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Dynamical law of the phase 
interface motion in the presence 
of crystals nucleation
Liubov V. Toropova1,2,4* & Dmitri V. Alexandrov3,4

In this paper, we develop a theory of solid/liquid phase interface motion into an undercooled melt 
in the presence of nucleation and growth of crystals. A set of integrodifferential kinetic, heat and 
mass transfer equations is analytically solved in the two-phase and liquid layers divided by the 
moving phase transition interface. To do this, we have used the saddle-point method to evaluate a 
Laplace-type integral and the small parameter method to find the law of phase interface motion. 
The main result is that the phase interface Z propagates into an undercooled melt with time t as 
Z(t) = σ

√
t + εχt7/2 with allowance for crystal nucleation. The effect of nucleation is in the second 

contribution, which is proportional to t7/2 whereas the first term ∼
√
t represents the well-known self-

similar solution. The nucleation and crystal growth processes are responsible for the emission of latent 
crystallization heat, which reduces the melt undercooling and constricts the two-phase layer thickness 
(parameter χ < 0).

List of symbols and abbreviations
Latin symbols
c	� Heat capacity of two-phase zone, J kg−1 K −1

cl	� Heat capacity of melt phase, J kg−1 K −1

F	� Dimensionless distribution function, –
I	� Nucleation rate, m s −1

I∗	� Nucleation rate factor, m −3 s −1 (WVFZ) or m −3 s −1 K −p (Meirs)
ℓ	� Characteristic lenght, m
n	� Power of nucleation rate, –
p	� Nucleation rate parameter, –
Qv	� Latent heat of phase transition, J m −3

r	� Crystal radius, m
t	� Dimensionless time, –
Tl	� Melt temperature, K
Tp	� Crystallization temperature, K
T∞	� Temperature far from the solid/liquid interface, K
T0	� Initial temperature, K
�T	� Melt undercooling, K
w	� Dimensionless undercooling in two-phase layer, –
wl	� Dimensionless undercooling in liquid, –
w∞	� Dimensionless undercooling far from the solid/liquid interface, –
z	� Dimensionless spatial coordinate , –
Z	� Dimensionless interface coordinate, –
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Greek symbols
βk	� Kinetic parameter, m s −1 K −n

Ŵ	� Euler gamma function, –
ζ	� Self-similar varaible, –
η	� Dimensional spatial coordinate , m
�	� Dimensional interface coordinate, m
�	� Heat conductivity coefficient in two-phase layer, J s −1 m −1 K −1

�l	� Heat conductivity coefficient in liquid, J s −1 m −1 K −1

ρ	� Density of two-phase layer, kg m −3

ρl	� Density of liquid phase, kg m −3

σ	� Parabolic growth rate constant, –
τ	� Dimensional time, s
τo	� Characteristic time, s
φ	� Dimensional distribution function, m −4

χ	� Growth rate constant, –

Abbreviations
Heav	� Heaviside function
WVFZ	� Weber–Volmer–Frenkel–Zel’dovich nucleation kinetics

The dynamics of crystallization fronts propagation have attracted the attention of researchers for more than 130 
years, starting with Stefan’s famous works on the freezing of water with a flat front1,2. Nowadays, problems with 
a moving boundary separating different phases of the aggregate state of matter bear his name. The rich variety 
of nonlinear dynamics of interfacial boundaries has attracted essential interest in applied mathematics, which 
deals with various moving boundary problems in geophysics, materials science, nonlinear physics, and heat and 
mass transfer theory (see, among others,3–6).

It is well-known that the phase transition boundary in Stefan’s problem moves according to the self-similar 
law (it is proportional to the square root of time). Such a law is preserved even in the presence of an extended 
phase transition region separating purely solid and liquid phases in binary7 and three-component8,9 melts. For 
example, in the case of binary melts, there is one two-phase region and two interphase boundaries moving in 
proportion to the square root of time t7. In the case of ternary melts, there are two two-phase regions (main and 
cotectic) and three interphase boundaries, moving according to the law ∼

√
t  with various parabolic growth 

rate constants9. Note that self-similar solutions take place only in the semi-infinite region whose boundary tem-
perature is kept constant. At a given heat flow at this boundary or its active cooling by air or water flow, there 
is no self-similarity of the phase interface motion10. There is also no self-similarity of motion of the interfacial 
boundary (boundaries) when considering nonlinear heat conduction and impurity diffusion equations, heat 
and mass sources in these equations, heat exchange with the environment, melt convection, kinetics, stochastic 
fluctuations as well as other factors (see, among others11–16). In this study, we derive the law for phase interface 
motion with allowance for nucleation and growth of crystals in front of it. These effects significantly change the 
previously known self-similar law due to the thinning of the two-phase layer as a result of additional latent heat 
released by the growing crystals. The theory developed can be used in describing the propogation of various 
solid/liquid interfaces in metastable media and experimental data on Al-rich Al–Ni alloys showing an anoma-
lous solidification behaviour: the solid–liquid interface velocity slows down as the undercooling increases17,18.

The model
First of all, let’s assume a one-component melt filling a semi-space η > 0 (Fig. 1). We will also assume that 
the initial temperature Tl of the melt exceeds its crystallization temperature Tp at the time τ = 0 . The tem-
perature T = T0 at the solid wall η = 0 then jumps to a value of T < Tp . This generates the melt undercooling 
�T = Tp − T propagating into the melt phase 0 < η < �(τ) . Here, �(τ) stands for the interface boundary 
with temperature T = Tl = Tp (T and Tl denote the temperatures in the moving domains 0 < η < �(τ) and 
η > �(τ) ). The undercooled domain 0 < η < �(τ) is filled with nucleating particles whose nucleation rate 
is I(�T) ( �T = 0 at the interface η = �(τ) ). As a result of crystal growth, the melt undercooling is partially 
reduced due to the release of latent heat of crystallisation. This phenomenon is the reason for slowing down the 
interfacial boundary movement into the liquid melt.

For the sake of simplicity, we consider the growth of an ensemble of spherical particles whose distribution 
function φ(η, r, τ) satisfies the first-order kinetic equation. In addition, we have the thermal conductivity equa-
tions in both the domains with allowance for the heat source in the two-phase region as a result of crystal growth. 
The governing equations read as

(1)
∂φ

∂τ
+

∂

∂r

(

dr

dτ
φ

)

= 0, 0 < η < �(τ), r > 0, τ > 0,

(2)ρc
∂T

∂τ
= �

∂2T

∂η2
+

4πQv

3

∂

∂τ

∞
∫

0

r3φdr, 0 < η < �(τ), τ > 0,
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Here Qv is the latent heat of phase transition, ρ and ρl are the densities of two-phase and melt phases, c and 
cl are their heat capacities, and � and �l are their heat conductivity coefficients, respectively (subscript l denotes 
liquid region).

These equations should be supplemented with the conditions at r = 0 , τ = 0 , η = 0 , η → ∞ , and the phase-
transition boundary η = �(τ) , of the form of

Let us especially underline that the first expression (4) gives the flux of nucleating crystals that appear within 
the two-phase region.

We consider the growth rate of single crystals as a power function of melt undercooling19–22.

where βk and n are constants. These parameters can be found from experimental data on crystal growth in a 
certain undercooled liquid.

For the sake of simplicity, we consider the case when the nucleation rate depends only on the melt undercool-
ing. Dealing the case of the Weber–Volmer–Frenkel–Zel’dovich (WVFZ) nucleation kinetics, we have23

where �T0 represents the initial melt undercooling. Another frequently used kinetics is Meirs power law24–26

It is significant that the constant parameters I∗ and p entering expressions (8) and (9) are different.

Analytical solutions to moving‑boundary problem
The aforementioned model represents a set of integrodifferential equations, initial and boundary conditions 
with a moving phase interface �(τ) . Below we develop a method to its analytical solution, which is based on 
the saddle-point technique to evaluate a Laplace-type integral27,28 and the small parameter technique to solve a 
nonlinear heat transfer equation for the melt undercooling.

To simplify the matter, we use dimensionless parameters as follows

(3)ρlcl
∂Tl

∂τ
= �l

∂2Tl

∂η2
, η > �(τ), τ > 0.

(4)
dr

dτ
φ =I(�T), r = 0, τ > 0; φ = 0, τ = 0, 0 < η < �(τ);

(5)T =T0, η = 0, τ > 0; Tl → T∞, η → ∞, τ > 0;

(6)T =Tl = Tp,
∂T

∂η
=

∂Tl

∂η
, η = �(τ), τ > 0; Tl = T∞, τ = 0.

(7)
dr

dτ
= βk(�T)n,

(8)I(�T) = I∗ exp

[

−p

(

�T0

�T

)2
]

,

(9)I(�T) = I∗(�T)p.

Figure 1.   A schematic illustration of crystallization with an undercooled layer where nucleation and growth of 
crystallites occur.
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where �T0 = Tp − T0 and �Tl = Tp − Tl represent the initial and current melt undercoolings.
The dimensionless distribution function F of growing crystals in a two-phase region is defined by the follow-

ing problem (this problem can be easily obtained from Eqs. (1), (4), (7)–(9) rewritten in dimensionless form)

where

Applying the Laplace integral transform to the problem (11) and (12) with respect to t, we find the particle-
radius distribution function of the form

where

and Heav(·) is the Heaviside function.
Now substituting dimensionless variables and parameters (10) into Eqs. (2), (3) and boundary conditions 

(5) and (6), we obtain

where w > 0 in the two-phase layer, and wl < 0 in the liquid layer. Also, for the sake of simplicity, we assume 
that � = �l , ρ = ρl , and c = cl . Let us especially emphasize that the new variable ν has been used in Eq. (15) so 
that x(z, ν) = x(z, t)− s , and

To evaluate the integral in the r.h.s. of Eq. (15) we apply the saddle-point technique for a Laplace-type 
integral27,28. The ν-derivatives of the function g are negative for both nucleation kinetics under consideration 
since the melt undercooling w is a decreasing function of time: ∂g/∂ν = (dg/dw)∂w/∂ν < 0 . It means that the 
maximum point of the function g lies at the left boundary at ν = 0 . To calculate the first non-zero derivative of 
g(z, ν) with respect to ν we use the same Eq. (15). It is not difficult to show that the first three derivatives are zero 
and only the fourth one is non-zero for both nucleation kinetics. Namely, g (4) = −12b (WVFZ) and g (4) = −6b 
(Meirs) at ν = 0 . Now keeping in mind only the main contribution in the asymptotic expansion of the integral 
(15), we come to Ref.27,28

(10)

w =
�T

�T0
, wl =

�Tl

�T0
, F = ℓ4φ, s =

r

ℓ
, z =

η

ℓ
,

Z =
�

ℓ
, t =

τ

τo
, b =

4πQv

3ρc�T0
, γ =

�τo

ρcℓ2
, I0 = I(�T0),

τo =
ℓ

βk(�T0)
n , ℓ =

(

βk(�T0)
n

I0

)1/4

,

(11)
∂F

∂t
+ wn ∂F

∂s
= 0, s > 0, t > 0,

(12)F =
1

wn
exp

[

pg(w)
]

, s = 0; F = 0, t = 0,

g(w) = g(z, t) =
{

1− w−2, WVFZ nucleation mechanism
lnw, Meirs nucleation mechanism.

(13)F(z, s, t) = ϕ(x(z, t)− s)Heav(x(z, t)− s),

(14)ϕ(z, t) =
1

wn
exp

(

pg(z, t)
)

, x(z, t) =

t
∫

0

wn(z, t1)dt1,

(15)
∂w

∂t
= γ

∂2w

∂z2
− b

∂

∂t

t
∫

0

h(z, ν, t) exp
(

pg(z, ν)
)

dν, 0 < z < Z(t), t > 0,

(16)
∂wl

∂t
= γ

∂2wl

∂z2
, z > Z(t), t > 0,

(17)w = 1, z = 0, t > 0; wl → w∞ =
Tp − T∞

�T0
, z → ∞, t > 0;

(18)w = wl = 0,
∂w

∂z
=

∂wl

∂z
, z = Z(t), t > 0; wl = w∞, t = 0,

h(z, ν, t) = [x(z, t)− x(z, ν)]3.

(19)
∂u

∂t
=γ

∂2u

∂z2
− εy2un, 0 < z < Z(t), t > 0,
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where

ε = A−n ; µ = 2 and µ = 1 for the WVFZ and Meirs mechanisms.
Our estimations show that ε ≪ 1 for typical metallic melts29,30. This fact enables us seeking for the solution 

of Eq. (19) expanding the rescaled undercooling u in a series in small parameter ε as

Substituting (22) into (19) and (20), expanding conditions at z = Z(t) in series and equating terms with the 
same power of ε , we arrive at the following form of solutions

where σ and χ represent the constant parameters characterizing the interface position Z(t). The functions �0(ζ ) 
and �1(ζ ) satisfy the following equations and boundary conditions

where

The analytical solution to the model (24)–(26) takes the form

Here, parameters σ and χ satisfy the equations

Let us especially note that expressions (27) and (28) define the melt undercooling w > 0 within the two-phase 
region at 0 < z < Z(t) and the undercooling wl < 0 in pure melt at z > Z(t).

Behaviour of solutions
Our analytical solutions are illustrated in Figs. 2, 3 and 4 for parameters typical for metallic melts30. First of all, 
phase interface dynamics, shown in Fig. 2 with allowance for nucleation and growth of crystals, essentially differ 
from the case without particles in a two-phase layer. This purely frontal case demonstrated by the dotted curve 
in Fig. 2 is described by the law of the square root of time, i.e. Z0(t) ∼

√
t.

Such dynamics are the property of so-called self-similar crystallization processes (see, among others7,31). 
Nucleation and growth of solid particles within the two-phase layer change this dynamical law drastically. From 

(20)
∂ul

∂t
=γ

∂2ul

∂z2
, z > Z(t), t > 0,

(21)u = Aw, ul = Awl , A =
3b3/4Ŵ(1/4)

4p1/4

(

4

µ

)1/4

, y(z, t) =

t
∫

0

u(z, t1)dt1,

(22)u = u0 + εu1 + . . . , Z = Z0 + εZ1 + . . .

(23)u0 = �0(ζ ), u1 = �1(ζ )t
3, ζ =

z
√
t
, Z0(t) = σ

√
t, Z1(t) = χ t7/2,

(24)γ
d2�0

dζ 2
= −

ζ

2

d�0

dζ
, γ

d2�1

dζ 2
= �(ζ)−

ζ

2

d�1

dζ
, γ

d2ul

dζ 2
= −

ζ

2

dul

dζ
,

(25)�0 = A, �1 = 0, ζ = 0; ul → Aw∞, ζ → ∞;

(26)�0 = 0, �1 + χ
d�0

dζ
= 0, ul = 0,

d�0

dζ
=

dul

dζ
,
d�1

dζ
= 0, ζ = σ ,

�(ζ) = 4K2(ζ )ζ 4�n
0(ζ ) and K(ζ ) =

∞
∫

ζ

�0(ζ1)

ζ 31
dζ1.

(27)�0(ζ ) =A









1−
erf

�

ζ

2
√
γ

�

erf

�

σ

2
√
γ

�









, �1(ζ ) =

ζ
�

0

(�(ζ1)−�(σ)) exp

�

−
ζ 21

4γ

�

dζ1,

(28)ul(ζ ) =Aw∞









1−
erfc

�

ζ

2
√
γ

�

erfc

�

σ

2
√
γ

�









, �(ζ) = γ−1

ζ
�

0

�(ζ1) exp

�

ζ 21

4γ

�

dζ1.

(29)erfc

(

σ
√
4γ

)

+ w∞erf

(

σ
√
4γ

)

= 0,

(30)χ = A−1√πγ erf

(

σ
√
4γ

)

exp

(

σ 2

4γ

)

�1(σ ).
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a certain point in time, the law of motion of the phase interface becomes a decreasing function of time. This is 
caused by the fact that growing crystals produce the latent heat of phase transition, which partially reduces the 
undercooling in a two-phase layer and, thus, its thickness. In addition, the power of nucleation rate n significantly 
affects the movement of the phase transition interface Z(t) (compare the solid and dashed curves in Fig. 2). The 
greater n (higher crystal growth rate according to expression (7)) the greater the two-phase layer thickness. 
Moreover, increase of n shifts the maximum point of phase transition boundary Z(t) towards higher values of 
time t, i.e. the compression of the two-phase layer occurs later with increasing n.

Figure 3 illustrates the melt undercooling in the two-phase ( w > 0 ) and liquid ( wl < 0 ) layers. As is easily 
seen, nucleation and crystal growth processes substantially constrict a two-phase layer and accelerate its desu-
percooling dynamics when time t increases (compare the green dotted and blue solid curves in Fig. 3 shown for 
different time instants t). In addition, the melt undercooling in liquid becomes lower with increasing ζ and t. 
As this takes place, the first correction w1 = u1/A to the main contribution w0 = u0/A substantially influences 

Figure 2.   Rescaled phase interface Z(t)/σ as a function of dimensionless time t at different n. The dotted and 
solid curves respectively show zero and first approximations of the interface position. Physical parameters 
used for calculations are30: ρ = 7× 10

3 kg m −3 , c = 426.77 J kg−1 K −1 , Qv = 1.58× 10
10 J m −3 , �T0 = 400 

K, p = 10 , w∞ = −1 , µ = 2 , � = 41.84 J s −1 m −1 K −1 , βk = 10
−4 m s −1 K −n , ℓ = 4.47× 10

−10 m, 
σ = 8.44× 10

4 , τo = 1.12× 10
−4 s. The phase interface as a function of time t is plotted for n = 0.5 (dashed 

line) and n = 1 (solid line). The dotted line representing the main contribution Z0(t)/σ is independent of n.

Figure 3.   Dimensionless undercooling in the two-phase ( w > 0 ) and liquid ( wl < 0 ) layers as a function of 
dimensionless coordinate ζ . The dashed line shows zero approximation w0 whereas the dotted and solid curves 
illustrate the first approximation w at different times t. The vertical lines illustrate the interface positions Z(t)/σ 
dividing two-phase and liquid layers. The dimensionless undercooling as a function of self-similar varaible ζ is 
shown for t = 0.5 (dotted line) and t = 1 (solid line). The dashed line representing the main contribution w0 is 
independent of t. All curves are plotted for n = 1.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10997  | https://doi.org/10.1038/s41598-022-15137-2

www.nature.com/scientificreports/

the desupercooling dynamics as compared with w0 . Such a dynamics could be the key to explain the anomalous 
U-shape behaviour of the “recalescence front velocity— melt undercooling” curve in Al-rich Al–Ni alloys17,18.

The particle-radius distribution function (13) at different points z in the two-phase layer is shown in Fig. 4 
at a certain point in time. As is easily seen, this function represents a bell-shaped curve decreasing its amplitude 
with increasing the spatial coordinate z in a two-phase region (when approaching the two-phase layer—liquid 
phase boundary). This is due to the fact that the melt undercooling increases with decreasing z (when approach-
ing the two-phase layer boundary z = 0 ). Such a bell-shaped behaviour is in agreement with typical particle-
radius distribution in undercooled and supersaturated liquids (see, among others, recently published review on 
nucleation32).

Conclusion
In summary, we develop a theory of solid/liquid phase interface motion in the presence of nucleation and 
particle growth processes in an undercooled layer. This layer together with evolving crystals, which partially 
compensate for the undercooling, propagates into pure melt with the velocity depending on crystal growth and 
nucleation rates. The main result of our study is the dynamical law of the phase interface boundary motion 
Z(t) = σ

√
t + εχ t7/2 (two coefficients σ and χ are found analytically). This law substantially differs from the 

case without nucleation and growth of crystals, which defines the phase interface as Z0(t) = σ
√
t . The negative 

coefficient χ leads to the narrowing of an undercooled layer starting from a certain point in time. This is caused 
by the effect of latent heat emission, which reduces the melt undercooling and constricts its spatial size (the 
two-phase layer thickness).

The present theory can be extended to take into account fluctuations in the growth rates of individual particles 
in an undercooled two-phase layer. This effect raises the order of the kinetic equation in the spatial variable (see, 
among others32,33). Such consideration can modify the law of motion of the phase interface. However, the slowing 
down of its motion detected in this paper in comparison with the self-similar case ( Z0(t) = σ

√
t ) should be pre-

served, since it is caused by the compensation of undercooling due to the release of the latent crystallization heat.
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