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Analytical solution for the motion 
of a pendulum with rolling wheel: 
stability analysis
Galal M. Moatimid1 & T. S. Amer2*

The current work focuses on the motion of a simple pendulum connected to a wheel and a lightweight 
spring. The fundamental equation of motion is transformed into a complicated nonlinear ordinary 
differential equation under restricted surroundings. To achieve the approximate regular solution, 
the combination of the Homotopy perturbation method (HPM) and Laplace transforms is adopted 
in combination with the nonlinear expanded frequency. In order to verify the achievable solution, 
the technique of Runge–Kutta of fourth-order (RK4) is employed. The existence of the obtained 
solutions over the time, as well as their related phase plane plots, are graphed to display the influence 
of the parameters on the motion behavior. Additionally, the linearized stability analysis is validated 
to understand the stability in the neighborhood of the fixed points. The phase portraits near the 
equilibrium points are sketched.

From a perspective practical interpretation, numerous manufactured structures, like clocks, percussive instru-
ments, rollers, coasters, and earthquakes gravitational anomalies, incorporate pendulums. Additionally, engineers 
attempt to understand the physics of pendulums, gravity, inertia, and centripetal force. A pendulum is employed 
to help the tempo of music. One of the most studied motions in practical physics and engineering is the oscil-
latory motion of a simple pendulum. Motion plays a significant part in the history of physics as well as in the 
general themes in textbooks and mechanics programs for undergraduates. Therefore, the simple pendulum is 
the most standard example in mechanics and its study relaxes the beginnings of classical mechanics. In several 
textbooks and engineering problems, the periodic motion is established by smaller angle fluctuations when using 
a basic pendulum1. Outside this restriction, its governing equation is a nonlinear one. Nevertheless, there is an 
exact analytical solution for this problem in an integral formula2. Therefore, obtaining an accurate bounded 
approximate solution is actually cooperative3,4. A simple pendulum is the most fundamental, inclusive system 
and serves as the foundation for many complicated applications. Its importance in understanding nonlinear 
occurrences about us is recognized in engineering disciplines as well as elementary areas such as physics and 
chemistry. Interestingly, a lower dimensional compound system, such as a double pendulum, swinging Atood’s 
machine5, elastic pendulum6–8, and spring-mass-pendulum9,10 are sufficient to demonstrate an extensive range 
of non-trivial phenomena such as continuous processes and diverse categories of resonance. Several machine 
parts5–10 are made up of a simple pendulum and another oscillating system such as a pendulum travelling in a 
plane or a pendulum revolving with different trajectories of their pivots. In such a mechanical system, the auto 
parametric resonance is quite essential. The phenomena of a normal mode of adjusting fundamental systems 
frequencies become unstable. The planar flexible pendulum, two degree of freedom system, is a basic weak low-
dimensional sample of an auto parametric organization. Because of the importance of the simple pendulum 
problem, the present study looked at when it was coupled to a lightweight spring.

The appearance of ordinary and partial differential equations plays a significant part in various fields of sci-
ences, practical physics, chemistry, mathematics, and biology. Qualitatively, there is physical relevance of the 
situation that determines the dynamical behaviors. Population expansion, potential fields, electric circuits, tree 
biological nature, and so on are all examples of the uses of practical physics. Differential equations are derived 
from physical situations. The linear differential equation solution is relatively simple, but finding an analytical 
analysis of a nonlinear differential equation could be difficult in many situations. Therefore, because most dif-
ferential equations do not have an exact closed form solution, approximation and numerical approaches are 
regularly employed. Temporarily, many non-linear equations do not have a small parameter, but any traditional 
perturbation technique requires it. Therefore, this difficulty constricts the use of these perturbation techniques. 
A small parameter determination is a difficult procedure that requires an implementation of special procedures. 
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Aimed at explaining ordinary nonlinear differential equations, the semi-analytical HPM can be a useful tool. 
He11 was the first Mathematician who proposed this method to solve nonlinear differential equations. The HPM 
has all the benefits of the perturbation approach without any necessity for a small parametric hypothesis. This 
approach overcomes calculation complexity, requires less computer memory, and has a faster calculation time 
than the previous methods. Accordingly, it is simple, powerful, effective and promising. The method requires 
initial conditions and generates an indefinite numerical as an analytical approximation. The HPM has been 
employed to analyze nonlinear differential equations in a number of investigations. The HPM was adapted by 
El-Dib and Moatimid12 to find accurate solutions for various forms in linear and nonlinear differential equa-
tions. The primary idea in their approach is coming up with an appropriate trial function, which is commonly 
expressed in terms of a power series. The cancellation of the first-order approximation solution ensures that all 
the advanced levels are likewise ignored. Consequently, the accuracy of the fixed zero-order solution will be 
confirmed the exact solution. The HPM was utilized by Moatimid13 to get an analytical approximate solution 
for a sliding bead in a smooth parabola. Due to the motivation for analyzing the Duffing oscillator on a variety 
of physics and engineering processes, the stability of a Duffing oscillator was analyzed by Moatimid14. It should 
be noticed that the present problem differs from those revealed by Moatimid13,14 in the structure of the model 
and well as the stability analysis. Additionally, the presented perturbed solution has been verified by RK4, and 
this has not done previously. Using the HPM, the principal equation of motion, the stability analysis, and many 
analytical approximate solutions were developed. The same method is utilized by Amer et al.15, and He et al.16 to 
obtain the desired approximate solutions. Tian and Wang17 developed a stability problem of linear time-delay 
system. Firstly, they described a generalized vector multiple integral inequality that can interpret several results 
as exceptional circumstances. Secondly, a delay-dependent stability (DDS) criterion for time-delay systems was 
constructed using these multiples. The DDS problem for a time-varying delay linear system was proposed by 
Tian and Wang18. They demonstrated that their method is more practical for dealing with time-varying delay 
systems. The authors provided a numerical example to demonstrate the utility of the stability criterion.

In accordance with the above-mentioned features together with the pendulum potential applications in 
physics, engineering, and applied mechanics, the present study focuses on examining the motion of a pendulum 
coupled to a rolling wheel that is connected by a lightweight spring. To simplify the presentation, the remainder 
of the manuscript is systematized as follows: To help the reader, “Organization of the model” stresses on the 
derivation of the fundamental equation of motion. In “A bounded analytical approximate solution”, a modified 
analytical bounded approximate solution, based on the expanded frequency is presented. The time history of 
this solution is graphically represented and associated with the numerical results of the equation of motion. The 
comparison displays great uniformity between both solutions. The graphed phase plane show that the accom-
plished solutions have a stable behavior. The relation between the expanded and the natural frequency is plotted 
for different values of the wheel radius. In addition to the variation of the solution via the natural frequency, the 
linearized stability analysis is depicted throughout “Linearized stability”. The phase portraits are drawn in this 
Section. The findings of the whole examination are summarized as concluding remarks in “Concluding remarks”.

Organization of the model
The movement of a pendulum attached to a rolling wheel that is restricted by a lightweight spring as seen in Fig. 1.

For a better fit, the Cartesian coordinates are used, where the x-axis is considered parallel to the horizon and 
y-axis is vertically upwards.

The x-axis of the given system may be inscribed as:

The y-axis of the assumed system may be formulated as:

(1)x = xwheel + xpend. = rθ + l sin θ .

Figure 1.   Sketches the dynamical model.
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Consequently, the location of the bob is specified by

The kinetic energy of the system is given by

The potential energy is given by

The Lagrangian of the system is given by

Therefore, the organization takes one degree of freedom. Therefore, the equation of motion, then becomes

Or

Similar derivations of Eq. (8) was earlier given by Nayfeh19 in several situations for various mechanical prob-
lems, and by El-Dib and Moatimid21 for a rocking rigid rod over a circular surface.

To shorten the governing equation of motion (8), for more opportuneness, and in order to avoid scaling 
effects, the following non-dimensional parameters are adapted. For this purpose, consider l  , 

√

l/g  and  m as the 
characteristic length, time, and mass, correspondingly. It follows that Eq. (8) may be written as follows:

On expanding the Taylor expansion, for small values of θ , one may consider sin θ ∼= θ − θ3/3! , and 
cos θ ∼= 1− θ2/2! . Equation (9) is then established as

where, α = r
(r+1)2

 , ω2 = kr2+1
(r+1)2

 , and β = 1
6(r+1)2

.

A bounded analytical approximate solution
As previously shown, the fundamental equation of motion (10) is a nonlinear one. In reality, it has no bearing an 
exact closed form solution. Subsequently, it should be scrutinized by a perturbation technique. In accordance with 
our previous works, as stated by Moatimid13,14, the traditional HPM generates secular terms that are physically 
inconvenient. As a result, a nonlinear expanded frequency adaptation to the HPM is proposed. In this case, the 
Homotopy equation could be written as follows to achieve this goal

To attain a perturbed solution, for more appropriateness, one may accept that the following initial conditions: 
θ(0) = 1 and θ̇ (0) = 0.

By the technique of the previous comprehensive work of Moatimid13,14, the recognized natural frequency ω2 
may be expanded as follows:

In accordance with the procedures of HPM, the time dependent function θ(t) may be expanded as follows:

Allowing Laplace transforms (LT) of the mixtures of Eqs. (11–13), one finds

(2)y = −l cos θ .

(3)r = (rθ + l sin θ ,−l cos θ).

(4)T =
m

2

(

r2 + l2 + 2rl cos θ
)

θ̇2.

(5)V =
1

2
kx2wheel −mgl cos θ .

(6)L =
m

2

(

r2 + l2 + 2rl cos θ
)

θ̇2 −
1

2
kr2θ2 +mgl cos θ .

(7)
d

dt

(

∂L

∂θ̇

)

−
∂L

∂θ
= 0,

(8)m
(

r2 + l2 + 2rl cos θ
)

θ̈ −mrlθ̇2 sin θ + kr2θ +mgl sin θ = 0.

(9)
(

r2 + 1+ 2r cos θ
)

θ̈ − rθ̇2 sin θ + sin θ + kr2θ = 0.

(10)
(

1− αθ2
)

θ̈ + ω2θ − αθθ̇2 +
α

6
θ3θ̇2 − βθ3 = 0.

(11)θ̈ + ω2θ + ρ

(

−αθ2θ̈ − αθθ̇2 +
α

6
θ3θ̇2 − βθ3

)

= 0, ρ ∈ [0, 1].

(12)�2 = ω2 +
n

∑

i=1

ρiωi .

(13)θ(t; ρ) =
n

∑

i=1

ρiθi(t).

(14)LT {θ(t; ρ)} =
s

s2 +�2
−

ρ

s2 +�2
LT

{

−αθ2θ̈ − αθθ̇2 +
α

6
θ3θ̇2 − βθ3 − (ω1 + ρω2)

}

.
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Retaining the inverse Laplace transforms to Eq. (19), one obtains

Subsequently, the nonlinear part may be formulated as follows:

where

Employing the expansion of the time-dependent function θ(t; ρ) as is given by Eq. (13), and then equating 
the coefficient of like powers ρ on both sides, one gets the following orders:

Substituting Eq. (18) into Eq. (19) to obtain a uniform expansion needs an elimination of the secular terms. 
Fundamentally, the coefficient of the circular function should be disappeared. Additionally, the elimination of 
the coefficient of the function cos �t produces

It follows that the uniform solution of θ1(t) becoming

Again, the substitution of Eqs. (20) and (21) into the second order of Eq. (15), one finds that the removal of 
the secular term requires

Therefore, the suitable solution θ2(t) then becomes

In view of the HPM, the approximate bounded solution of the foremost equation as given in Eq. (10) may 
be inscribed as follows:

where θ0(t), θ1(t) and θ2(t) are time-dependent functions given by Eqs. (18), (21) and (23), correspondingly. 
This approximate solution (24) necessitates that the influences of the trigonometric functions must be of a real 
behavior. To this end, merging Eqs. (12), (20) and (22), one attains a quadratic equation in �2 as follows:

The required stability standards require that �2 be real and positive. The numerical calculation showed that 
Eq. (25) has only two real positive roots as follows: � = 0.735216 and � = 0.009315.

The desired stability requires that �2 is both real and positive. To confirm the updated HPM, the approxi-
mate analytical and numerical solutions are shown in a single diagram for more opportunities. As a result, for 
a randomly chosen system where r = 1 and k = 1 , the diagram below is drawn, according to the Mathematica 
software (12.0.0.0), where Eq. (25) is just has a real root as � = 0.735216.

(15)θ(t; ρ) = cos �t − ρL−1
T

[

1

s2 +�2
LT

{

−αθ2θ̈ − αθθ̇2 +
α

6
θ3θ̇2 − βθ3 − (ω1 + ρω2)

}

]

.

(16)N

(

n
∑

i

ρiθi

)

= N0(θ0)+ ρN1(θ0, θ1)+ ρ2N2(θ0, θ1, θ2)+ · · · + ρnNn(θ0, θ1, θ2, . . . , θn),

(17)Nn(θ0, θ1, θ2, . . . , θn) =
1

n!
lim
ρ→0

∂

∂ρn
N

(

n
∑

i

ρiθi

)

.

(18)ρ0 : θ0(t) = cos �t,

(19)ρ : θ1(t) = −L−1
T

[

1

s2 +�2
LT

{

−αθ20 θ̈0 − αθθ̇20 +
α

6
θ30 θ̇

2
0 − βθ30 − ω1θ0

}

]

.

(20)ω1 =
1

48

(

−36β + 25α�2
)

.

(21)θ1(t) =
1

48

{

−
(

−18β + 35α �2
)

12�2
cos �t +

(

−24β + 47α�2
)

16�2
cos 3�t −

α

48
cos 5�t

}

.

(22)ω2 =
1

18432�2

(

−864β2 + 1644αβ�2 + 71α2�4 − 576βω1 + 1120αω1�
2
)

.

(23)

θ2(t) =
1

221184�2















































−
1

120�2

�

103680β2 − 728280αβ�2 + 1017157α2�4 + 103680βω1 − 202560αω1�
2
�

cos�t

+
1

4�2

�

2592β2 − 17568αβ�2 + 24307α2�4 + 3456βω1 − 6768αω1�
2
�

cos 3�t

+
1

12�2

�

2592β2 − 20304αβ�2 + 29333α2�4 + 48αω1�
2
�

cos 5�t

+
1

48

�

720αβ − 2161α2�2
�

cos 7�t +
13

80
α2�2 cos 9�t















































.

(24)θ(t) = lim
ρ→1

(

θ0(t)+ ρθ1(t)+ ρ2θ2(t)+ ...
)

,

(25)�4 +
(

216(−192+ 7α)β + 55296ω2

−55296+ 28800α + 1963α2

)

�2 −
1296β2

(

−55296+ 28800α + 1963α2
) = 0.
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The approximate solution (AS) as given in Eq. (24) has received quite a lot of attention, especially when k = 1 
and r = 1 . Therefore, part (a) in Fig. 2 shows the time history of the attained solution θ versus time t  , meanwhile, 
part (b) reveals the phase plane diagram of this solution versus its first derivative  θ ′ at the same considered values 
of k and r . A closer look at the drawn curves in this figure reveals that we have obtained a symmetric periodic 
wave, where its amplitude and wavelength remain stationary. The conclusion that can be made here is that the 
accomplished solution has a stable behavior, where the symmetric closed curve in part (b) asserts this statement.

Furthermore, the numerical solution (NS) of Eq. (10) is achieved using the RK4 approach and it is graphi-
cally signified with the same mentioned values of k and r , see Fig. 2. The displayed curves in parts (a) and (b) 
of this figure show the variation of  θ versus time t   and the corresponding phase plane is graphed, respectively. 
It is clear that the characterized wave is periodically represented to emphasize its stable manner during the 
investigated period of time. This behavior is plotted versus its first derivative to yield a closed symmetric curve 
as in part (b). An inspection of the curves of Figs. 2 and 3 shows high consistency between them, which reveals 
the good accuracy of both solutions.

The sketched curves in Fig. 4 indicate the variation of  � via ω for various values of r when k = 2 . These 
trajectories are obviously symmetrical around the horizontal axis, which is in good accordance with Eq. (25).

Linearized stability
The linearized approach is employed in this section to solve the considered autonomous system as shown in 
the fundamental Eq. (10). Presuming that the system is generated by the transformation θ̇ = φ , Eq. (10) can be 
divided as follows:

where

(26)θ̇ = f (θ , φ), andφ̇ = h(θ , φ),

Figure 2.   Shows the AS at k = 1 and r = 1.

Figure 3.   Reveals the NS at k = 1 and r = 1.

Figure 4.   Illustrates variation of r in the plane ωc� at k = 1.
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It follows that

The drawn curves in Fig. 5 examine the variation of θ versus ω in diverse standards of r . These curves behave 
like straight lines, which is consistent with the second equation of (29). These lines start from the origin point 
of the plane axes ωθ and are symmetric around the horizontal axis.

It follows that there are some of fixed points as follows:

The accompanying Jacobian array is obtained utilizing Taylor theory. The expansion of the functions f (θ , φ) 
and h(θ , φ) about the critical points, just keeping the linear terms, yields

On the equilibrium point, the determinant of the Jacobian matrix becomes

From the above matrix, the eigenvalues are given as:

If all eigenvalues of the Jacobian, which is given at the equilibrium points, require negative real parts, the equi-
librium point is a stable one. Nevertheless, if at most one of the eigenvalue has a positive real part, the equilibrium 
point becomes unstable. It is more realistic to assume a collection of randomly particular systems to indicate 
the stability and instability characterizations. This procedure can be confirmed as stated in Table 1 besides the 
sketched curves of Figs. 6 and 7. The details are provided by Galeb et al.21 in our previous study. It really should 
be noted that the current framework in addition the stability analysis, departs from those shown by Galeb et al.21.

(27)f (θ , φ) = φ, andh(θ , φ) =
1

1− αθ2

(

−ω2θ + αθφ2 −
α

6
θ3φ2 + βθ3

)

,

(28)f (θ0, φ0) = 0, andh(θ0, φ0) = 0.

(29)
φ0 = 0

−ω2θ + βθ3 = 0

}

.

(30)
θ0 = 0

θ0 = ± ω√
β

}

.

(31)J =
(

0 1
−6βθ2(−3+αθ2)+α[6+θ2(−3+α(6+θ2))]φ−6(1+αθ2)ω2)

6(1−αθ2)2
− αθ(−6+θ2)φ

3(1−αθ2)

)

.

(32)

∣

∣

∣

∣

∣

−� 1

− βθ2(−3+αθ2)+(1+αθ2)ω2

(1−αθ2)2
−�

∣

∣

∣

∣

∣

= 0.

(33)�1,2 = ± i
√

βθ2(−3+ αθ2)+ (1+ αθ2)ω2.

Figure 5.   Describes the variety of θ versus ω at r = 1, 1.5 and 2.

Table 1.   Represents the equilibrium points.

Sample chosen system Fixed point Roots of the Eigenvalues Stability/unstability

1 r = 1.0, k = 3.0 (±4.89, 0)
Pure imaginary
�1,2 = ±0.63 i

A stable node
See Fig. 6

2 r = 3.0, k = 1.0 (±7.75, 0)
Pure imaginary
�1,2 = ±0.35 i

Stable node
See Fig. 7
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Concluding remarks
For so many people who are working on nonlinear differential equations, the goal is to arrive at analytical and 
numerical solutions. In practice, examining an approximate solution can be done in different ways. Since the 
basic pendulum problem is so significant in numerous zones, the current research focused on it when it was 
linked with a lighter spring. Therefore, the aim of this study is to investigate the movement of a pendulum on a 
spinning wheel, which is organized by a lightweight spring. Under certain conditions, the conserved equation 
of motion produced a nonlinear ordinary equation in one degree of freedom. Unfortunately, we are often unable 
to eliminate the presence of the sources of the secular terms that have been derived using the traditional HPM 
methodology. Consequently, the achieved approximate solution exhibits increasing amplitude over the time. 
Therefore, this method is not included in the current work. A combination of HPM and Laplace transforms 
is adjusted in addition to the nonlinear extending frequency to actually accomplish an approximate periodic 
solution. Along with the phase plane, the variation of the given solution with time is displayed. To corroborate 
this analytical approximate solution, numerical validations are performed. The comparison of various solutions 
indicates a high level of consistency, demonstrating the high precision of the used technique. The relationship 
between the extended and natural frequencies is clearly examined graphically. With the resources of the linearized 
stability investigation, the stability benchmark of the scheme is accomplished. To depict the behaviour around 
the fixed points, the association between the frequency of the dynamical model and solution occurs at different 
values of the wheel radius. Similar problems have been analyzed by Moatimid13, El-Dib and Moatimid20, and 
fortunately, the perturbed solution of the present case has been verified by RK4. The phase portraits are plotted 
for convenience to ensure the mechanism of stability and instability in the neighborhood of the equilibrium 
points. Generally, the current work provides the following conclusions:

•	 The fundamental equation of motion of the system under consideration is presented in Eq. (10).
•	 Eq. (24) provides an approximate periodic solution of the given problem.
•	 Eq. (29) is used to calculate the fixed points. Additionally, the eigenvalues are derived from Eq. (33).

Figure 6.   Shows a stable node at r = 1.0, k = 3.0.

Figure 7.   Shows a stable node at r = 3.0, k = 1.0.
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•	 Table 1 depicts the various categories of the eigenvalues, and as a result, the behavior of stability/instability 
is described.

Data availability
Because no datasets were collected or processed during the current study, data sharing was not applicable to 
this paper.
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