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Cortical waste clearance in normal 
and restricted sleep with potential 
runaway tau buildup in Alzheimer’s 
disease
Tahereh Tekieh1,2, P. A. Robinson1,2* & Svetlana Postnova1,2,3,4,5

Accumulation of waste in cortical tissue and glymphatic waste clearance via extracellular voids partly 
drives the sleep-wake cycle and modeling has reproduced much of its dynamics. Here, new modeling 
incorporates higher void volume and clearance in sleep, multiple waste compounds, and clearance 
obstruction by waste. This model reproduces normal sleep-wake cycles, sleep deprivation effects, 
and performance decreases under chronic sleep restriction (CSR). Once fitted to calibration data, it 
successfully predicts dynamics in further experiments on sleep deprivation, intermittent CSR, and 
recovery after restricted sleep. The results imply a central role for waste products with lifetimes similar 
to tau protein. Strong tau buildup is predicted if pathologically enhanced production or impaired 
clearance occur, with runaway buildup above a critical threshold. Predicted tau accumulation has 
timescales consistent with the development of Alzheimer’s disease. The model unifies a wide sweep 
of phenomena, clarifying the role of glymphatic clearance and targets for interventions against waste 
buildup.

In recent years, biophysical models of arousal dynamics have been remarkably successful in explaining many 
features of normal sleep-wake cycles and the effects of acute sleep deprivation, as well as circadian dynamics, 
effects of stimulants, and circadian misalignment1,2. These models generally include two main drives: a circadian 
drive that is generated by the suprachiasmatic nucleus and oscillates with an approximately 24-h period that is 
normally entrained to the day–night light cycle—the “circadian clock”—and a homeostatic drive toward sleep 
that reflects the buildup of waste products in cortical tissue during waking hours, and their clearance during 
sleep3–7. Waste products are cleared from cortical tissue by the glymphatic system. This involves cerebrospinal 
fluid flowing from the subarachnoid space to periarterial spaces, then permeating a dense network of interstitial 
voids of several tens of nm transverse size that extend between cortical cells, before exiting via perivenous spaces, 
removing waste products in the process7–12. Various alternative suggestions have been made as to the nature of 
the flow of waste which mainly revolve around whether it is primarily advective, as just described, or whether 
waste diffuses through interstitial spaces to reach the perivascular ones without significant net advective flow, 
with diffusion possibly enhanced by pulsation of cerebrospinal fluid; likewise the relative roles of periarterial, 
perivenous, and interstitial spaces are all still controversial5,7,8,11,13–17. However, we model the above-described 
process here for definiteness and to provide a basis for future refinements.

Recently, it was found that the volume of interstitial spaces in mice increases by about 60% in slow wave 
sleep (SWS) relative to wake8, possibly driven by changes in norepinephrine concentration, which implies that 
both advection and diffusion will be enhanced. Parallel changes in perivascular volume do not appear to have 
been documented, but would have analogous effects if they exist. Simple scaling arguments from fluid mechan-
ics (discussed further below) imply that a 60% increase in void cross section (void length should not change 
by a significant factor) should yield a factor of 2.56 ( = 1.62 ) enhancement in flux and hence in clearance rate 
for advection, and a factor of 1.6 for diffusion. Indeed, clearance rates of beta-amyloid in the sleeping mouse 
are around 2.5 times as large as in wake8. However, differential clearance between sleep and wake has yet to be 
incorporated in homeostatic modeling.
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Modeling has succeeded in describing many aspects of the dynamics of normal arousal states and acute 
sleep deprivation over a few days by using a simple approximation of exponential clearance with a single time 
constant in the range of 18 to 60 h1,2. However, a vast spectrum of waste chemicals is produced by cortical cells, 
and these have very different observed clearance times. These include adenosine, prostaglandin D2, growth 
hormone-releasing hormone, interleukin-1, nitric oxide, and tumor necrosis factor, some of which promote 
non-REM sleep in various animal species18,19. Other chemicals such as amyloid beta (half life ∼ 2 h), tau protein 
( ∼ 11 days), and alpha-Synuclein ( ∼ 6 h) are all related to neurodegenerative disorders and are present in the 
interstitial space surrounding neurons20–22. Consistent with there being a spectrum of clearance time constants, 
experiments on chronic sleep restriction show continued worsening of performance and cognitive impairment 
on timescales of at least weeks23–25. All these factors point to the existence of some waste products with clearance 
times on the order of a week or longer, tau protein being a known example.

In some degenerative states, proteins such as tau and alpha-Synuclein are known to accumulate to abnormal 
levels. Notably, sleep abnormalities are widely observed in Alzheimer’s disease, often appearing decades before 
manifestation of cognitive symptoms9,10. Alzheimer’s disease is associated with well known cognitive impairments 
and other conditions also display cognitive decrements in association with reduced clearance rates—including 
reduced behavioral alertness23–25, natural brain aging, and traumatic brain injury11,26,27. Accumulation of waste 
chemicals can further slow clearance, which can lead to subarachnoid hemorrhage, acute ischemia, and multiple 
micro-infarctions28,29. It is thus likely that the buildup of abnormal deposits of waste products may itself interfere 
with clearance in a positive feedback loop in these conditions. Conceivably, some conditions may even push the 
obstruction caused by accumulation of waste beyond a threshold for runaway buildup.

In the present work we extend our prior model that includes single-timescale clearance of a generic waste 
product to allow for a spectrum of production and clearance rates for a variety of such products. We also incor-
porate the higher clearance rate in sleep and impairment of clearance by waste buildup. We first calibrate the 
resulting model by requiring that it correctly reproduce published experimental results on normal sleep-wake 
cycles, sleep deprivation and recovery, and performance decrements during chronic sleep restriction (CSR). 
The calibrated parameters are then used to verify the model’s predictions against other experimental protocols. 
Finally, regimes of runaway waste buildup and their potential relationship to Alzheimer’s disease are explored.

Theory
In this section we first briefly summarize the basic arousal dynamics model that underlies the present work. This 
focuses on the homeostatic aspects and we refer the reader to30–36 for a fuller description of the circadian sector 
of the model33, which is not changed in the present work. Then we develop our new homeostatic clearance model 
and explore its predicted dynamics.

Arousal dynamics model.  Figure 1a summarizes the key features of the model. The dynamics of the sleep-
wake switch arise from the mutual inhibition of monoaminergic (MA) nuclei that promote wakefulness and 
the ventrolateral preoptic (VLPO) nucleus, which promotes sleep; the inhibitory coupling ensures that only one 
population at a time can have high activity37. The mean soma potentials Vm and Vv of these two populations (m 
denotes MA and v denotes VLPO) are governed by the following equations:

where τ is a time constant, Qm and Qv are the mean neuronal firing rates in those populations, which are described 
by sigmoidal functions of Vm and Vv . The couplings to m from v and to v from m are written as νmv and νvm , 
respectively. We write the total external drive acting on the VLPO as Dv and on the MA nuclei as Dm.

The activity of the m and v populations is regulated by the homeostatic (H) and circadian (C) drives, which 
are responsible for the timing of the sleep-wake transitions. The drives C and H act on the VLPO via the drive

where νvC and νvH are coupling coefficients with negative (inhibitory) and positive (excitatory) signs respectively, 
and Av is the drive to the VLPO from other neural populations. The circadian drive C arises from a dynamic 
circadian oscillator in the suprachiasmatic nucleus, which is entrained by the light-dark cycle33,35. This drive has 
been extensively documented in the references cited, so we do not discuss it here; values for all its parameters 
and temporal profile can be found in33. Sleep deprivation and sleep restriction are simulated by keeping the MA 
population in the wake state by adding a wake effort to the constant external input Dm , with detailed equations 
provided in33.

Our main concern in the present work is the homeostatic drive, which has been argued to reflect the accu-
mulation of waste products during wake and their decline during sleep3,6,7,10,38. The buildup of waste products 
H has been modeled by

Here, H(t) is the effect of the species on sleep drive set to be dimensionless; qσ is the production rate in a 
state σ where σ = W denotes wake and σ = S denotes sleep (the SI units of qσ are s −1 , although it is sometimes 

(1)τ
dVv(t)

dt
=νvmQm(Vm)− Vv(t)+ Dv ,

(2)τ
dVm(t)

dt
=νmvQv(Vv)− Vm(t)+ Dm,

(3)Dv = νvCC(t)+ νvHH(t)+ Av ,

(4)
dH(t)

dt
= qσ − χσH(t).
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convenient to work in units of h −1 and measure time in h); and χ is a clearance rate that was found to be 
(0.5−1.7)× 10−6 s −1 (0.017–0.06 h −1 ) in normal states33. The above model has successfully reproduced a range 
of experimental phenomena, including sleep times30,31, sleep propensity33, melatonin dynamics35, alertness34, 
response to the ambient light spectrum36, and real-life shiftwork39.

Generalized homeostatic clearance.  To develop the new model, we first generalize the homeostatic Eq. 
(4) to allow H to reflect the net effect of multiple chemical species, labeled i, with

We allow each waste species to have its own generation rate qσ i and clearance rate χσ i(t) . These generaliza-
tions yield

(5)H(t) =

N
∑

i=1

Hi(t)

Figure 1.   Model schematics. (a) Model of arousal dynamics incorporating key interactions between the 
homeostatic drive H, circadian drive C, and the sleep- and wake-active neuronal populations, VLPO and MA 
nuclei. Bar-headed lines indicate inhibitory connections, while the arrows show excitatory action. Dotted lines 
show relevant model outputs—sleep times and alertness. Constraints, such as sleep restriction are incorporated 
through action of the MA nuclei. See text for parameter descriptions. (b) Schematic cross section of an 
interstitial void during wake and during sleep with unobstructed flow (top) and obstructed flow (bottom) due 
to build up of waste products, shown shaded. The void radius increases during sleep by a factor of √ρ . In the 
absence of clearance, the area αH obstructed due to the effects of waste products is the same during wake and 
sleep.
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We now consider the effect of accumulation of waste products on fluid flow and waste clearance using a sim-
ple model in which uncleared waste obstructs the voids, either directly or by causing neighboring cells to swell. 
At small levels of accumulation the reduction in clearance rate will be approximately linear in the amount of 
accumulation, regardless of the clearance mechanism (although the relationship of the coefficient of the linear 
term to the underlying physics will be different). However, for tissue to survive, some clearance must continue, 
so χσ i must remain positive. Hence, we make the approximation

where the blocking coefficient βσ j ≥ 0 parameterizes the contribution of Hj(t) to the obstruction of clearance. 
This relationship captures the first-order modifications to χ but we expect it to be only qualitatively correct at 
large H.

Equation (7) has some relevant limiting cases. The first occurs when waste buildup is small and there is neg-
ligible impediment to flow. Then all βσ j are zero, χσ i(t) = χ

(0)
σ i  , and the species evolve independently. This case 

corresponds to normal healthy sleep-wake cycles. The second special case is relevant at high waste buildup levels 
dominated by one product, which we designate by j = 1 without loss of generality. In this case

and the clearance rates of all species diminish as H1 increases. The relevance of this case will become apparent 
below where we see that runaway of species concentration is possible, with likely dominance of one species.

If we consider the schematic cross sections of an interstitial void in Fig. 1b, we can estimate the dependence 
of χσ i and βσ i on void volume; this argument is unchanged if the voids are not circular, so as long as they are 
two-dimensional in cross-section (rather than being one-dimensional slits or fractals). First, we note that voids 
extend throughout the cortical gray matter, which does not change thickness significantly between wake and 
sleep, so the total void length and tortuosity cannot change significantly, consistent with experiment8. Hence, the 
observed change in each void’s volume must be accommodated chiefly via changes in its cross sectional area A 
due to neighboring cells expanding and contracting. Another effect that could be incorporated into this picture 
is that of changes in the outer radii of voids due to degenerative conditions that change brain volume—e.g., as 
is seen in Alzheimer’s disease.

For smooth flow through a tube of two-dimensional cross section the flow rate scales as A2 , as in the ideal-
ized case of Poiseuille flow in a cylindrical tube but with different proportionality40. So if the interstitial volume 
increases by a factor of ρ , the area increases by ρ and the flow rate increases by ρ2 , so

where S denotes sleep and W wake. This scaling is consistent with the relationship between the observed vol-
ume increase of about 1.6 in sleep being correlated with a clearance rate increase of around 2.568, as discussed 
in the Introduction. However, aside from this, the succeeding argument would not be changed significantly if 
mechanisms such as diffusion operated instead, except that ρ2 would be replaced by ρ , resulting in moderate 
quantitative changes in the dynamics described below, but not qualitative ones.

If obstruction of flow due to buildup of waste products is due to filling of an area αiHi with waste, the flow 
rate is reduced by a factor of roughly (1−

∑

i αWiHi/AW )2 in wake and (1−
∑

i αSiHi/AS)
2 in sleep. If we 

write these factors to first order as (1+
∑

i βWiHi)
−1 and (1+

∑

i βSiHi)
−1 , respectively, this is consistent with

The increase in χ(0)
σ i  and the decrease in βσ i act in concert to enhance clearance during sleep. By solving the 

above equations find that the fraction of void blockage during wake is

where the rightmost expression applies for small blocking fractions; analogous relationships hold in sleep.

Dynamics of one species.  Here we elucidate the dynamics predicted by the homeostatic clearance Eqs. (5) 
and (6) in a fixed state of arousal, including cases with nonzero βi , we begin with the case of single species. The 
details of the mathematical derivations can be found in the Supplementary Materials.

In a fixed arousal state Eqs. (6) and (7) exhibit approach to a fixed point at

provided Hs
σ i > 0 . However, if

(6)
dHi(t)

dt
= qσ i − χσ i(t)Hi(t).

(7)χσ i(t) =
χ
(0)
σ i

1+
∑

j βσ jHj(t)
,

(8)χσ i(t) =
χ
(0)
σ i

1+ βσ1H1(t)
,

(9)χ
(0)
Si = ρ2χ

(0)
Wi ,

(10)βSi = βWi/ρ.

(11)

∑

i αWiHi

AW
=1−

1
√

1+
∑

i βWiHi

≈
1

2

∑

i

βWiHi ,

(12)Hs
σ i =

qσ i

χ
(0)
σ i − qσ iβσ i

,
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there is no fixed point and buildup of Hσ i runs away, asymptoting to a linear increase as the second term in the 
denominator comes to dominate, canceling out the Hi dependence on the right hand side of Eq. (6).

To illustrate the dynamics of the model for a single species in a fixed arousal state (wake or sleep), we set 
generation and clearance rates to fixed values. Figure 2a–f show different cases for χ(0)

σ1 = 1.4× 10−5 s −1 with 
qσ1 = 7× 10−6, 65× 10−6, and 140× 10−6 s −1 . Solutions of Eq. (6) for a fixed arousal state with βσ1 = 0 are 
shown in Fig. 2a. In each case, starting from the initial value of H1(0) = 0 , H1 rises steeply, then saturates expo-
nentially on a timescale of 1/χ(0)

σ1  as it approaches the stable fixed point in Eq. (12); such dynamics is expected 
in wake. Figure 2b shows cases in which H1(0) is higher than the fixed point value; here we see that H1(t) decays 
exponentially toward the fixed point when qσ1 has low values of 20× 10−6, 9× 10−6, and 0 s −1 , with dynamics 
more representative of sleep.

In Fig. 2c we consider the same cases as in Fig. 2a, but with βσ1 = 0.1 . In each case, starting from the ini-
tial value of H1(0) = 0 , H1 rises and either approaches the stable fixed point in Eq. (12) or continues to rise 
indefinitely, depending on whether qσ1 is smaller than the threshold χ(0)

σ1 /βσ1 or not. With qσ1 = 7× 10−6 and 
65× 10−6 s −1 the system approaches fixed points with H1 = 0.5 and 8.4, respectively, in accord with Eq. (12), 
which yields higher values than when βσ1 = 0 and there is no obstruction (see also Supplementary Material S1). 
For qσ1 = 140× 10−6 s −1 , there is no longer a stable fixed point, the runaway condition (13) is fulfilled, and we 
see an asymptotically linear rise of H1 . Figure 2d shows cases in which H1(0) is higher than the fixed point value 
for three different βσ1 . While H1(t) decays monotonically toward the fixed point at qσ1 = 0 in all cases, void 
obstruction slows clearance for βσ1  = 0.

(13)qσ i > χ
(0)
σ i /βσ i ,
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Figure 2.   Homeostatic dynamics with one and two species in a fixed arousal state with and without 
runaway. One species dynamics are shown in (a)–(f). (a) Rising H1 and βσ1 = 0 for production rates 
qσ1 = 7× 10−6, 65× 10−6, and 140× 10−6 s −1 , as labeled in units of 10−6 . (b) Falling H1 and βσ1 = 0 for 
qσ1 = 20× 10−6, 9× 10−6, and 0 s −1 from top to bottom. (c) Rising H1 and βσ1 = 0.1 for the same values 
of qσ1 as in (a), with runaway case indicated with dot-dashed lines. (d) Falling H1 for βσ1 = 0.05, 0.1, 0 , from 
top to bottom. (e) Normalized clearance rate vs. t for the cases in (c), with runaway case indicated with dot-
dashed lines. (f) Normalized clearance rate vs. t for the cases in (d); for βσ1 = 0 this ratio is 1 throughout so 
it is not shown. Homeostatic rise using two-species drive during wake is shown in (g)–(j). Fast clearance H1 
is shown in green, slow clearance H2 in blue, and total H in red. (g) State with β1 = β2 = 0 and H1 and H2 
starting from zero. (h) Same as in (g) but β1 = 0.05 and β2 = 0.15 . (i) Overt runaway state with β1 = 0.15 and 
β2 = 0.15 . (j) Covert runaway. (k) Clearance dynamics for two species with β1 = 0.15 and β2 = 0.15 in dot 
dashed line, β1 = 0.05 and β2 = 0.15 in solid line, and β1 = β2 = 0 in dashed line. In the covert runaway case 
qσ1 = 65× 10−6 s −1 and qσ2 = 30× 10−6 s −1 ; in all other cases qσ1 = 65× 10−6 s −1 and qσ2 = 7× 10−6 s −1.
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To explore how the accumulation of waste products obstructs fluid flow and consequently reduces the clear-
ance rate, Fig. 2e illustrates the dynamics of clearance in the same cases as in Fig. 2c, in accordance with Eq. (7). 
When βσ1 = 0 χσ1/χ

(0)
σ1 = 1 at all times. In the other cases, as H1(t) rises, this ratio decreases as 1/[1+ βσ1H1(t)] . 

For the cases with valid fixed points, the clearance asymptotes to values of 0.94 and 0.54 for qσ1 = 7× 10−6 and 
65× 10−6 s −1 , respectively. However, in the runaway case where qσ1 = 140× 10−6 s −1 and H1(t) keeps increasing, 
the clearance ratio decreases monotonically toward zero and total void blockage. The dynamics of clearance for 
the cases in Fig. 2d is shown in Fig. 2f. Due to their different βσ1 , their clearance values differ at t = 0 . Over time 
H1(t) decays and the clearance recovers to its unobstructed value; as before, this is fastest for small βσ1.

Dynamics of two species.  We now consider Eqs. (6) and (7) for two species ( i = 1, 2 ), where we assume 
that species 1 has the larger effect on blockage, at least initially. Details of the derivation are found in Supplemen-
tary Materials S2. In essence, a fixed point is again found, unless

which generalizes Eq. (13). The fixed point level of Hσ2 is increased by the presence of other species (in this case 
species 1), which tend to impede its clearance. If a fixed point does not exist, asymptotically linear runaway again 
occurs with the ratio of concentrations approaching a limit γ

with the second species’ dynamics slaved to those of the first if the first dominates (see the Supplementary Mate-
rials for detailed expressions); we term this overt runaway.

To illustrate the dynamics of the model for two species in a fixed arousal state, we set χσ1 = 1.4× 10−5 s −1 , 
χσ2 = 0.27× 10−5 s −1 , qσ1 = 65× 10−6 s −1 , and qσ2 = 7× 10−6 s −1 . The resulting dynamics of H are shown in 
Fig. 2g–j. The case of rising H with β1 = β2 = 0 is shown in Fig. 2g. Both H1(t) and H2(t) start from 0, rise toward 
stable fixed-point values of 4.7 and 2.5, respectively, in accord with the detailed expressions in Supplementary 
Materials S2. Consequently, their sum H(t) reaches 7.2. For values βσ1 = 0.05 , βσ2 = 0.15 , the dynamics are 
similar to those for βσ1 = βσ2 = 0 , but reaching higher fixed points for both species, as shown in Fig. 2h due 
to the slower clearance. It is clear that in both Fig. 2g,h H(t) reaches a fixed stable point after an initial rise, but 
the values with nonzero βσ i are higher, in accord with Supplementary Material S2. In Fig. 2i the system satu-
rates at H1 = 12 and H2 = 6.4 because the runaway condition (14) is not satisfied. In these cases and for small 
βσ i the dynamics of the individual species are nearly independent. However, runaway occurs if βσ1 increases 
beyond 0.14. In this case it is not only species 1 that runs away approximately linearly in time but also species 2, 
which is slaved to it, as shown in Fig. 2j. As βσ1 becomes larger, the ratio Hσ2/Hσ1 approaches a constant value 
of γ = 0.47 , which is in accord with the expression in Supplementary Material S2. The clearance dynamics for 
Fig.  2i,j is shown in Fig. 2k. In the case with βσ i lower than runaway threshold for both species, the clearance 
deviates from χ(0)

σ i  ; however, in the overt runaway case where βσ1 has a large value, the clearance falls toward zero.
If the runaway condition (14) is satisfied for species 2 but not for the initial dynamically dominant species 1, 

H2 cannot saturate and we term the situation covert runaway. In this case, species 2’s concentration will increase 
approximately linearly in time without changing the system dynamics very much at first. However, once H2 
becomes comparable with H1 it will affect sleep-wake cycles, and when β2H2 becomes of order unity, its con-
tribution to void blocking will become dynamically significant and may eventually dominate; in any event, the 
continued rise in H2 will push H1 up in this case. We conclude that significant contributions from species 2 to 
disturbances to sleep-wake cycles may occur.

Cycle‑averaged dynamics.  The results in the previous subsections are for a fixed arousal state σ . In most 
situations, there is a daily alternation between sleep and wake and we are interested in the long-term evolution 
of waste product levels over many such cycles when they are well above normal levels (in normal states it suffices 
to study a single periodic cycle). It is thus useful to average the key results over a complete sleep-wake cycle, 
assuming that a fraction fW of the cycle is in the wake state and the rest is in sleep. The mean level of H changes 
little between sleep and wake under severe chronic sleep restriction or runaway states. Averaging Eq. (6) over 
time and denoting means by overbars gives

where Eq. (17) applies for any quantity xσ . Hence, at large Hi with βiHi ≫ 1

cycle-averaged runaway occurs when the right side of Eq. (18) is positive.
The two terms in the square brackets in (18) are proportional to the contributions of clearance during wake 

and sleep, respectively. We see that clearance during sleep dominates if

(14)qσ1 + qσ2 >
χ
(0)
σ1 + γχ

(0)
σ2

βσ1 + γβσ2
,

(15)γ = lim
t→∞

Hσ2(t)

Hσ1(t)
,

(16)
dHi

dt
=qi − χiHi ,

(17)x =fWxW + (1− fW )xS ,

(18)
dHi

dt
≈ qi −

χ
(0)
Wi

βWi

[

fW + ρ3(1− fW )
]

;
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which corresponds to waking times of less than about 19 h per day for ρ = 1.6 . More generally, we expect fW to 
decrease at high H  in response to increased homeostatic sleep pressure. We note that it is possible for the runaway 
condition to be satisfied in wake, but not in sleep, since the ratio qσ iβσ i/χ

(0)
σ i  is decreased by a factor of ρ3 ; in this 

case sleep is mandatory to achieve system stability against runaway. Since sleep is seen in all mammals, it is likely 
that this is the regime in which the brain actually operates and; indeed, the shortest-sleeping mammals such as 
elephants still spend around 3 h per day asleep41. Note that if diffusion, rather than advection, dominates clear-
ance ρ3 is replaced by ρ2 in Eq. (19) and the boundary implied by this equation is around 17 h of wake per day.

Results
In this section we calibrate the model parameters by adjusting them to fit the model’s predictions to published 
experimental data from a few specific experiments. Having reproduced those results, we verify the model pre-
dictions against other published experiments without further adjusting the parameters. Then we explore the 
consequences of runaway in cases of abnormal waste production or clearance.

Model calibration.  We calibrate the generalized model against normal sleep-wake cycles, sleep deprivation 
and recovery, and chronic sleep restriction (CSR). We do not expect perfect agreement given the simplicity of 
the model, but we aim for results that are semiquantitatively accurate and sufficient for wider applications in 
later sections.

Our generalized model needs to be able to explain the long-term build-up of deficits in chronic sleep restric-
tion (CSR) while still accounting for normal sleep-wake dynamics, where predictions from earlier, more basic, 
models have been extensively verified. We also wish to incorporate an improved approximation to the produc-
tion rates in sleep. This means that the parameters of the extended model need to be fitted to suitable calibration 
data from these conditions before being used to predict dynamics in new situations. We first attempt these tasks 
under the simplest assumption, as used in prior work, that only one species’ dynamics need be tracked—which 
may be an “effective species” whose properties are weighted averages of several species that jointly dominate the 
dynamics. We know this approach enables normal sleep dynamics and total sleep deprivation to be tracked1,2, 
and aim to determine whether CSR dynamics can also be accounted for via the poorer homeostatic clearance 
during increased wake. After exploring the single-species case, we repeat the process with the addition of a slow-
clearing species to model the dynamics of tau and other long-lived waste products.

The four model extensions made for one species here are to: (i) incorporate the homeostatic function, with 
a time constant (inverse of clearance rate) expected to be in the range previously found by fitting the model to 
experimental data33, and also by accounting for chronic sleep restriction; (ii) incorporate nonzero βσ i to account 
for void obstruction; (iii) allow for the approximately 60% increase in total void volume in sleep via its effects on 
the χ(0)

σ i  and βσ i via Eqs. (9) and (10) for ρ = 1.6 , so only wake values need be specified separately; and (iv) set 
the homeostatic production rate in sleep to 0.8 times its rate in wake, in accord with experiment42, instead of to 
zero as in30,31,43. This last point is justified because we expect the higher clearance rate in sleep in the extended 
model to offset the higher sleep production rate, leading to similar outcomes from a more physically realistic 
basis. Specifically, we write the production rate qσ i as the product of a dimensionless constant ηi and the mean 
cortical neural firing rate Qσ (SI units s −1 ), with

with QW = 7 s −143. Other parameters of the model, including its circadian aspects are left unchanged from those 
in prior work33–36.

We aim to reproduce three sets of experimental conditions in order to calibrate the model before applying it 
to predict other dynamics in later sections. These are as follows: 

1.	 Without applying any constraints on sleep opportunity, the model must reproduce normal sleep-wake 
dynamics with approximately 8.2 h as the optimal sleep duration23 with a typical range of 7.9–8.5 h and a 
sleep onset time between about 2230 and 0030.

2.	 The model must reproduce the right subsequent sleep duration after a long period of total sleep deprivation 
(SD)44. Specifically, the first sleep bout that follows a long period of total sleep deprivation is usually 12–15 
h even after a several-day deprivations44.

3.	 The model must reproduce the CSR dynamics from Van Dongen et al.’s23 study with 3 baseline days (8 h sleep 
opportunity) followed by either 3 nights of total sleep deprivation or 14 nights of sleep restriction (0, 4, 6, 
or 8 h sleep opportunity per day, resulting in actual mean sleep durations of 0, 3.7, 5.5, and 6.7 h per day, 
respectively). This experiment compared waking neurobehavioral functions during sleep restriction with 
those for total sleep deprivation23. It used the psychomotor vigilance task (PVT) in which reaction times to 
stimuli in each 10 min test bout every 2 h were counted as attentional lapses when they exceeded 500 ms. 
The temporal regulation of sleep is governed by the homeostatic and circadian processes and this temporal 
regulation of sleep affects human neurobehavioral functions like sustained attention34,45,46. It has previously 
been shown34 that a fair approximation to the number of excess PVT lapses p relative to baseline at a given 
circadian phase is 

(19)fW <
ρ3

1+ ρ3
,

(20)qσ i = ηiQσ ,

(21)p = ��H ,
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where �H is the deviation from baseline and the constant � is chosen by minimizing the root-mean-square dif-
ference between theory and experiment over the four conditions.

To assist in finding optimal parameters from dynamics, we define a qualitative goodness-of-fit parameter ζ , 
which we minimize over the parameter space, as described in the Methods.

One‑species fit.  We obtain a simultaneous fit to normal sleep, SD, and CSR data by varying the parameters 
χ , β , η , and Av to minimize ζ across the data sets discussed in the previous subsection. To do this, we employ the 
genetic algorithm function in the Matlab optimization toolbox47. This algorithm initially generates a population 
of 50–200 random points depending on the number of variables. The point with the smallest ζ is then selected to 
generate a fresh set of random points in its vicinity and the new point with the smallest ζ is then selected. These 
latter steps are repeated until ζ ceases to decrease significantly and the corresponding parameters are used as our 
estimate of the optimal values. The optimal one-species parameters found are shown in Table 1 and Fig. 3a–c 
show an example of H dynamics for the optimal parameters. We find 8.22 h sleep duration which starts at 2340 
for normal sleep wake cycles without applying any constraints on sleep opportunity, as shown in Fig. 3a. After 
88 h of sleep deprivation, 14.5 h of subsequent first night sleep is found, which is shown in Fig. 3b. Figure 3c 
shows the dynamics of H compared to the PVT lapses data for chronic sleep restriction. One sees that the model 
H saturates within about 5 days, whereas the experimental curves continue to rise, implying that the first two 
fits are close, but that CSR is poorly fitted and the long-term dynamics are not as well modeled as more rapid 
changes, apparently because the value of β required to account for short-term dynamics is too small to impede 
clearance sufficiently at long times. This points to the need to include a second species with slower dynamics and 
larger blocking coefficient β.

Two‑species fit.  The optimal two-species parameters found are shown in Table 1 and the dynamics are 
shown in Fig. 3d–f. The shorter clearance time is reduced by about a third relative to the one-species case to 
about 19 h, while the longer one is 9 days, within 20% of the value estimated for tau protein22,48. The blocking 
coefficient for species 2 is of the same order as for the one-species case, while for species 1 it is lower than in the 
one-species case, whose value needed to be higher to yield sufficiently slow clearance under CSR conditions. 
The production rate of the fast-clearing species is little changed from the one-species value, and that of the slow-
clearing species is about 6 times lower. Finally, Av is shifted downward by 6 mV to compensate for the increased 
effect of mean homeostatic drive on the total external drive acting on the VLPO.

For the optimal two-species parameters, we find 7.7 h sleep duration which starts at 2215 for normal sleep 
wake cycles without applying any constraints on sleep opportunity, as shown in Fig. 3d, and consistent with the 
range of normal sleep duration. After 88 h of sleep deprivation, 15.8 h of subsequent first night recovery sleep 

Figure 3.   One and two species dynamics of H and void blocking fraction for the best-fit parameters in 
Table 1 for the calibration experiments. One species dynamics for (a) normal sleep; (b) sleep deprivation; 
and (c) chronic sleep restriction, cycle-averaged and normalized to the baseline days with blue showing sleep 
deprivation, orange 4 h sleep opportunity, green 6 h, and purple 8 h. Two species dynamics for (d) normal sleep, 
(e) sleep deprivation, (f) chronic sleep restriction, cycle-averaged and normalized to the baseline days, plotted 
as in (c). Open symbols show PVT lapse data from Van Dongen et al.’s23 study. Void blockage fraction for two 
species: (g) during normal sleep-wake cycles, and (h) during chronic sleep restriction from23. Blue, red, green, 
and purple indicate sleep deprivation, 4, 6, and 8 h sleep opportunity per day, respectively.
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is found, which is shown in Fig. 3e, also consistent with experiment44. The fast-clearing species saturates within 
the sleep deprivation period, whereas the slow-clearing species continues to build up. Figure 3e shows that the 
model H now has a behavior that is semiquantitatively in agreement with the experimental results, displaying in 
particular continued buildup over the full 14 days instead of quickly saturating. After 14 nights of sleep restric-
tion, the H level for the 4 h condition reaches the same level as two nights of total sleep deprivation and the 6 h 
condition reaches approximately the same level as one night of total sleep deprivation. For the 8 h sleep condition 
H still increases across the simulation because the mean sleep duration is only 6.7 h as in the experiments, but 
this is slower than in the other cases.

It is noteworthy that PVT is known to be influenced by factors other than H49 so we do not expect exact 
agreement with PVT data. To explore the role of waste accumulation under normal and CSR conditions, the 
fractional blocking of voids is calculated from Eq. (11). Figure 3g shows the void blockage fraction in the two-
species case under normal conditions. During wake the blockage reaches 9.2% of the total void cross section, 
whereas during sleep after the full clearance it falls to 5.7% . The void blockage fractions for sleep deprivation and 
CSR are shown in Fig. 3h. At the end of sleep deprivation, void blockage reaches nearly 10.4% of the total void 
cross section, which is close to the level of 10.6% attained at the end of 14 days of 4 h sleep restriction, consistent 
with the similar PVT scores in the two cases. It is notable that the typical scale of normal daily variations in void 
blockage is less than ±4% of total void cross section from peak to trough and even multiday sleep deprivation 
or CSR produce departures of less than 4% of the total void cross section; this sets a scale against which other 
levels of blockage can be assessed.

Recovery from CSR.  Having calibrated our two-species model against data, we now apply it to different 
experiments that embody aspects of sleep restriction and recovery without adjusting the parameters from those 
previously determined. This serves to further verify the model’s semiquantitative validity.

Belenky et al. studied CSR and post-CSR recovery in 66 subjects24. The first 3 days of their protocol required 8 
h required time in bed (TIB) per day. From the fourth to tenth days, subjects underwent one of four conditions: 
9 h required TIB (2200–0700), 7 h required TIB (2400–0700), 5 h required TIB (0200–0700), or 3 h required 
TIB (0400–0700). These comprised a sleep augmentation condition and three sleep restriction conditions. On 
the 11th to 13th days, subjects were again required to be in bed for 8 h, giving a recovery period. Average total 
sleep time (TST) over the 7 days of sleep restriction or augmentation were 7.93 h for the 9-h TIB group, 6.28 h 
for the 7-h TIB group, 4.66 h for the 5-h TIB group, and 2.87 h for the 3-h TIB group.

The results shown in Fig. 4a indicate an increase in H for 3, 5, and 7 h TIB conditions and a decrease for the 
9 h TIB condition, all of which accord with the PVT data. Sleep recovery is somewhat slower after the 3 h TIB 
condition than seen in the data, but faster after the 5 h TIB condition. The data show no recovery after the 7 h TIB 
condition, whereas our H level recovers towards the baseline level. The sleep duration after 9 h of sleep restriction 
also recovers to near the baseline after 3 nights. The TST in sleep recovery periods shows a similar trend to the 
data. Although an 8 h sleep recovery opportunity was given for three nights, the 3 h TIB condition data show 
approximately 7.5, 7, and 7 h TST for these nights; our corresponding result likewise shows the longest TST 
occurs on the first night of recovery with 8 h followed by 7.9 h for the next two nights for slightly more recovery 
sleep on average. The data after the 5 h and 7 h TIB conditions both show approximately 7, 7, and 6.5 h TST dur-
ing recovery; our results again show the same downward trend over the three nights, but more sleep on average: 

Table 1.   Model parameters. Each line shows a parameter, its symbol, fitted value, and units in successive 
columns. Assumed homeostatic parameters are listed in the first block of the table. The second block 
shows parameters obtained from the one-species fit. The third block shows the corresponding two-species 
parameters. The full list of underlying circadian model parameters is found in34.

Parameter Symbol Value Units

Void ratio ρ 1.6 –

Firing rate QW 7 s−1

One-species fit

Sleep drive Av −3.0 mV

Clearance time 1/χ
(0)
W

1.06× 105 s

Blocking coeff. βW 0.026 –

Production coeff. η 10.1×10−6 —

Two-species fit

Sleep drive Av −8.0 mV

Clearance time 1/χ
(0)
W1

0.71× 105 s

Blocking coeff. βW1 2.8× 10−3 –

Production coeff. η1 9.4× 10−6 –

Clearance time 1/χ
(0)
W2

8.0× 105 s

Blocking coeff. βW2 0.029 –

Production coeff. η2 1.65× 10−6 –
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7.9, 7.9, and 7.8 h after the 5 h TIB condition and 7.8, 7.8, and 7.7 h after the 7 h TIB condition. The 9 h TIB 
condition data show nearly constant 7 h TST across all three nights, in agreement with the trend in our results, 
which again predict somewhat more sleep on average at 7.6 h. Thus the trends are reproduced by our model to 
within the uncertainties of the data, apart from a slightly higher average TST in all cases, which is likely the result 
of the fact that we have not refitted our parameters to these data, but use the values from the previous section.

Intermittent CSR.  Our second application of the calibrated model is to the work of St. Hilaire et al., who 
studied intermittent CSR, with periodic recovery opportunities, as an analog of common sleep schedules in 
which CSR occurs during the week, with recovery on weekends25. The protocol started with a baseline day of 
10 h of scheduled sleep and 14 h scheduled wake. The first cycle of sleep restriction started on day 2, consisting 
of two 3-h TIB periods on successive days followed by one 10-h TIB period on day 4. This pattern was repeated 
twice more in blocks of 3 days (3 cycles). Our results in Fig. 4b indicate an increase in H after each cycle of sleep 
restriction despite the 10 h sleep opportunity, consistent with the long time constant of the slow-clearing species. 
However, the rate of degradation in PVT performance data in Fig. 4b following a 3-h sleep opportunity in the 
second and third cycles is steeper than the first cycle, whereas we predict roughly equal rates. This may indicate 
the presence of a third very-fast clearing species that enables greater recovery during sleep opportunities, and 
contributes to faster catch-up during subsequent periods of restriction; however, we do not pursue this possibil-
ity in the present work.

Runaway buildup of tau protein.  We now show that abnormalities in homeostatic processes, particu-
larly rates of production and clearance of waste, can lead to drastically increased waste levels and void blockage, 
and even runaway buildup under some circumstances. We consider cases of both a sudden parameter change, 
as might happen after an injury, and of gradual evolution away from normal values, as may reflect progressive 
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Figure 4.   Model predictions for CSR protocols that were not used in parameter calibration. (a) Belenky 
et al.24 chronic sleep restriction and recovery, averaged across each cycle with two-species parameters from 
Table 1. Blue indicates 3 h of chronic sleep restriction, red 5 h, green 7 h, and purple 9 h. Filled circles show 
the experimental data. (b) St. Hilaire et al.25 chronic variable sleep restriction for two-species parameters from 
Table 1. Model prediction of H dynamics are shown with solid line. Experimental data are shown with gray 
circles.
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deterioration due to age, sleep disturbances, or other factors. In both cases we enforce a minimum of 10 h of 
wake per day ( fW ≥ 0.42 ) to correspond to the wake-promoting effects of social and other pressures. Resulting 
buildup of tau protein occurs on timescales of many months to years, comparable to the onset period of Alzhei-
mer’s disease, for example.

A key prediction of the preceding sections is that there is a threshold beyond which waste buildup runs away 
to levels far above normal. According to the cycled-averaged Eqs. (17) and (18), various effects could contribute 
to such an outcome: (i) an increase in the average rate of waste production qi  through an increase in its pro-
portionality ηi to firing rate in Eq. (20); (ii) an increase in the effectiveness of blocking by waste, reflected in the 
blocking coefficient βi ; (iii) a decrease in the value of ρ , corresponding to reduced dilation of interstitial voids 
during sleep; (iv) an increase of the fraction of time spent awake fW ; and/or (v) a decrease in the clearance rate 
χ
(0)
Wi = 1/τ

(0)
W  . Continued runaway corresponds to the right side of the cycle-averaged Eq. (18) being positive. 

This implies threshold values for η2 , β2 , and τ2 approximately 10.5 times higher than their value in Table 1 if all the 
other parameters are held constant, whereas the thresholds for ρ and fW cannot be reached for ρ ≥ 1 and fW ≤ 1.

Figure 5 illustrates the effects of each of the above-mentioned changes in the parameters of the slow-clearing 
species. Runaway happens over the course of ∼ 5 years when η2 , β2 , or τ2 is increased by a factor of 11.5 as shown 
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Figure 5.   Runaway predictions for the two species. (a)–(e) Demonstrate the case of a sudden change of one 
parameter at t = 100 days, as labeled: (a) η2 is 11.5 times higher than the best-fit value from Table 1, (b) β2 is 
11.5 times the best-fit value, (c) ρ = 1 , (d) fW is increased to 0.83 which indicates 20 h of wakefulness, and (e) τ2 
is 11.5 times larger. In each case the dot-dashed line indicates H1 , the dashed line H2 , and the solid line, the total 
H. (f) Shows results for a gradual increase of τ2 over time, with an increase by a factor of 11.5 being reached at 
t = 3500 days. (g) Comparison of total H for the conditions in (a)–(e), as labeled; dotted line shows case (f). (h) 
Corresponding void blockage fraction for the conditions in (a)–(f). All other parameters are set at their best-fit 
values from 1.
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in Fig. 5a,c,e, respectively, consistent with threshold values predicted from the cycle averages of quantities in 
Eq. (18). We find that, once runaway occurs after an increase in η2 , τ2 , or β2 , the value of H increases to levels 
far above normal over a year or more. In contrast to these cases of runaway, Fig. 5c shows that setting ρ = 1 to 
remove the expansion of interstitial voids during sleep leads to a rise in H followed by saturation. Likewise, Fig. 5d 
shows the same behavior if sleep is permanently restricted to only 4 h per day; this saturation is consistent with 
many people continuing to function reasonably normally under conditions of permanent CSR. In neither case 
is the predicted runaway threshold exceeded but the saturation values are well above those experienced in the 
cases of sleep deprivation or CSR discussed in earlier sections. It is important to mention here that the simple 
linear approximations made to the dynamics of H and its effects on the sleep-wake cycle will need correction at 
the very high levels of H attained in the cases of runaway, so the trends seen should be only treated as qualita-
tive once H exceeds a few times the level found in CSR where the results have been verified against experiment.

In Fig. 5h we see that interstitial void blockage fraction rises rapidly in all cases considered, slowly approach-
ing 100% asymptotically in runaway cases, and saturating at 12–14% in the cases when H saturates, well above 
the level seen after 14 days of CSR in Fig. 3h. In the runaway cases the blockage fraction after 5 years is 45% to 
80%. The steepest increase in the blockage fraction occurs before 2000 days ( ∼ 5 years), after which it slows and 
reaches 50% to 82% at 6000 days ( ∼ 16 years), in accord with the square-root dependence seen in Eq. (11). Once 
our dynamically dominant second species runs away, the ratio H1/H2 approaches a limit γ that is consistent with 
the expression in Supplementary Material S2 with the roles of species 1 and 2 reversed. This ratio converges to 
0.04 when η2 increases, and to 0.05 when τ2 increases in the simulations (Fig. 5a,e), and to 0.52 when β2 increases 
(Fig. 5b). In each case, these values are bracketed by the predicted wake and sleep values, while the approximate 
cycle-averaged equation (15) predicts ratios of 0.06, 0.07, and 0.7, respectively. This behavior is evident in Fig. 5b 
where H1 and H2 levels increase together. Figure 5g shows all the cases in Fig. 5a–e superposed for comparison.

In many cases, the conditions that lead to runaway are gradual, rather than sudden, owing to ongoing dete-
rioration due to aging or pathology. Hence, we consider an example in which τ2 increases linearly, reaching 11 
times its original value after 10 years, then continuing to rise at the same rate. Figure 5f shows the resulting 
increase in H, which is slower than the sudden-onset case at first, but steadily accelerating, with the runaway 
threshold being reached at around 3500 days. Prior to runaway, the levels of H1 and H2 roughly follow the fixed 
point values given in Supplementary Materials S2 with the labels 1 and 2 reversed; however, because of time lags 
in the dynamics, the fixed point is never quite reached and H1/H2 stays at about 0.4 of the fixed-point value. 
During the first 300 days, fW falls to its imposed floor of 0.42 (10 h per day of waking) in an attempt to increase 
cycle-averaged clearance, in agreement with observed sleep increase in the leadup to Alzheimer’s dementia50. 
Beyond about 2500 days, as the runaway threshold is approached, the fixed point value of H2 rises rapidly, as 
expected from Supplementary Materials S2, and H1/H2 decreases. Once H2 runs away, it rises approximately 
linearly with time with H1 slaved to it, as seen in Fig. 5f, with βσ2Hσ2 ≈ 10βσ1Hσ1 . The ratio H1/H2 approaches 
a limit of 0.04, whereas this value was found to be 0.07 using the approximate expression in Supplementary 
Materials S2. The fraction of void blockage reaches almost 80% Fig. 5h by the end of 16th year—again, far above 
the levels that correspond to significant performance decrements under sleep-deprivation or CSR conditions. 
Corresponding curves are also shown for the earlier cases in this frame.

The slope of H, once runaway occurs is 0.6 ×10−5 s −1 in the simulation; given time lags, this approximate 
value is consistent with the cycle-averaged value of η2Q (0.9 ×10−5 s −1 ) as χ2 increases, the voids become heavily 
blocked, and dH/dt approaches linear behavior.

In the cases above, occurrence of runaway required roughly an order of magnitude increase in the relevant 
parameter. However, we have also verified that if more than one parameter deviates from nominal, the necessary 
change can be much smaller. For example, if both the production rate and the clearance time constant increase 
by about a factor of 3.5, the combination suffices to cause runaway.

Discussion
We have developed a biophysical model of homeostatic waste clearance in the brain and incorporated it in a 
model of arousal dynamics that also includes circadian effects. The key new features of the model are (i) higher 
glymphatic clearance of waste products from the brain in sleep than wake7,8,10, (ii) the effects of waste-product 
buildup on clearance, (iii) multiple time constants of waste clearance, and (iv) improved approximation of waste 
production rates in sleep.

This new model with two species allows us to explain the sleep-wake and cognitive dynamics observed at 
different time scales, from days in normal sleep-wake cycles and acute sleep deprivation, and weeks to years in 
chronic sleep restriction. Having determined parameters by fitting predictions to calibration data from normal 
arousal dynamics and CSR experiments, the model reproduces experimental results on recovery from sleep 
deprivation and sleep restriction and on intermittent sleep restriction, without further adjustment. This is the 
first model to combine these different temporal scales of sleep disturbances using physiological mechanisms 
at the level of the homeostatic drive. Several other models have described the dynamics of cognitive outputs, 
like PVT, in acute sleep deprivation and chronic sleep restriction based on prior sleep history, but they did not 
incorporate the underlying dynamic homeostatic drive or brain clearance mechanisms51–55.

Notably, when two species’ parameters are fitted to data, one has time constant of ∼ 20 h and properties close 
to those previously found to account for normal sleep-wake cycles and total sleep deprivation, whereas the other 
has a characteristic clearance time of ∼ 9 days, which is close to that for tau protein22,48. This strengthens the 
possible link to tau buildup in neurodegenerative disorders such as Alzheimer’s disease.

Under normal sleep-wake conditions, inferred waste levels and corresponding homeostatic drive oscillate 
around a mean value over the circadian cycle with around 7–8% obstruction of interstitial void volume on 
average (15% obstruction of flow), varying between about 9% at sleep onset to around 6% just before waking. 
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Corresponding figures after several days of sleep deprivation or two weeks of CSR are around 14% volume 
obstruction. However, we predict the existence of a threshold for runaway waste buildup, beyond which the 
waste itself obstructs clearance so greatly that it leads to runaway of the homeostatic drive and eventual near-total 
obstruction of interstitial voids. These predictions are in line with the evidence that in neurodegenerative disor-
ders sleep disturbances can often precede cognitive symptoms by several years or even decades9. Significantly, 
prior to this critical point the model predicts a rapid increase in steady-state levels of waste products, which 
could potentially signal proximity of the runaway and could be detected experimentally via assays or imaging.

We explored runaway tau buildup driven by either sudden injury or gradual onset of pathology, especially 
in the form of enhanced waste production and/or impaired clearance. Timescales proved to be on the order 
of months to years, comparable to those observed for the onset of Alzheimer’s symptoms, including cognitive 
decline which has been associated with the buildup of tau plaques and neurofibrillary tangles56. Our identifi-
cation of the key parameters for waste buildup and runaway highlights potential targets for monitoring and 
therapeutic intervention.

In the present study we have considered temporal changes in brain clearance and have assumed the same 
clearance and obstruction mechanisms across the brain. However, neurodegenerative diseases like Alzhei-
mer’s are often characterized by specific spatial pattern of where those chemicals aggregate and provoke brain 
abnormalities57. For example, Amyloid-β pathology starts in the cortex and only propagates to subthalamic 
regions in late stages of the disease58, whereas tau pathology first occurs in the locus coeruleus and enthorinal 
cortex, whence it expands to limbic and isocortical regions59. Quantitative study of such spatial dynamics would 
require the present model to be generalized to explicitly incorporate these structures and their differing activity 
levels and clearance parameters.

Normal ageing is also associated with reduction of glymphatic clearance (by ∼ 80−90 % in aged mice)7,10,11 
which slows down fluid flow in the brain and facilitates accumulation of debris that may further obstruct clear-
ance and change sleep patterns. The model predicts that such changes would be observed, at least partly due to 
accumulated effect of sleep disturbances over many years, even below the runaway threshold. This degradation 
of clearance in aging may contribute to cognitive decline seen even in healthy old adults. Our model provides a 
tool for exploration of how sleep-wake dynamics earlier in life affect cognitive outcomes in old age and for design 
of interventions to slow down or prevent cognitive decline.

Overall, the model has demonstrated a wide range of successful predictions, and makes others for further 
experimental testing. We stress that more accurate modeling of very large homeostatic drives and their links to 
cognition will be necessary to further refine predictions. Other underlying issues that would bear further inves-
tigation include more detailed modeling of diffusion and advection through insterstitial voids, the inclusion of 
spatial variations in parameters, modeling different forms of tau in both extracellular and intracellular locations, 
and including in situ degradation of waste alongside clearance. Other directions for future work include: (i) Brain 
clearance process in sleep shows an endogenous circadian rhythm60, which has not yet been incorporated. This 
is relevant when considering restricted sleep at different times of day, such as that in shiftworkers and during 
jetlag. This should be considered in the future because shiftworkers have been reported to have higher incidence 
of dementia61, which may plausibly be partly due to reduction of brain clearance when sleep occurs at inappro-
priate circadian times. (ii) The possibility that short-lived chemical species may be responsible for rapid partial 
restoration of cognitive performance by naps should be explored. (iii) The bidirectional connections between 
sleep patterns and clearance should be considered in detail. In this work we studied how sleep patterns affect 
clearance dynamics and showed that obstruction tends to increase sleep duration, but the effects of changes in 
clearance on sleep-wake cycles during healthy ageing should also be explored7,10.

Methods
Goodness of fit parameter.  To assist in finding optimal parameters from dynamics, we define a qualita-
tive goodness-of-fit parameter ζ , which we minimize over the parameter space, with

where ζN , ζSSD , and ζCSR are contributions from fits to normal, subsequent sleep duration after sleep deprivation, 
and CSR experiments.

The contribution ζN in Eq. (22) is written as

This expression contains terms that penalize deviations of sleep duration d from the nominal d0 = 8.2 h and 
sleep onset time s from the nominal s0 = 23.5 h, with tolerances �d = 0.15 h and �s = 1 h, respectively, based 
on optimal sleep duration range 8.05–8.35 h and night sleep onset range 2230–0030 h.

We define ζSSD in Eq. (22) to be

where the score measures the deviation of recovery sleep duration R from the nominal R0 = 13.5 h following 88 
h of total sleep deprivation with tolerance �R = 1.5 h based on optimal sleep duration range 12–15 h.

The contribution ζCSR is calculated from the rms deviations m between the estimated PVT measure p and 
the experimental PVT data, summed across the four experimental conditions of total sleep deprivation, and 4 
h, 6 h, and 8 h of sleep opportunity per day, respectively. Hence, we define ζCSR to be

(22)ζ =ζN + ζSSD + ζCSR,

(23)ζN =
(d − d0)

2

(�d)2
+

(s − s0)
2

(�s)2
.

(24)ζSSD =
(R − R0)

2

(�R)2
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where the subscripts indicate the number of hours of sleep opportunity per day and we set �m = 0.15 to give 
similar weight to the normal and CSR contributions in Eq. (22).

Data availability
All data are from the published papers cited.
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