factors in predicting fasting status, such as distance from the home 
to the hospital, age, and serum creatinine level, which can provide another perspective in understanding the 
adherence behavior of staying in a fasting state. Furthermore, our proposed fasting status prediction algorithm 
helps enhance the validity of an automated diabetes phenotyping algorithm. In the entire population of CMUH-
CRDR, we found that the prevalence trend of diabetes mellitus based on algorithm-verified FBGs was 11.8% 
lower than that based on  AContological (23.1%), and the corresponding trend of prevalent prediabetes based on 
algorithm-verified FBGs was also 24.1% lower than that based on  AContological (40.2%). Although the difference 
was not radical, the absolute misclassified number from DM to nondiabetes can be significant, depending on the 
population size. Indeed, due to the increasing interest and use of digital health tools to detect abnormal blood 
glucose levels, misclassification of nonfasting glucose measures as fasting may lead to potential overdiagnosis 
and treatment of patients without DM.

The concept of IGM is worthy of broader discussion as it stands for a measurement of FBG that did not 
change the clinical course of glucose metabolism even when the level was greater than 126 mg/dL among patients 
without a history of DM. Several reasons could help explain this observation, such as clinician knowledge of 
the nonfasting status or a missed interpretation of the result. Nonetheless, a potential consequence of IGM is 
missing the detection of diabetes, leading to complications and increased healthcare utilization in the long run. 
Failing to obtain a truly FBG may be problematic for diabetes screening. Our proposed algorithms drastically 
reduced the proportion of IGM, supporting their use in the real-world care flow to trigger actionable screening 
of diabetes. These algorithms also help generate a warning upon detecting the discrepancy between  AContological 
and algorithm-verified nonfasting glucose, which could serve as a checkpoint and reminder in the automatically 
digital phenotyping process for DM screening. Future research on clinical effectiveness and automatic fasting 
status prediction implementation in the flow of digital diabetic phenotyping systems is necessary to strengthen 
the public health impact.

The present study has several limitations. First, the actual fasting status of the patients was not available. 
However, it is challenging, if not impossible, to obtain the actual fasting status. We assumed that  AContological 
should be less than  ACaverage in the fasting status among outpatients with stable dietary habits and a steady level of 
carbohydrate metabolism. In the crude analysis, we found that patients from the Health Management Center were 
more likely to be in the fasting state before phlebotomy. This observance corresponds to our clinical experience, 

Figure 3.  Scatter plot of HbA1c and fasting glucose levels. The figure is divided into four quadrants (a, b, c, and 
d) according to the diagnostic criteria of the American Diabetes Association (ADA) by diabetic status.
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where patients who were relatively healthy and willing to attend health checkups typically have a higher moti-
vation to provide fasting samples. Specifically, patients who undergo health checkups usually receive detailed 
instructions for  fasting36. Furthermore, over 93% of FBGs obtained from patients prepared for a pan-endoscopy 
were accurately classified as  ACtheoretical. Second, the algorithm was developed in a tertiary hospital under uni-
versal health care coverage; thus, it may not be generalizable to other settings. Further research with additional 
data from different populations is required to train and solidify our proposed algorithm. More importantly, 
integrating our algorithm into the clinical workflow is critical to verify its performance in the real-world setting.

Conclusions
To the best of our knowledge, this is the first attempt at using a ML approach to evaluate the reliability of fasting 
samples in a large tertiary hospital. Only 65.3% of ontologically AC samples could be classified as algorithm-
verified fasting status. Despite its moderate performance in predicting the fasting status among outpatients, our 
algorithms provide an innovative approach to clean medical data and facilitate true fasting BG detection. Notably, 
this study has introduced an essential step towards establishing automated phenotyping in EMR for effective 
diabetic screening and more accurate estimation of the global and local epidemiology of DM.

Table 2.  Odds ratios (95% confidence intervals) of being in the theoretically nonfasting status using the 
 AContological sample in the training dataset (n = 277,822*). *Sample were reduced because of missingness for the 
variable of "Distance from home to hospital". AIC Akaike information criterion, AUC  area under the curve.

Variables

Univariate analysis Model 1 Model 2

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Glucose, per 5 mg/dL 1.20 (1.20–1.21) < 0.001 1.16 (1.16–1.16) < 0.001 1.23 (1.23–1.23) < 0.001

Age, per 5 years 1.16 (1.16–1.17) < 0.001 1.01 (1.00–1.01) < 0.001 1.05 (1.04–1.05) < 0.001

Male 1.05 (1.03–1.06) < 0.001 1.09 (1.07–1.11) < 0.001 1.16 (1.14–1.18) < 0.001

Timing of the day

7:00–12:59 Ref Ref Ref

13:00–17:59 0.96 (0.93–1.00) 0.03 0.90 (0.86–0.94) < 0.001 0.87 (0.83–0.91) < 0.001

18:00–22:59 1.14 (1.07–1.22) < 0.001 0.76 (0.70–0.84) < 0.001 0.78 (0.70–0.86) < 0.001

Interval between request and sam-
pling, per 28 day 1.07 (1.05–1.08) < 0.001 0.95 (0.94–0.96) < 0.001 1.08 (1.07–1.08) < 0.001

No. of outpatient visits, per 4 visits 1.03 (1.02–1.04) < 0.001 0.99 (0.99–1.00) < 0.001 1.02 (1.02–1.02) < 0.001

Distance from home to hospital, per 
10 km 0.998 (0.996–1.000) 0.04 0.998 (0.997–1.000) 0.03 0.998 (0.996–1.00) 0.01

Division

Health management center Ref Ref Ref –

General medicine 3.39 (3.27–3.52) < 0.001 1.49 (1.43–1.56) < 0.001 2.24 (2.14–2.35) < 0.001

Metabolism/endocrinology 2.57 (2.49–2.65) < 0.001 0.67 (0.65–0.70) < 0.001 2.11 (2.02–2.21) < 0.001

Nephrology 3.45 (3.32–3.58) < 0.001 1.19 (1.13–1.25) < 0.001 2.38 (2.25–2.51) < 0.001

Cardiology 3.03 (2.93–3.13) < 0.001 1.09 (1.04–1.14) < 0.001 1.99 (1.89–2.08) < 0.001

Family medicine 2.80 (2.69–2.91) < 0.001 1.03 (0.98–1.08) 0.22 1.90 (1.81–2.00) < 0.001

Surgery 2.57 (2.43–2.72) < 0.001 1.30 (1.22–1.39) < 0.001 1.74 (1.62–1.87) < 0.001

Pediatrics 4.43 (4.13–4.77) < 0.001 0.67 (0.60–0.75) < 0.001 1.78 (1.59–1.99) < 0.001

Chinese medicine 4.07 (3.87–4.28) < 0.001 1.00 (0.94–1.06) 0.92 1.86 (1.74–1.99) < 0.001

Other 3.98 (3.41–4.64) < 0.001 1.30 (1.09–1.56) 0.004 1.95 (1.60–2.37) < 0.001

Hypertension 1.04 (1.03–1.06) < 0.001 1.02 (1.00–1.05) 0.03

Diabetes mellitus 0.70 (0.68–0.71) < 0.001 0.09 (0.09–0.09) < 0.001

Coronary artery disease 1.07 (1.05–1.09) < 0.001 0.94 (0.91–0.96) < 0.001

Stroke 1.02 (0.99–1.04) 0.12 0.99 (0.96–1.02) 0.64

Statin use 0.78 (0.77–0.80) < 0.001 0.82 (0.80–0.83) < 0.001

Concomitant lipid profile test 0.69 (0.68–0.70) < 0.001 0.78 (0.76–0.80) < 0.001

AIC 297,987 262,835

AUC 0.820 (0.819–0.822) 0.867 (0.866–0.869)

p-value for AUC difference Ref < 0.001
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Table 3.  Comparison of performance of determining fasting status by XGBoost, CatBoost,  H2O Ensemble and 
logistic regression models in the testing dataset (n = 70,644). *Model 2 involves the features including glucose, 
age, male, timing of the day, interval between request and sampling, No. of outpatient visits, distance from 
home to hospital, division, hypertension, diabetes, coronary artery disease, stroke, statin use, and concomitant 
lipid testing as in Table 2.

Algorithm/modeling strategy Feature Sensitivity Specificity Precision F1-score Accuracy AUC 

Parsimonious modeling

Logistic regression Model 2* 0.7608 0.8084 0.8081 0.7804 0.7845 0.868 (0.865–0.870)

XGBoost Model 2* 0.8261 0.7700 0.7844 0.8047 0.7982 0.887 (0.885–0.890)

CatBoost Model 2* 0.8415 0.7614 0.7813 0.8103 0.8017 0.889 (0.887–0.892)

H2O Ensemble Model 2* 0.8823 0.7093 0.7546 0.8135 0.7964 0.886 (0.884–0.889)

Full modeling

XGBoost 67 0.8394 0.7785 0.7934 0.8158 0.8092 0.896 (0.894–0.898)

CatBoost 67 0.8511 0.7574 0.7805 0.8142 0.8046 0.892 (0.890–0.894)

H2O Ensemble 67 0.8770 0.7399 0.7735 0.8220 0.8089 0.897 (0.894–0.899)

Feature selection modeling

XGBoost Top 45 0.8369 0.7789 0.7932 0.8145 0.8081 0.895 (0.892–0.897)

XGBoost Top 35 0.8413 0.7735 0.7901 0.8149 0.8076 0.894 (0.892–0.897)

XGBoost Top 25 0.8414 0.7706 0.7880 0.8138 0.8062 0.893 (0.891–0.896)

XGBoost Top 10 0.8502 0.7496 0.7748 0.8108 0.8002 0.887 (0.885–0.890)

Figure 4.  Top-ranked 45 features identified using the proposed XGBoost algorithm. SCr serum creatinine, ALT 
alanine transaminase, AST aspartate aminotransferase, BUN blood urea nitrogen, RBC red blood cell counts.
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