
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10960  | https://doi.org/10.1038/s41598-022-15141-6

www.nature.com/scientificreports

Identification of soil particle 
size distribution in different 
sedimentary environments at river 
basin scale by fractal dimension
Yanyan Wang1,2, Yujiang He2, Jiang Zhan3 & Zhiping Li1,4*

The geomorphology of river basin is complex, and its soil sedimentary characteristics are poorly 
defined. To study the spatial variability of soil structure in different sedimentary environments at 
the basin scale, 356 sets of soil samples were collected from five typical sedimentary environments 
in the Yellow River Basin and the Haihe River Basin, including the upper and lower reaches of the 
rivers, mountain-front plains, central alluvial plains and eastern coastal plains. The particle size 
distribution (PSD) of the soil samples was obtained using a laser particle size analyzer, and the 
fractal dimension (D) of the soil structure was derived by applying fractal theory. The PSD, D and the 
correlation between them were analyzed by  the Pearson correlation method for typical sedimentary 
environments in two basins. The results show that: (1) The main soil types in the typical geological 
environments in the basin are sand, loamy sand, sandy loam, silty loam, and silty soil. The soil particle 
size in the upper and lower reaches of the rivers was higher than that in the plain areas. (2) In the 
plane, The D value descended in different regions in the following order: the mountain-front plain > the 
eastern coastal plain > the upper Yellow River > the central alluvial plain > the lower Yellow River. In the 
vertical direction for both rivers, the D value showed a decreasing trend with increasing burial depth. 
(3) The model results showed a cubic polynomial correlation between D values and PSD, which was 
closely related to the non-uniformity of particle size during sorting and deposition. The soil PSD and 
fractal characteristics are effective tools for the quantitative evaluation of soil structure in various 
sedimentary environments in the basin.

River basins are important ecosystems, and their abundant water resources are important for human life, agri-
cultural irrigation, and  decontamination1,2. However, due to the destruction of ecological environments by 
human beings and the over-exploitation of resources, environmental problems, such as declining self-cleansing 
capacity of river basins and degradation of ecological functions, are becoming increasingly  important3–5. The 
basin has complex landforms and diverse causes, forming various types of landforms such as plains, deserts, 
Loess Plateau, hills, and  mountains6,7. Different depositional environments have influenced soil structure and 
changed soil physical  properties8. Soil particle size distribution (PSD) is an important indicator in sedimentologi-
cal studies, and its characteristics often reflect different depositional dynamics, depositional environment, and 
source  characteristics9–11. Thus, understanding the PSD characteristics of typical depositional environments is 
essential for ecological restoration and soil rehabilitation in the basin.

Particle size distribution (PSD) indicates the relative proportion of different particle sizes in the soil that affect 
other soil  properties12–14. Changes in soil PSD can be used to indicate soil compaction and formation processes, 
and can accurately estimate the hydraulic properties of  soils15–17. Therefore, it is crucial to find key techniques 
to quantitatively study PSD  characteristics18,19. Since Tyler and  Wheatcraf20 introduced fractal theory into soil 
science research, it has been widely used in the study of soil particle size characteristics. Fractal characteristics 
can describe the overall characteristics of the soil PSD, as well as the coarseness of the soil  particles21–23.
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The PSD distribution characteristics of soil and its spatial variation (grain size trend) are mainly controlled 
by multiple factors such as source components, transport mode, transport distance, hydrodynamic conditions, 
and  topography24–26. Sediment composition and grain size characteristics have obvious advantages in the study 
of sedimentary environment zoning in offshore, estuary, and delta  areas27–29. In recent years, scholars at home 
and abroad have made many systematic research results on sediment types in typical geomorphic regions. Wei 
et al.30 discovered that the fractal dimension  Dm of the Loess Plateau Zone is related to the trend of soil PSD in 
the adjacent sediment layers, and pointed out that the fractal dimension is an effective parameter for evaluating 
landuse types and soil degradation processes in typical landform types. Wang et al.31 analyzed the spatial distri-
bution characteristics of the surface sediment particle size composition and particle size parameters in different 
sections of the Qiantang Estuary, and the spatial distribution of particle size characteristics in the study area is in 
good agreement with the zoning of the dynamical sedimentary environment. Wided et al.32 found that the cause 
of deposition was due to intense wind erosion through soil grain size characterization. The Yellow River Basin 
and the Haihe River Basin are in important agricultural production areas of China, which are the main economic 
zones of  China33–36. However, few studies have been conducted on the variability of soil physical properties in 
different sedimentary environments, such as river scouring and deposition in the basin.

The objectives of this study were to (1) evaluate the variability of soil particle coarseness and particle size 
distribution under various sedimentary environments in the basin, and (2) compare the physical properties of 
soils with fractal characteristics to explore the significant influencing factors of soil particle size fractal charac-
teristics. This was done to provide soil particle size and fractal indicators for the quantitative evaluation of soil 
texture and soil particle loss in different sedimentary environments in the watershed.

Materials and methods
Study area. The Yellow River Basin has a fragile natural ecology, a shortage of water resources, and distinc-
tive regional differences in endowments of land, mineral, biological, and other  resources37. It is located between 
95°53–119°05E, 32°10–41°50 N; it is 1900 km long from east to west and 1100 km wide from north to south, 
with a basin area of 795,000  km2. After the fourth major diversion of the Yellow River, the Yellow River channel 
is far away from the lake area, and the lake gradually silted up and died out. The upstream precipitation is long-
lasting and has a low intensity, forming small peaks in runoff and large amounts of flood runoff. On the banks 
of the Yellow River, from Haheyan to Hekou Town, is the Ningmeng Irrigation Area, which is an important 
agricultural center in the Yellow River Basin. Soil erosion in the Loess Plateau is serious, with an erosion area 
of 45.4  km2. A large amount of sediment is imported into the Yellow River; this silts up the lower reaches of the 
riverbed, resulting in serious floods in the lower reaches that are difficult to control. The surface sediments of the 
Yellow River are terrigenous debris, and there are residual sediments in some  areas38. From shore to sea, sedi-
ments are distributed in bands from coarse to fine. The coastal area is dominated by fine sand, interspersed with 
gravel and other coarse clastic material. The west is the early input of the Yellow River and the Yangtze River. The 
deep-water area in the central part of China is  fine sediment dominated by argillaceous materials, mainly from 
the Yellow River. The study area is shown in Fig. 1.

Figure 1.  Schematic map of the study area showing the location of soil sampling sites.
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The Haihe River Basin is located between 112°–120°E and 35°–43°N, bordered by the Shanxi Plateau and 
the Yellow River Basin in the west, the Mongolian Plateau and the Inland River Basin in the north, the Yellow 
River in the south, and the Bohai Sea to the east. It is one of the areas in China with serious floods, waterlog-
ging, drought, and alkali  disasters39. The basin spans eight provinces, including Beijing, Tianjin, Hebei, Shanxi, 
Henan, Shandong, Inner Mongolia, and Liaoning, with an area of 320,000  km2, accounting for 3.3% of the total 
area of the country. From east to west, the basin is composed of coastal plains, inland plains, mountainous areas, 
and plateau landforms. The terrain is high in the northwest and low in the southeast, the plain area in east and 
south, Shanxi plateau and Taihang mountain area in the west, Mongolia plateau and Yanshan mountain area in 
the north. There are two types of river systems, one is originated from the leeward slope of Taihang Mountains 
and Yanshan Mountains, with concentrated tributaries, large catchment area, and high sediment content; the 
other category originates from the windward slope of Taihang Mountain and Yanshan Mountain, with dispersed 
tributaries and staggered distribution between the two types of rivers.

Soil sample collection. In this study, soil structures were studied in five regions with varying drivers of 
deposition, namely, the upper and lower reaches of waterways in the Yellow River Basin, the mountain-front 
plains, the central alluvial plains, and the coastal plains in the Haihe River Basin plain area. The PSD charac-
teristics and fractal dimensions of 356 groups of soil samples were analyzed using the fractal method while 
considering other significant factors influencing the fractal characteristics of soil particle size. Soil PSD and 
fractal characteristics were used as indicators to reflect the changing characteristics of soil structure under dif-
ferent geological environments. The data used in this experiment were obtained by drilling samples from typical 
sedimentary environments in the basin, involving different geomorphological features such as mountain-front 
plains, central alluvial plains, coastal plains, and upstream and downstream rivers. A total of 356 groups of sam-
ples were collected. The selected sampling plots and collected samples highlight the differences in soil particle 
composition; the soil particle compositions were mainly influenced by different geological environments, such 
as river erosion and deposition.

A total of 210 groups of soil samples were collected from the Haihe River Basin, including 60 groups from the 
mountain-front plain (distributed in Zhengding County and Luancheng District, Shijiazhuang City), 90 groups 
from the central alluvial plain (distributed in Xian County, Cangzhou City, and Shenzhou County, Hengshui 
City), and 60 groups from the eastern coastal plain (distributed in Dacheng County, Langfang City, and Binhai 
new-region, Tianjin City). The sampling depth was 0–3 m, and samples were collected every 10 cm. The distribu-
tion of sampling points and the number of samples are shown in Table 1.

A total of 146 groups of soil samples were collected from the Yellow River Basin; 60 samples were collected 
from the upper reaches of the Yellow River Basin (Helan County, Yinchuan City, and Yesheng Town, Qingtongxia 
City), and 86 samples were collected from the lower reaches (Lankao County, Kaifeng City). Considering the 
midstream area, which is influenced by anthropogenic factors such as the construction of terraces and silt dams, 
sampling in this area was not selected. The upper reaches were sampled over a depth of 0–3 m at 10 cm intervals. 
The lower reaches were sampled over a depth of 0–5 m. Different textured soils in the study area were divided 
into four layers, namely, the top soil layer (0–1 m), the second layer (1–2 m), the third layer (2–3 m), and the 
fourth layer (3–5 m).

The samples collected from the field were dried in an oven and removed small stones, roots, small brick pieces, 
and other debris. Manual grinding to fine particles, and then through mesh size of 2 mm sieve. The sieved soil 
sample was placed in a beaker, and 10 mL of 10%  H2O2 solution was added to remove the organic matter from 

Table 1.  The description of sampling points.

Sample num. Depth (m) Location District

Geographical 
coordinates

ψ (N) λ (E)

Yellow river basin

YS01-30 0–3.0 Yesheng Town, Qingtongxia 
County, Ningxia Province

Upper yellow river
106°06′45″ 38°07′06″

HL01-30 0–3.0 Helan County, Yinchuan City, 
Ningxia Province 106°33′03″ 38°30′42″

LK01-86 0–5.0 Lankao County, Kaifeng City, 
Henan Province Lower yellow river 114°57′23″ 34°54′27″

Haihe river basin

SJZ01-30 0–3.0 Shijiazhuang City, Hebei Province
Mountain-front plain

114°28′33″ 38°04′59″

LC01-26 0–3.0 Luancheng County, Shijiazhuang 
City, Hebei Province 114°40′58″ 37°53′16″

SZ01-30 0–3.0 Shenzhou County, Hengshui City, 
Hebei Province

Central alluvial plain

115°30′58″ 37°59′14″

XX01-30 0–3.0 Xianxian County, Cangzhou City, 
Hebei Province 116°10′11″ 38°12′29″

HJ01-30 0–3.0 Hejian County, Cangzhou City, 
Hebei Province 116°07′55″ 38°23′53″

DC01-30 0–3.0 Dacheng County, Langfang City, 
Hebei Province Eastern coastal plain

116°38′20″ 38°39′37″

BH01-30 0–3.0 Binhai new-region, Tianjin City 117°32′24″ 39°00′48″
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the soil. After the reaction is complete, add 10 mL of 10% HCl solution to the beaker to remove the organic 
carbon. After filling with distilled water and standing for 12 h, the supernatant was withdrawn. Then, 10 mL of 
0.06 mol/L sodium hexametaphosphate solution was added to disperse the soil particles, and after ultrasonic 
vibration for 15 min, the characteristics of soil particle size distribution were measured by a laser particle size 
analyzer. To prevent changes in the nature and composition of the samples during drying, the oven used for 
the experiments was a low-temperature blast drying oven. The soil textures and particle size ranges were deter-
mined using a QT-2002 automatic laser particle size analyzer (Channel Science Equipment Co., Ltd., Beijing). 
The repeatability error was less than 1%. Particle-size volumes and cumulative particle-size volume percentages 
were measured for 130 particle size intervals in the size range of 0–2000 μm. The data were then analyzed to 
determine the D of the 356 groups of samples.

According to the American soil texture classification standard, soil particles with diameters of 2–0.02 mm, 
0.02–0.002, and < 0.002 mm were classified as sand, silt, and clay, respectively, to derive the values of soil par-
ticle composition ratio for the watershed (Table 2). The  dmin is the minimum value (< 0.02 mm) of the particle 
size distribution of the soil, which is obtained from the laser particle sizer experiment.  dmax can also be derived 
from the particle size distribution data (2–0.02 mm). The particle size of the test soil was plotted in a soil texture 
triangle (Fig. 2).

Determination of the fractal dimensions of the soil samples. To calculate the fractal dimension of 
the soil particle size distribution, it is accurate and simple to use the fractal equation derived from the soil parti-
cle size volume distribution data. The fractal dimension can be obtained using the Tyler  model20. Assuming that 
the porous soil with a certain self-similar structure is composed of particles with different volumes, the area A 
occupied by soil particles larger than a certain characteristic scale R in the two-dimensional plane  is40:

where r is the measurement scale (μm); Ca , �a are constants, are related to the size and shape of the particles. 
Extending Eq. (1) to three dimensions, the volume V of soil particles larger than a certain grain size Ri(Ri > Ri+1 , 
i = 1, 2, 3, …) is:

(1)A(r > R) = Ca[1− (R/�a)
2−D

]

(2)V(r > Ri) = CV [1− (Ri/�V )
3−D

]

Table 2.  Composition of soil texture particles under different sedimentary environments.

Sedimentary environments Soil depth/m

Soil particle size 
distribution (%)

dav/μm (< 0.002 mm) dmin/μm (2–0.02 mm) dmax/μmSand Silt Clay

Upper yellow river 0–3 66.1 33.06 0.84 69.98 0.67 370.88

Lower yellow river 0–3 51.46 39.67 8.87 88.80 0.25 486.08

Mountain-front plain 0–3 57.09 38.34 4.57 48.02 0.43 282.98

Central alluvial plain 0–3 44.18 49.04 6.78 55.88 0.33 370.88

Eastern coastal plain 0–3 32.83 59.43 7.74 55.12 0.33 444.17

Figure 2.  Triangle map of soil texture classification.
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where CV is a constant indicates the sum of the volume of each particle size V0; �V is a constant indicates the 
maximum particle size Rmax , and the maximum particle size of the soil in this study was 2,000 μm. So there are:

where D is the fractal dimension; V(r < Ri) is the cumulative volume of particles with particle size less than Ri , 
as a percentage by volume; Ri is the average of the upper and lower particle sizes of the corresponding particle 
class range. Taking the logarithm of both sides of Eq. (3) simultaneously:

In the calculation, the values of lg [V(r < Ri)/V0] and lg(Ri/Rmax) were first determined. Next, the double 
logarithmic curve was constructed with lg [V(r < Ri)/V0] as the vertical scale and lg(Ri/Rmax) as the horizontal 
scale. The slope of the line is equal to 3-D, which results in the value of the fractal dimension D.

Results and analysis
Particle size distribution characteristics under different sediment types. Characteristics of par-
ticle composition. There are many types of soil textures in the typical sedimentary environments of the two 
basins, and the structural changes are complex. The texture types are mainly sandy soil, loamy sand, sandy 
loam, silt loam, and silty soil, with small amounts of clay, silt clay loam, and silt clay (Fig. 2). The volume content 
distribution curve of the particle size distribution of soil particles at a single point is shown in Fig. 3. Among 
the different geological environments, the sand content was highest in the upper Yellow River area (66.1%) and 
the lowest in the eastern coastal plain area (32.83%), progressively decreasing from the upper Yellow River area 
to the mountain-front plain, lower Yellow River area, central plain and then the eastern coastal plain. The silt 
content showed an opposite trend compared to that of sand content. The clay content in the lower Yellow River 
area (8.87%) was the highest, followed by the eastern coastal plain (7.74%), the central alluvial plain (6.78%), the 
upper Yellow River area (4.57%), and then the mountain-front plain (0.84%) (Table 2). According to the values 
of  dav,  dmin, and  dmax, it was found that the soil particle sizes in the upper and lower Yellow River areas are more 
diverse than those in the mountain-front plain, the central alluvial plain, and the eastern coastal plain. Due to 
river transportation, the sand content decreased from upstream to downstream in the Yellow River Basin, and 
the silt and clay content increased. The mountain-front area of the Haihe River Basin is affected by the Taihang 
Mountains, and the soil texture is relatively more uniform. Whereas, the central and coastal areas are affected by 
alluvial and marine deposits, and the soil has finer grains.

Fractal variation characteristics. The fractal dimensions of 356 soil sample groups from the Yellow River and 
Haihe River Basins were calculated according to the Tyler fractal model. The average  Dav, minimum  Dmin, and 
maximum  Dmax values of the same sedimentary environments were plotted in Table 3. The D values ranged from 
0.14–2.03 in the Yellow River Basin and from 0.16 to 2.24 in the Hai River Basin.  Dav can reflect the general 
characteristics of the fractals in the study area, and it can be seen that the fractal dimension was the largest in 
the mountain-front plain at 1.91 and the smallest in the lower Yellow River area at 1.07. In the catchment, the D 
values were generally greatest for the mountain-front plain, followed by the eastern coastal plain, upper Yellow 
River, central alluvial plain, and then lower Yellow River, which indicated that the soil particles in the mountain-
front plain were denser, while those in the lower Yellow River area were looser. The  dmax was largest in the lower 

(3)V(r < Ri)/V0 = (Ri/Rmax)
3−D

(4)lg [V(r < Ri)/V0] = (3− D) lg(Ri/Rmax)

Figure 3.  Volume content curve of soil PSD at DC sampling site.
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Yellow River region and the smallest in the mountain-front plain, which is diametrically opposite to the trend in 
 Dav, indicating that the fractal dimension may be influenced by the large particle size (Table 3).

The burial depth of 0–3 m was divided into three layers: shallow (0–1 m), medium (1–2 m), and deep (2–3 m), 
to characterize the fractal variation at the same depth in different areas (Fig. 4). The ordinate D value in Fig. 3 
is the average value of fractal dimension at the same depth in each typical sedimentary environment. It can 
be seen that the fractal dimension in the upper and lower reaches of the Yellow River is lower than that in the 
Haihe River Basin plain area, and the fractal dimension of the shallow soil is generally higher than those of the 
middle and deep soils in the vertical direction. The mean values of the soil fractal dimension at the same depth 
were integrated, and the curve of D variation with burial depth is plotted in Fig. 5. As can be seen from Fig. 5, 
the soil fractal dimensions of the basin generally show a decreasing trend with increasing burial depth. In the 
upper Yellow River area, a significantly small value appears at 0.6 m. In the lower reaches, owing to the limited 
number of sampled layers, the variation characteristics of the fractal dimensions generally show a decreasing 
trend with depth. The fractal characteristics of the soils in the central and eastern coastal plains show a trend 
of gradual decrease with increasing burial depth; the soils in the mountain-front plains present an exception to 
this trend as their fractal characteristics are stable in the range of 3 m, and the most complex changes are found 
in the central alluvial plains.

Correlation of soil properties. Correlation of soil physical properties under different sedimentary environ-
ments. Based on the Pearson correlation analysis, the correlations of the soil particle size characteristic param-
eters were obtained for a variety of sedimentary environments (Table 4). The fractal dimension D of soil particles 
in the upper and lower reaches of the Yellow River Basin was significantly negatively correlated with particle size 
minimum  dmin and sand content (P < 0.01), and it was positively correlated with clay and silt content (P < 0.01). 
There was no significant correlation between D-value and  dmax in the upper reaches, while the D-value of the 
lower reaches showed a significant negative correlation with  dmax (P < 0.01). Both  dmax and  dmin showed a signifi-
cant positive correlation with sand particle content (P < 0.01) and a significant negative correlation with silt and 
clay particle content (P < 0.01).

In the Haihe River Basin, D is significantly correlated to soil particle content in the central and coastal plain 
areas. D showed a significant positive correlation with sand content (P < 0.01) and a significant negative correla-
tion with silt and clay content (P < 0.01). The variation in D was also influenced by the bias of large and small 
particle sizes, and it showed a significant negative correlation with  dmin and  dmax. Furthermore, the maximum and 
minimum values of particle size were closely related to the distribution characteristics of soil particles, showing 
that  dmax and  dmin values increased with increasing sand content (P < 0.01). However, there was no significant 
correlation between the soil fractal dimension and  dmin and  dmax in the mountain-front plain area, and D showed 
a significant positive correlation with sand particle content and a significant negative correlation with silt particle 
content. Further, there was no significant correlation between  dmin,  dmax, and soil particle content.

Table 3.  Soil fractal characteristics under different sedimentary environments.

Sedimentary environments Sample size Dav Dmin Dmax Standard deviation Bias angle Peakedness

Upper yellow river 60 1.28 0.49 2.03 0.40 − 0.35 − 0.72

Lower yellow river 86 1.07 0.14 1.86 0.51 − 0.05 − 1.57

Mountain-front plain 60 1.91 1.47 2.24 0.26 − 0.43 − 1.61

Central alluvial plain 90 1.25 0.18 1.85 0.36 − 1.33 1.42

Eastern coastal plain 60 1.42 0.16 2.19 0.39 − 1.73 3.37

Figure 4.  Trend of fractal dimension of the shallow, middle, and deep soils.
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Figure 5.  Characteristics of the variation of fractal dimension with depth.
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Table 4.  Correlation of soil particle size characteristic parameters under different sedimentary environments.

Sedimentary environments Indicators D Soil Silt Clay dmin (< 0.002 mm) dmax (2–0.02 mm)

Upper yellow river

D 1

Sand − 0.655** 1

Silt 0.650** − 0.999** 1

Clay 0.541** − 0.716** 0.683** 1

dmin − 0.718** 0.640** − 0.646** − 0.360* 1

dmax − 0.148 0.508** − 0.522** − 0.132 0.607** 1

Lower yellow river

D 1

Sand − 0.791** 1

Silt 0.792** − 0.957** 1

Clay 0.483** − 0.717** 0.485** 1

dmin − 0.811** 0.675** − 0.686** − 0.388** 1

dmax − 0.776** 0.831** − 0.808** − 0.564** 0.915** 1

Mountain-front plain

D 1

Sand 0.778** 1

Silt − 0.816** − 0.991** 1

Clay − 0.243 − 0.645** 0.538** 1

dmin − 0.221 − 0.175 0.221 − 0.039 1

dmax − 0.153 − 0.165 0.201 − 0.019 0.914** 1

Central alluvial plain

D 1

Sand − 0.710** 1

Silt 0.751** − 0.956** 1

Clay 0.310** − 0.688** 0.443** 1

dmin − 0.834** 0.690** − 0.713** − 0.341** 1

dmax − 0.486** 0.817** − 0.761** − 0.609** 0.688** 1

Eastern coastal plain

D 1

Sand − 0.648** 1

Silt 0.692** − 0.972** 1

Clay 0.302* − 0.740** 0.560** 1

dmin − 0.854** 0.764** − 0.821** − 0.343** 1

dmax − 0.424** 0.785** − 0.800** − 0.475** 0.752** 1

Figure 6.  Correlation of soil physical parameters in the Yellow River and Haihe River basins. **Indicates 
correlation is significant at the 0.01 level; *Indicates correlation is significant at the 0.05 level.
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Correlation of soil properties in different basins. Considering the correlations among the basic soil parameters 
of all samples from the Yellow River and Hai River basins through different depositional environments, as shown 
in Fig. 6, the fractal dimension of soils in the Yellow River Basin was significantly negatively correlated (P < 0.01) 
with sand grain content,  dmin, and  dmax, and it was significantly positively correlated (P < 0.01) with silt particle 
content and clay particle content. The soil fractal dimension D in the Haihe Basin was significantly negatively 
correlated with sand content (P < 0.05), significantly positively correlated with silt content (P < 0.05), signifi-
cantly negatively correlated with  dmin and  dmax (P < 0.01), and not correlated with clay content. It can be seen that 
the fractal dimensions of soil particle size in the Yellow River and Haihe River basins are affected by soil texture 
and are closely related to the large and small particle size in the sorting and deposition process. The fractal 
dimension is influenced by soil texture, and the larger the sand content, the larger the soil particle size.

Correlation curve. Based on the correlation between the fractal dimension of the soil in the basin and the basic 
parameters of particle size characteristics, the parameters with a higher degree of correlation were selected to 
establish the fitting curve. Curve estimation using SPSS software yielded a cubic polynomial distribution of 
the correlation between the soil fractal dimension, particle size characteristics, and particle content. The fitted 
curves of D versus  dmin, sand content, and silt content were established using the origin and are shown in Fig. 7. 
The fitting curve of D and  dmin has a good correlation, showing that the smaller the particle size, the smaller the 
fractal dimension. This indicates that the fractal dimension is influenced by the abundance of small particles in 
the particle sorting process under the influence of river alluvial transport, and mountain ranges on precipitation.

The relationship modeled between the fractal dimension of the watershed soil and the grain size minimum 
(< 0.002 mm) is shown in Eq. (5), which is suitable for two watersheds. The  dmin is determined by the particle 
size distribution of soil particles, and the fractal dimension D value is obtained by substituting this equation.

This equation requires fewer parameters and provides a simple and quick understanding of the soil particle 
size distribution characteristics in the different sedimentary environments of the basin.

Discussion
Soil PSD is used as an aid in distinguishing geomorphology and soil types in areas with different geomorphologi-
cal  units41, and it can reflect the variability of different geological environments within a watershed. Guo et al.42 
found that the particle size composition of sand particles can visually reflect the main particle size composition 

(5)D = −0.0002d3min + 0.0104d2min − 0.2065dmin + 1.6643R2
= 0.785

Figure 7.  Fitting curves of D with  dmin, sand content, and silt content for individual basins.
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in wind-formed sand and the relative content of sand particles among different particle size groups. The soil 
particle composition in their study area has distinctive multiple fractal characteristics. In our study of soil physi-
cal parameters in the Yellow River and Haihe River basins, the particle distribution characteristics in the Yellow 
River Basin showed a general trend of decreasing sand content in the upper reaches with increasing depth. This 
may be because small particles with a large specific surface area are susceptible to erosion during transport, thus 
causing environmental problems such as soil erosion in the upper  reaches43. However, the lower riparian reaches 
are affected by flow deposition, and the parent material of the soil is carried, sorted, and deposited by the flow 
of the Yellow River. The content of large particles increased with increasing depth, which is quite different from 
other regions and is consistent with the conclusions of previous research. Alternatively, Hou et al.44 found that 
the content of sediments with small particle size increased along the river channel in the lower Yellow River. The 
fine particle content in the Haihe River Basin is higher than that in the Yellow River Basin because the particles 
and sediments transported by rivers often do not have uniform particle size characteristics. In general, as the 
transport distance increases, the average diameter of the particles decreases, and the degree of sorting  improves45. 
However, the conclusions of this study are inconsistent; in the Haihe River Basin, we found that sediments in the 
mountain-front area had a smaller average diameter than those in the central and eastern coastal areas, which 
may be influenced by external factors such as the impact of the Taihang Mountains and the spatial variability 
of the soil particles.

The fractal dimension D, as a parameter describing the geometry of the soil particles, is closely related to the 
inhomogeneity of the soil particle size during sorting. Numerous studies have shown that the smaller the soil 
particle diameter (sand, silt, clay), the larger the fractal dimension of  PSD9,46,47. In this study, D was significantly 
positively correlated with soil silt content and significantly negatively correlated with soil sand content and 
minimum particle size, as analyzed by Pearson correlation results. This study is consistent with the previous 
 studies49–51. These results indicate that soil texture has a significant effect on D and is also influenced by the size of 
the soil particles. By analyzing the relationship between the fractal dimension and particle size characteristics, it 
can be seen that the fractal dimension of sediments in the mountain-front area in the Haihe Basin is the highest, 
and the particle dispersion is small. The fractal dimensions of sediments in the central and coastal plain areas 
are smaller than those of sediments in mountain-front plain areas, and the particle dispersion is relatively poor. 
This also validates the conclusion that the lower is the fractal dimension, the looser is the soil structure and the 
poorer is the soil water holding capacity and nutrient retention  capacity48. However, in the Yellow River Basin, 
the fractal dimension in the upper reaches with coarser soil particles was greater than that in the lower reaches 
with finer soil particles. This is not consistent with the conclusion, which may be due to the uneven distribution 
of soil PSD and the insufficient density of sampling points.

To some extent, D can characterize the homogeneity of soil texture at different soil depths in the basin. From 
Fig. 6, it was clear that the relationship between the fractal dimension of basin soils and soil PSD was more 
appropriately described by a cubic polynomial equation. The fitted relationship of the fractal model [Eq. (3)] 
had a strong correlation and was applied to the different soil layers observed in this study. These results are 
similar to those of Zhao et al.52, demonstrating the validity of using the fractal dimension of PSD as a descrip-
tive parameter for basin soils.

Conclusions
The soil texture types in the typical sedimentary environments of the Yellow River and Haihe River basins are 
mainly sand, loamy sand, sandy loam, silty loam, and silty soil, with a small amount of clay, silty clay loam, and 
silty clay. The soil particle size in the Yellow River Basin was more diverse than that in the Haihe River Basin. The 
Yellow River showed a trend of decreasing sand content and increasing silt and clay content from upper to lower 
reaches. While the mountain-front plain areas were subject to the influence of the Taihang Mountains, the soil 
texture is relatively more uniform than in other sedimentary environments. The central and coastal plain areas 
were subject to the action of alluvial and marine deposition, and the soil texture is fine-grained.

In the catchment, the D value was greatest in the mountain-front plains, followed by the eastern coastal 
plain, upper Yellow River, and central alluvial plain, and it was smallest in the lower Yellow River. In the vertical 
direction, the D value showed a decreasing trend with increasing burial depth, and the fractal dimensions of 
shallow soils were higher than those of the middle and deep soils. Except for the fractal characteristics of the 
soil in the mountain-front area, which was less variable within the depth of 3 m from the surface, those of soils 
in the central and coastal plain areas showed a trend of gradual decrease, and the changes were most complex 
in the central alluvial plain areas.

The fractal dimension of soil particle size was affected by the soil texture and was closely related to the 
inhomogeneity of particle size in the sorting processes. However, the fractal dimension of soils in the plains of 
the Haihe River Basin was less affected by texture, and there was no significant correlation between the fractal 
dimension and the maximum and minimum grain sizes of soils in the mountain-front areas under the influence 
of the action of the Taihang Mountains and other factors. The fitted curves of D and  dmin (< 0.002 mm) correlate 
well and show a trend of smaller fractal dimensions with smaller particle sizes. The relationship between the 
fractal dimension and the minimum grain size of the soils in the Yellow River and Hai River basins was mod-
eled as D = −0.0002d3min + 0.0104d2min − 0.2065dmin + 1.6643 . Using this model, soil particle size distribution 
characteristics of a river basin can be identified quickly and easily.

However, while the selection of typical samples in this study took into account factors such as regional 
geomorphological divisions and land use in the study area, the level of diversity of typical samples may not be 
suitable for all regions. Different terrestrial environments may cause soil differences in terms of parent material, 
developmental environment, and history. More validation tests are needed in the future to fully investigate the 
particle size characteristics and homogeneity of soils within a catchment.
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