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Single‑qubit reaped quantum state 
tomography
Mahn‑Soo Choi

Quantum state tomography is the experimental procedure of determining an unknown state. It is 
not only essential for the verification of resources and processors of quantum information but is also 
important in its own right with regard to the foundation of quantum mechanics. Standard methods 
have been elusive for large systems because of the enormous number of observables to be measured 
and the exponential complexity of data post-processing. Here, we propose a new scheme of quantum 
state tomography that requires the measurement of only three observables (acting jointly on the 
system and pointer) regardless of the size of the system. The system is coupled to a “pointer” of single 
qubit, and the wavefunction of the system is “reaped” onto the pointer upon the measurement of the 
system. Subsequently, standard two-state tomography on the pointer and classical post-processing 
are used to reconstruct the quantum state of the system. We also developed an efficient and scalable 
iterative maximum likelihood algorithm to estimate states from statistically incomplete data.

To develop reliable quantum resources and devices for quantum information processing, it is crucial to verify 
their actual performance. This is achieved at various levels, such as quantum process tomography1 and quan-
tum detector tomography2,3, and at the most fundamental level is the quantum state tomography, which is the 
procedure of experimentally determining an unknown quantum state4. Quantum state tomography is of great 
interest in its own right with regards to the foundation of quantum mechanics as well.

In the standard formulation5, quantum state tomography is accomplished by performing repeated measure-
ments of numerous non-commuting observables on many systems prepared in the same states. As a matter of 
principle, if the set of non-commuting observables is complete and the measurements are repeated infinitely 
many times, one can build up a comprehensive description of the quantum state by post-processing the meas-
urement statistics6,7. It is recapitulated by the three requirements of the standard quantum state tomography: 
(i) a complete set of observables to be measured (so-called “quorum”), (ii) accurate measurement statistics, and 
(iii) efficient post-processing. In practice, the requirement of measuring a complete set of observables causes 
overwhelming experimental obstacles, which affects the other requirements. Technical reasons and other dif-
ficulties may prevent some observables from being measured experimentally. For large systems, the number of 
required observables is exponentially large and places a serious limit on the number of repetitions of measure-
ments (which is finite anyway in reality). Both issues lead to incomplete measurement statistics and/or limited 
accuracy of measurement statistics. Furthermore, even if reasonably accurate measurement statistics are attained, 
the complexity of post-processing itself is exponentially high for large systems. To overcome such difficulties in 
exact quantum state tomography, various statistical methods have been developed to estimate quantum states, 
such as the maximum likelihood estimation8,9 and Bayesian estimation10–12 methods. Notably, most statistical 
estimation methods, including the ML and Bayesian approaches, are highly nonlinear procedures and generally 
suffer from high complexity for large systems.

Here, we propose a new quantum state tomography scheme that requires the measurement of only three 
observables regardless of the system size13. In this scheme, the system is coupled to a “pointer” of a single two-
level quantum system (i.e., “qubit”), and the wavefunction of the system is “reaped” onto the pointer upon the 
measurement of a single observable on the system. The subsequent standard quantum state tomography on 
the pointer and classical post-processing reconstruct the quantum state of the system, where the classical post-
processing requires matrix inversion. We refer to this scheme as single-qubit reaped (or pointer-reaped) quantum 
state tomography. We have also developed an iterative maximum likelihood (ML) estimation algorithm that is 
adaptable to the single-qubit reaped scheme. The iterative ML estimation algorithm is demonstrated by numeri-
cal simulations with several interesting quantum states, such as the GHZ, W, and Dicke states. Furthermore, 
by matrix product state (MPS) representations, the iterative ML algorithm is scalable and provides an efficient 
method to obtain MPS estimates for the mixed states of large systems. The MPS pure state estimate for the 
mixed state determines the lower bound of the fidelity between the pure and mixed states and can be used to 
experimentally verify the purity of the laboratory-generated states14.
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Results
Exact tomography.  Consider a system of n particles, each of which has dimension d, such that the total 
dimension of the system is N := dn. Let {|x� |x = 0, . . . ,N − 1} be the computational basis of the Hilbert space. 
Suppose that we have an ensemble of such systems, identically prepared in the unknown state |ψ� =

∑N−1
x=0 |x�ψx , 

with the “wavefunction” ψx ∈ C , where C is the set of complex numbers. We assume that ψ0  = 0 without a loss 
of generality (a physical state cannot be a null vector). Our proposed scheme is illustrated in the two equivalent 
quantum circuits in Fig. 1. We discuss these procedures in the following order:

First, we select a qubit as the “pointer”. The pointer plays a central role in the proposed scheme. Initially, we 
prepare the pointer in the state |+� := (|0� + |1�)/

√
2 , where |0� and |1� are the computational basis states of the 

pointer such that the initial state of the system plus pointer is given by |�� =
∑

x |x�ψx ⊗ |+�.
Next, we couple the system and pointer for a certain time, which is assumed to be sufficiently short compared 

to the typical time scales of the system and pointer. This interaction can be described by a unitary operator of 
the form15 Ûint = exp

(

iθ P̂ ⊗ |1� �1|
)

, where P̂ is an observable of the system. For the sake of physical imple-
mentation in actual experiments, one can take two different but equivalent views of Ûint . One can represent Ûint 
with the phase shift on the pointer conditioned on the system observable P̂ . To observe this more explicitly, let 
|p� be the eigenstate of the observable P̂ belonging to the eigenvalue p and rewrite Ûint as Ûint =

∑

p |p� �p| ⊗ Ûp 
with the p-dependent phase shift Ûp := |0� �0| + eipθ |1� �1| on the pointer. This interpretation is depicted in the 
quantum circuit representation in Fig. 1a and is analogous to the conventional von Neumann picture of the 
measurement of the observable P̂ . One important difference is that the pointer here is only of two dimensions 
and is insufficient to directly discriminate the N eigenvalues, p, of P̂ . On the other hand, noting that 
Ûint = Î ⊗ |0� �0| + V̂ ⊗ |1� �1| with Î being the identity operator and V̂ := eiθ P̂ , one can regard it as a pointer-
controlled unitary operator V̂  acting on the system. This picture is illustrated in the quantum circuit in Fig. 1b 
and is analogous to the quantum phase estimation circuit for a unitary transformation ( ̂V  in the present case)16. 
Throughout this paper, we will mainly consider the latter interpretation for convenience. After the unitary 
interaction, the total state becomes

where V is the matrix representation of V̂  in the computational basis,

We then measure the eigenvalues of the observable X̂ :=
∑

x x |x� �x| in the system. When the measurement 
outcome is x, the (unnormalized) pointer state is reduced to

Equation (3) reveals the key idea of the proposed scheme: the wavefunction ψx appears in the two expansion 
coefficients and can be determined by the standard quantum state tomography by measuring three independent 
observables, that is, the Pauli operators σ̂ x , σ̂ y , and σ̂ z in the pointer. One tricky point is that naive two-state 
tomography does not fix the overall phase, which is necessary to fix the relative phases of ψx for different values 
of x. We now provide a careful tomographic reconstruction procedure [see Eq. (6)] that is not hindered by this 
tricky issue.

Physically, the two-step procedure for the measurement of X̂ on the system and the subsequent quantum state 
tomography on the pointer is equivalent to the measurement of the eigenvalues of three observables, X̂ ⊗ σ̂ z , 

(1)Ûint |�� =
∑

xy

|x� ⊗
|0� δxyψy + |1�Vxyψy√

2
,

(2)Vxy := �x|V̂ |y� =
∑

p

�x|p� eipθ �p|y� .

(3)|φx� = |0�ψx + |1�
∑

y

Vxyψy .

Figure 1.   Two equivalent schematics of the single-qubit reaped quantum state tomography. (a) The system–
pointer interaction is described by the p-dependent conditional phase shift Ûp := |0� �0| + eipθ |1� �1| on the 
pointer. (b) The system–pointer interaction is regarded as the pointer-controlled unitary operator V̂ := eiθ P̂ on 
the system. The measurement on the system measures the eigenvalues x of the observable X̂ :=

∑

x x |x� �x| 
whereas the measurement on the pointer measures the eigenvalues of the Pauli operators σ̂ x , σ̂ y , or σ̂ z.
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X̂ ⊗ σ̂ x , and X̂ ⊗ σ̂ y . For the purpose of mathematical analysis of measurement outcomes and maximum likeli-
hood estimation process (see below), it is convenient to describe the measurements using the projective POVM 
elements

where �̂x = |x� �x| , �̂m = |m� �m| , and the index m ∈ M := {0, 1,+,−, L,R} refers to the eigenstates 
|m� = |0� , |1� , |+� , |−� , |L� , |R� of the Pauli operators σ̂ z , σ̂ x , and σ̂ y , respectively. The joint probabilities 
Px,m = ��| Û†

int�̂x,mÛint |�� determine the ratio between the two coefficients,

where ϕx := arg[(Px,+ − Px,−)+ i(Px,L − Px,R)]. Owing to the normalization constraint, the N relations in Eq. (5) 
are not independent of each other. Instead of directly imposing the normalization constraint, one can just deter-
mine the ratio ψx/ψ0 . This casts the relation (5) to the following set of (N − 1) linear equations

for x = 1, . . . ,N − 1 . Given the experimentally determined measurement statistics Px,m , solving the linear equa-
tions yields the wavefunction ψx (up to normalization). There are several dangerous cases in which Eq. (6) cannot 
provide a unique solution. Avoiding or overcoming them is addressed in “Methods”.

One simple example is to select the local basis |x� such that �x|p� = N−1/2e2π ixkp/N , where kp is the index of 
p when the eigenvalues are arranged in an ordered sequence. The computational basis |x� and the eigenstates |p� 
of P̂ are related by the quantum Fourier transform17. For a system consisting of qubits ( d = 2 ), another valu-
able example is the system operator of the form P̂ =

∑n
j=1 τ̂

x
j , where τ̂ xj := (|0� �1| + |1� �0|)j denotes the Pauli 

operator acting on the jth qubit. This leads to a pointer-controlled unitary operator

In this case, |x� and |p� are related to each other via the local Hadamard gates,

with

Maximum likelihood estimation algorithm.  Above, we have shown that, as a matter of principle, the 
single-qubit reaped scheme can successfully reconstruct quantum states. It assumes an idealistic situation where 
the probability distribution Px,m corresponding to the POVM elements �̂x,m can be inferred from measure-
ments. It is possible only when the measurements are repeated infinitely many times, apart from other technical 
imperfections; finite repetitions give rise to statistical errors in the inferred probabilities Px,m . Obviously, the 
statistical errors become more severe as the system size n increases; recall the number 6dn of possible measure-
ment outcomes (x, m). A popular method to overcome such an issue is to follow the maximum likelihood (ML) 
principle and seek the state that is most “likely” given the experimental observations rather than the actual (and 
impossible-to-infer) wavefunction6–9,18. In this section, we develop an iterative ML algorithm that can be com-
bined with the single-qubit reaping scheme discussed above. We note controversies about the physically proper 
estimation of quantum states from the experimental data11,18, and it would be valuable to develop other statistical 
methods, such as Bayesian approaches, that are adaptable to the present tomography scheme.

Consider an ensemble of F systems. Let Fx,m be the number of experimental observations corresponding to 
the POVM element �̂x,m , such that F =

∑

x,m Fx,m. The ideal situation corresponds to the limit F → ∞ , where 
the relative frequency Fx,m/F gives the true probability Px,m . For finite size ( F < ∞ ), Fx,m/F only estimates Px,m 
approximately. The observation statistics are governed by a multinomial distribution

where

(4)�̂x,m := 1

3
�̂x ⊗ �̂m,

(5)
1

ψx

N−1
∑

y=0

Vxyψy =
√

Px,1

Px,0
eiϕx ,

(6)
N−1
∑

y=1

{

√

Px,1e
iϕx δxy −

√

Px,0Vxy

}

(

ψy

ψ0

)

=
√

Px,0Vx0

(7)V̂ = eiθ P̂ =
[

cos θ i sin θ
i sin θ cos θ

]⊗n

(0 < θ < π/2)

(8)
[

�x|p�
]

x,p=0,1,··· ,2n−1
= H⊗n

(9)H := 1√
2

[

1 1
1 − 1

]

.

(10)L = F!
∏

x

∏

m∈M

(Px,m)
Fx,m

Fx,m!
,

(11)Px,m = ��| Û†
int�̂x,mÛint |��
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is the probability of obtaining the result (x, m) on the condition that the system plus pointer is prepared in the 
state |�� = |ψ� ⊗ |+� .

We use the multinomial distribution L as the likelihood function. Generally, the likelihood function should 
depend on the specific measurement apparatus and other experimental conditions. Here, we focus on the generic 
effects on statistical error, putting aside specific technical issues. The ML approach maximizes

(up to irrelevant terms) over all possible states |ψ� of the system with the normalization constraint. The wave-
function ψ̄x that maximizes the likelihood function satisfies the extremal equation (see “Methods” for details)

where the matrix W is defined by

and the x-dependent operator R̂x on the pointer by

Formally, R̂x is reminiscent of a similar operator (denoted by R̂ ) that appears in the iterative maximization 
algorithm adapted to the standard tomography scheme9. In our case, R̂x acts on the pointer and not on the sys-
tem itself. In an ideal experiment where F → ∞ , the true wavefunction indeed gives the extremum solution, 
ψ̄x = ψx , as R̂x = Î . In a realistic experiment with a finite-size ensemble ( F < ∞ ), in general ψ̄x �= ψx , but ψ̄x 
is simply the wavefunction most likely for the given measurements data.

It should be noted that the operator R̂x depends functionally on the state |ψ� through the probability Px,m , and 
hence the extremum Eq. (13) is nonlinear. Solving such a nonlinear equation is unviable, particularly for large sys-
tems (involving a large number of variables ψx ). Instead, we have developed an iterative algorithm9,18–20. First, we 
need to choose an initial trial wavefunction. From the pointer state |φx� in Eq. (3) upon the measurement readout 
x, it follows that the probability Px,0 is directly proportional to |ψx|2 . This implies that |ψ(0)� ∝

∑

x |x�
√
Fx,0/F 

is a reasonable choice. At each iterative step k, the wavefunction |ψ(k)� is updated using the mapping

where the iteration generator Ŵ :=
∑

xy Wxy |x� �y| is constructed from the matrix W in Eq. (14). Interestingly, 
the iteration procedure can be represented by the quantum circuit shown in Fig. 2, which illustrates the crucial 
role of the pointer from another perspective. The quantum circuit itself is not advantageous when one evaluates 
the iterations directly. However, as we will observe later, it clearly reveals the simple mathematical structure of 
the iteration generator Ŵ , which permits the scalability of the iterative algorithm.

The convergence of no iterative ML algorithm has been analytically proven18. However, in standard ML 
approaches21,22, numerical tests have demonstrated convergence for physically interesting states, and a diluted 
iterative algorithm is available when the convergence is critical18. Here, we demonstrate the algorithm numeri-
cally using several examples for a system of six qubits ( n = 6 and d = 2 ). The first example is the symmetric 
Dicke state |ψ� =

∑′ |000111� /
√
20, where 

∑′ refers to the summation over all permutations of the qubits. 
We simulated the measurements for an ensemble of 24,000 systems ( F = 24, 000 ) all prepared in the same state 
|ψ� . The resulting relative frequencies, Fx,m , of the measurement readouts (x, m) are shown in Fig. 3a. We then 
obtained the ML estimate |ψ(500)� for the measurement data ( Fx,m ) through 500 iterations in accordance with 

(12)logL =
∑

x

∑

m∈M
Fx,m log Px,m

(13)
∑

y

Wxyψ̄y = ψ̄x ,

(14)Wxy := �0|R̂x |0� δxz + �0|R̂x |1�Vxy + V†
xy �1|R̂y|0� +

∑

z

V†
xz �1|R̂z |1�Vzy

(15)R̂x :=
∑

m∈M

Fx,m

Px,m
|m� �m| .

(16)Ŵ[ψ(k)] |ψ(k)� = |ψ(k+1)� ,

Figure 2.   Quantum circuit interpretation of the maximum likelihood iteration. The solid dot indicates 
the “controlled”-V̂ (or V̂† ) acting only when the pointer is in the state |1� whereas the open circle indicates 
“conditional”-R̂x on the pointer conditioned on the state |x� of the system. Despite the quantum circuit 
interpretation, the iteration procedure is not linear as the operator R̂x[ψ(k)] depends on the trial state |ψ(k)�.
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(16). As shown in Fig. 3 (b, blue curve), the infidelity between the states from consecutive iterations was already 
less than 10−5 after 150 iterations. The fidelity, 

∣

∣�ψ(200)|ψ�
∣

∣

2
, with the true wavefunction is larger then 0.997.

We performed similar simulations and made the ML estimates for the simulation results for the W-state 
|ψ� = (|100000� + |010000� + · · · + |000001�)/

√
6, the GHZ state |ψ� = (|000000� + |111111�)/

√
2, and the 

ground state of the transverse-field Ising model in the ordered phase. Figure 3b corroborates the excellent con-
vergence for all those cases. The fidelities between the ML estimates and the respective true wavefunctions were 
also as good as 0.99 or larger.

Scalability and mixed states.  Each ML iteration in Eq. (16) involves the multiplication of exponentially 
large matrices and vectors, and the computational cost of many iterations for the desired accuracy may still be 
high for large systems. This can be overcome by means of matrix product state (MPS) and matrix product opera-
tor (MPO) representations (see “Methods”). We first examine the quantum circuit shown in Fig. 2 more closely 
to better understand the MPO structure of the iteration generator, Ŵ . Let Ŵtot be the extended operator acting 
on the system and pointer, which results in Ŵ = �+|Ŵtot|+� when averaging over the pointer with the state |+� . 
Ŵtot consists of the controlled-unitary operator Î ⊗ |0� �0| + V̂ ⊗ |1� �1| and the conditional-unitary operator 
∑

x |x� �x| ⊗ R̂x[ψ(k)].
The former is an MPO with a bond dimension of 2 when the coupling observable P̂ (and hence V̂  ) is local 

[Eq. (7) is an example]. The latter is also an MPO with a finite bond dimension provided that the input state 
|ψ(k)� is an MPS with a finite bond dimension because an MPS only has finite correlations23,24; see “Methods”. 
Therefore, Ŵtot , the product of three MPOs, should be an MPO with a finite bond dimension, and so is Ŵ as 
it corresponds to a partial trace of an MPO. Currently, the operation of an MPO on an MPS can be efficiently 
evaluated23,24. In summary, if the laboratory states are MPS, the iteration generator is represented by an MPO, 
and the ML iterations in Eq. (16) can be updated efficiently. Recently, a formally similar iterative algorithm (from 
a different tomography scheme) powered by MPO and MPS representations has been demonstrated in detail22.

Because only a polynomial number of parameters is required for the MPS representations, they span only a 
small portion of the entire Hilbert space. However, it is well known that many states relevant to quantum informa-
tion processing, condensed matter physics, and other areas of physics exist in the MPS form. The ground states 
of the strongly correlated many-body Hamiltonians as well as the cluster states are notable examples.

Moreover, as was pointed out recently14, the tomographic estimation of MPS pure states is valuable even when 
the system is in a mixed state. That is, it allows us to determine a lower bound on the fidelity between the pure 
state estimate and mixed states compatible with the experimental observations, thereby certifying the purity of the 
laboratory state via experiments. A scalable ML method has been proposed to directly reconstruct mixed states 
via local measurements21,22, assuming that the states are close to a MPS. For their method, however, experiment-
ers are required to measure many non-commuting observables whereas our scheme requires the measurement 
of only three observables X̂ ⊗ σ̂ x , X̂ ⊗ σ̂ y , and X̂ ⊗ σ̂ z , regardless of the system size13.

Discussion
A seemingly similar idea to couple the system with an ancillary system and measure only one observable (over 
the entire system plus ancilla) has been previously proposed25; this is the so-called ancilla-assisted quantum state 
tomography and has been demonstrated in recent experiments26,27. However, their scheme required the ancilla 
to be as large as or even larger than the system (one obvious advantage is that it can directly estimate the density 
matrix of the system). Moreover, no ML algorithm has been developed for their scheme.

The convergence of the ML iterations varies for different states. For example, it is noted in Fig. 3b that the 
convergence of the ML iterations is slower for the GHZ state (approximately 500 iterations are required for 

(a) (b)

Figure 3.   (a) Relative frequencies Fx,m of the measurement readouts (x, m) from the simulation with an 
ensemble of 24,000 systems in the symmetric Dicke state with six qubits ( F = 24, 000 , n = 6 , d = 2 ). (b) 
Convergence behaviors of the iterative maximization procedure for different system states (the W state, Dicke 
state, GHZ state, and the ground state of the transverse field Ising model in the ordered phase) exhibited by the 
fidelity between the states from consecutive iterations. For all the four cases, the fidelities between the resulting 
states and the true wavefunctions, respectively, are better than 0.99.
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similar accuracy) than for other states. Recalling the massive and long distance entanglement in the GHZ state, 
this fact raises an interesting question about the relation between the convergence behavior of our ML iterations 
and the properties (such as multi-partite entanglement) of the state. We leave the relation as an inspiring open 
question for future works.

Methods
State‑reconstruction equation.  Here, we derive the state-reconstruction Eq.  (5). We begin with the 
(unnormalized) pointer state in Eq. (1)

where we have defined αx := ψx and βx :=
∑

y Vxyψy for notational simplicity. We want to express the ratio 
βx/αx in terms of the joint probabilities Px,m . The joint probabilities satisfy the following relationship: 

Using the last two relations, one can obtain

This implies that the relative phase between αx and βx , which is the essential part for quantum coherence 
effects, can be extracted by combining the join probabilities on the left-hand side. More explicitly, we express it as

and observe that

which is identical to Eq. (5). The physical implication of the above relation is that the probabilities Px,0 and Px,1 
in the computational basis of the pointer give the relative magnitudes of αx and βx , whereas the probabilities Px,± 
and Px,L/R give the relative phases between them.

Dangerous cases.  There are three dangerous cases where the wavefunction extraction scheme in Eq. (13) 
may not give a unique solution: 

	 (i)	 In the first case, P̂ is compatible with the computational basis, {|x�} ( [X̂, P̂] = 0 ). Then, |x� are essentially 
eigenstates of P̂ , and the pointer state upon the measurement of X̂ becomes |φx� = ψx(|0� + |1� eiθx). 
Because ψx is an overall factor, it cannot be extracted.

	 (ii)	 In the second case, the unitary V̂  is block diagonal (possibly after simultaneous permutations of rows 
and columns) in a given basis. Suppose that V̂ = V̂ (1) ⊕ V̂ (2) with V̂ (1) and V̂ (2) operating on orthogonal 
subspaces H(1) and H(2) , respectively, of H(1) ⊕H

(2) = H . Accordingly, any state |ψ� is decomposed 
into |ψ� = |ψ(1)� ⊕ |ψ(2)� . Upon the measurement of X̂ , the pointer is cast to 

 for |x� ∈ H
(ν) ( ν = 1, 2 ). Therefore, in this case, one can assess ψ(ν)

x /ψ
(ν)
0  by applying the wavefunction 

extraction scheme (6) for each sector ν . However, it is impossible to extract the phase relations between 
different sectors.

	 (iii)	 The third case is a special case where |ψ� happens to be an eigenstate of P̂ (i.e., V̂  ) belonging to a degener-
ate eigenvalue p. Suppose that the pointer is in the state |φx� = ψx(|0� + |1� eiθp) after the measurement 
of X̂ on the system. The two-state tomography can successfully extract the relative phase factor eiθp , and 
hence p. If p is non-degenerate, the eigenvalue itself uniquely identifies |ψ� as its eigenstate. However, it 
is impossible if p is degenerate. Fortunately, this special case can be discerned experimentally because 
ϕx is independent of x, and Px,0 = Px,1 for all x.

The first two cases can be avoided simply by properly choosing either the coupling operator P̂ or the com-
putational basis |x�.

(17)|φx� = |0�αx + |1�βx ,

(18a)Px,0 = |αx|2,

(18b)Px,1 = |βx|2,

(18c)Px,+ − Px,− = α∗
xβx + αxβ

∗
x ,

(18d)i(Px,L − Px,R) = α∗
xβx − αxβ

∗
x .

(19)Px,+ − Px,− + i(Px,L − Px,R) = 2α∗
xβx .

(20)ϕx := arg
[

Px,+ − Px,− + i(Px,L − Px,R)
]

,

(21)eiϕx = Px,+ − Px,− + i(Px,L − Px,R)

2|αxβx|
= α∗

x

|αx |
βx

|βx|
= βx

αx

|αx|
|βx|

= βx

αx

√

Px,0

Px,1
,

(22)|φx� = |0�ψ(ν)
x + |1�

∑

y

V̂ (ν)
xy ψ(ν)

x
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Iterative ML algorithm.  Here, we detail the maximization of the likelihood function over the entire Hil-
bert space. Because of the normalization constraint, it is more convenient to maximize

where � is the Lagrange multiplier. Suppose that the system was initially in a definite state |y� and went through 
the unitary interaction Ûint with the pointer. Let |φxy� be the pointer state upon the measurement outcome x on 
the system. Explicitly, it can be expressed as

The pointer state |φx� resulting from the general initial state |ψ� of the system is related to |φxy� by 
|φx� =

∑

y |φxy�ψy.
In terms of |φxy� , the joint probability can be expressed as

For later use, it should be noted that its derivative with respect to ψx has the form

Then, the extremal equation for the maximization problem (23) is given by

We define an x-dependent operator R̂x on the pointer by

Then, the extremal equation (27) is

Putting (24) into the above equation, we obtain

which is identical to the matrix equation (13).

Matrix product states and operators.  Consider a system of n particles, each of which has Hilbert space 
dimension d. We denote the computational basis state |x� for x = 0, 1, . . . , dn − 1 as |x� = |x1� ⊗ |x2� ⊗ · · · |xn� , 
where xj are the base d digits in x, x = x1 + x2d + · · · + xnd

n−1.
An open boundary matrix product state (MPS)23,24 is represented by

where Axj
j  are the Dj × Dj+1 complex matrices, depending on the local state xj , and D1 = DN+1 = 1 . Similarly, 

an open boundary matrix product operator (MPO) takes the form

where τ̂ µj

j  are the basis operators of the Hilbert space of all linear operators acting on particle j; and Bµj

j  are 
D′
j ⊗ D′

j+1 complex matrices ( D′
1 = D′

n+1 = 1).
One can observe that the conditional operator 

∑

x |x� �x| ⊗ R̂x[ψ(k)] is an MPO with a finite bond dimension 
provided that the state |ψ(k)� is an MPS with a finite bond dimension. Because an MPS has finite correlations, the 
probabilities Px1...xn ,m are factorized as they are statistically independent of the uncorrelated parts23,24; we recall 
the base-d digits representation of x. This is also the case for the experimental observed frequencies Fx1...xn ,m . 
Therefore, the conditional operator is an MPO with a finite bond dimension.

Data availability
The source code that support the findings of this study are available from the author upon reasonable request.

(23)logL [ψ] − �

∑

x

|ψx|2,

(24)|φxy� := |0� δxy + |1�Vxy .

(25)Px,m = �φx|�̂m|φx� =
∑

yz

�m|φxy�∗ ψ∗
y �m|φxz�ψz .

(26)
∂Px,m

∂ψ∗
y

=
∑

z

�m|φxy�∗ �m|φxz�ψz .

(27)
logL

∂ψ∗
y

=
∑

x

∑

m∈M

Fx,m

Px,m

∂Px,m

∂ψ∗
y

=
∑

xz

∑

m∈M
�φxy|m� Fx,m

Px,m
�m|φxz�ψz = ψy .

(28)R̂x :=
∑

m∈M

Fx,m

Px,m
|m� �m| =

∑

m∈M

Fx,m

Px,m
�̂m.

(29)
∑

xz

�φxy| R̂x |φxz�ψz = ψy .

(30)
∑

xz

(

δyx �0| + V†
yx �1|

)

R̂x(|0� δxz + |1�Vxz)ψz = ψy ,

(31)|η� =
∑

x

|x1� ⊗ |x2� ⊗ · · · ⊗ |xn�Ax1
1 Ax2

2 · · ·Axn
n ,

(32)Ô =
d2
∑

µ1=1

∑

µ2

· · ·
∑

µn

τ̂
µ1
1 ⊗ τ̂

µ2
2 ⊗ · · · ⊗ τ̂ µn

n B
µ1
1 B

µ1
2 · · ·Bµ1

n ,
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