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Development and implementation 
of patient‑level prediction models 
of end‑stage renal disease 
for type 2 diabetes patients using 
fast healthcare interoperability 
resources
San Wang1,6, Jieun Han2,6, Se Young Jung2,3*, Tae Jung Oh4,5*, Sen Yao1, Sanghee Lim1, 
Hee Hwang3, Ho‑Young Lee3 & Haeun Lee3

This study aimed to develop a model to predict the 5‑year risk of developing end‑stage renal disease 
(ESRD) in patients with type 2 diabetes mellitus (T2DM) using machine learning (ML). It also aimed to 
implement the developed algorithms into electronic medical records (EMR) system using Health Level 
Seven (HL7) Fast Healthcare Interoperability Resources (FHIR). The final dataset used for modeling 
included 19,159 patients. The medical data were engineered to generate various types of features that 
were input into the various ML classifiers. The classifier with the best performance was XGBoost, with 
an area under the receiver operator characteristics curve (AUROC) of 0.95 and area under the precision 
recall curve (AUPRC) of 0.79 using three‑fold cross‑validation, compared to other models such as 
logistic regression, random forest, and support vector machine (AUROC range, 0.929–0.943; AUPRC 
0.765–0.792). Serum creatinine, serum albumin, the urine albumin‑to‑creatinine ratio, Charlson 
comorbidity index, estimated GFR, and medication days of insulin were features that were ranked 
high for the ESRD risk prediction. The algorithm was implemented in the EMR system using HL7 FHIR 
through an ML‑dedicated server that preprocessed unstructured data and trained updated data.

Type 2 diabetes mellitus (T2DM) is known to be a leading cause of end-stage renal disease (ESRD)  worldwide1,2. 
ESRD is the final and permanent stage of chronic kidney disease (CKD), where kidney function has declined 
to the point which the kidneys cannot function any longer on their  own3. As the population of individuals 
with T2DM is increasing rapidly, the population of individuals with ESRD is also  accelerating4–6. In Korea, the 
prevalence of T2DM increased over 17 years from 2001 (8.6%) to 2018 (13.8%) in adults ≥ 30 years of  age7. This 
prevalence is not much different from that of adults in the United  States8. Furthermore, although many anti-
diabetic and anti-hypertensive medications have been developed, the prevalence of ESRD has not  decreased9.

Recent studies have proven that at least 90% of patients with diabetic kidney disease (DKD) are at a higher risk 
of mortality because of comorbidities such as cardiovascular disease and kidney  failure10.  Furthermore, in con-
trast to other diabetic complications, mortality associated with renal complications is continuously  increasing11. 
Therefore, there is a need to predict and prevent ESRD, which is the most severe stage of DKD, to slow or stop 
the progression of DKD by performing early diagnosis and treatment, thereby minimizing the medical costs 
associated with kidney failure treatment.
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Many studies have focused on determining the predictive factors for the development of DKD, including clini-
cal markers such as baseline values of the glomerular filtration rate (GFR), systolic blood pressure, fasting blood 
glucose,  triglycerides12, and genetic markers, such as the angiotensin-converting enzyme  genotype13. Addition-
ally, various risk prediction models have been developed that incorporate these known risk  factors14–18. These 
studies successfully presented the risk prediction for DKD. For example, one study conducted in China with 
8.3 years of follow-up predicted the 3-year, 5-year, and 8-year risk of ESRD in type 2 diabetes patients with good 
accuracy (area under the receiver-operating characteristic [AUROC] curve of 0.90, 0.86, and 0.81, respectively) 
using discriminatory values such as age, sex, age at the time of diabetes onset, creatinine, albuminuria, varia-
tions in HbA1c, combined statuses of hypertension, diabetes, and hyperlipidemia in risk-scoring  systems14–16.

However, variables other than the known risk factors can also influence the development of ESRD. Thus, 
machine learning using various risk factors should be adopted to improve the accuracy of the predictive model for 
ESRD, as in the case of previous studies where machine learning was applied to increase accuracy in diagnosing 
 T2DM19,20. To our knowledge, no previous study has used machine learning to develop a patient-level ESRD risk 
prediction model. Furthermore, any attempt to deploy such a prediction model in the real-world clinical setting 
such that it is of service to patients and clinicians has been deficient. Integrating the prediction model into the 
electronic medical records (EMR) system would provide additional benefits such as allowing the identification 
of patients at a high risk of ESRD in busy hospital environments.

In this study, we aimed to develop a patient-level prediction model for ESRD in adults with type 2 diabetes 
mellitus that presents a risk score for developing ESRD within 5 years. We also aimed to distinguish the model 
from similar pre-existing tools, such as the Kidney Failure Risk Equation and the tools from the Chronic Kidney 
Disease Prognosis  Consortium21,22. Furthermore, we aimed to create a model that is applicable in actual clinical 
practice in a multitude of hospitals and can be implemented in the EMR system.

Results
Clinical characteristics of the patients. The baseline characteristics of 19,159 individuals in the cohort 
are presented in Table 1. During 16 years of follow-up, 1,583 patients (8.3%) developed ESRD. These patients 
were older and had higher blood pressure and poor lipid profiles compared to individuals without ESRD. How-
ever, patients with ESRD were less obese than their counterparts.

Model discrimination and calibration performance. Our model had good discriminatory power, 
which indicates how well our model discriminates between patients with and without ESRD, with an AUROC 
curve of 0.947 and area under precision recall curve (AUPRC) of 0.785 (Table 2).

The calibration performance was also assessed with the calibration  plot23. The plot was created by discretizing 
the [0, 1] interval into 10 uniform bins. For each bin, the mean predicted probability and true fraction of positive 
cases were plotted on the x-axis and y-axis, respectively. A perfectly calibrated model is represented by a diagonal 
line. If the model was above the diagonal line, it indicated that the model underestimated the risks. Similarly, if 
the model was below the diagonal line, it was an indication of an overestimation of risks. We observed that our 
model moderately overestimated higher risk score groups (Fig. 1).

Model comparison. We compared the discriminatory power of the XGBoost model against other types of 
models, such as linear regression, support vector machine, decision tree, and random forest models (Table 3 and 
Supplementary Fig. 1). Our XGBoost model had the best discrimination power (AUROC curve, 0.947; AUPRC, 
0.792) compared to other models (AUROC curves range, 0.929–0.943; AUPRC range, 0.765–0.792).

Cost–benefit analysis (decision curve analysis). To assess the recall of our model, which indicates the 
proportion of true-positive cases compared to all positive cases (true-positive and false-negative cases), we plot-
ted the recall curve (Fig. 2a), which shows the recall rate as a function of the number of cases treated.

Similarly, we also assessed the precision of the model, which is the proportion of true-positive cases compared 
to all predicted cases, by ranking predicted cases in descending order according to their predicted probabilities 
(Fig. 2b).

To evaluate our model performance from the perspective of clinical value, we conducted a decision curve 
analysis (Fig. 2c). The main advantage of the decision curve analysis is that it incorporates clinical consequences 
into the model evaluation and does not require additional data, such as an explicit assessment of health outcomes 
or treatment-related costs. Instead, it considers a threshold probability as an informative indicator of relative 
harms of a false-positive and a false-negative  prediction24,25. We also analyzed changes of precision and recall 
across a range of probability thresholds (Fig. 2d).

Model explainability. We used the Shapley Additive Explanations (SHAP) analysis to interpret the data 
acquired from the machine learning process of the XGBoost model and evaluate the importance of the individ-
ual features of the prediction of ESRD. SHAP is a framework that interprets predictions that a machine learning 
model conducted. It calculates the contribution of each feature to the prediction and assigns an importance value 
to each feature depending on the result of the  calculation26. Figure 3 shows the magnitude and direction of the 
contribution of each feature compared to the average model prediction.

To assess the stability of the importance of these features, we checked the ranges and standard deviations 
of their rankings with regard to different index dates (Supplementary Fig. 2). According to the results of itera-
tive experiments, the features with a high rank with the greatest importance did not show much distinction 
from those with other ranks. Serum creatinine, serum albumin, the urine albumin-to-creatinine ratio, Charlson 
comorbidity index, estimated GFR, and medication days of insulin were features that were ranked high for the 
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ESRD risk  prediction27. However, our prediction model incorporated new parameters such as blood albumin 
level, and non-invasive markers of hepatic fibrosis such as nonalcoholic fatty liver disease, fibrosis score, and 
fibrosis-4 index.

Implementation of the machine learning‑based clinical decision support system. The devel-
oped model was implemented with a dedicated server for the Machine Learning-based Clinical Decision Sup-
port System (Supplementary Fig. 3). The server extracted structured data through the Fast Healthcare Interoper-

Table 1.  Baseline characteristics of study participants. Data are shown in mean ± SD or number (%).The 
percentage in the parenthesis indicates the percentage of non-zero values (continuous variables) or the 
percentage of a given category (categorical variables). Patient characteristics are calculated from one randomly 
selected cohort. ESRD end stage renal disease, BMI body mass index, SBP systolic blood pressure, DBP 
diastolic blood pressure, TC total cholesterol, HDL high density lipoprotein, LDL low density lipoprotein, 
TG triglyceride, T2D type 2 diabetes, UACR  Urine albumin to creatinine ratio, eGFR estimated glomerular 
filtration rate. a Duration of Hospital Visits is the total duration of patients’ visits in Seoul National University 
Bundang Hospital. b The total duration of T2DM management gained through ICD-10 diagnosis codes of Type 
2 Diabetes.

Total Not progressed to ESRD Progressed to ESRD P value

Number 19,159 17,576 1,583

Age 62.3 ± 11.7 (100.0%) 62.0 ± 11.6 (100.0%) 66.1 ± 12.1 (100.0%)  < 0.001

Sex

Male 10,674 (55.7%) 9739 (55.4%) 935 (59.1%)

Female 8485 (44.3%) 7837 (44.6%) 648 (40.9%) 0.005

Current smoking

No 10,052 (52.5%) 9178 (52.2%) 874 (55.2%)

Yes 3622 (18.9%) 3281 (18.7%) 341 (21.5%) 0.192

Duration of Hospital Visits (days)a 1260.5 ± 1061.0 (100.0%) 1267.6 ± 1042.5 (100.0%) 1181.8 ± 1245.2 (100.0%) 0.002

Weight (kg) 66.0 ± 12.3 (88.3%) 66.2 ± 12.2 (88.2%) 63.8 ± 12.6 (88.6%)  < 0.001

BMI (kg/m2) 25.2 ± 4.2 (56.4%) 25.2 ± 4.1 (57.2%) 24.7 ± 5.3 (47.9%) 0.003

SBP (mmHg) 129.1 ± 17.7 (89.4%) 128.6 ± 17.2 (89.3%) 135.1 ± 21.3 (90.1%)  < 0.001

DBP (mmHg) 74.1 ± 11.4 (90.6%) 74.2 ± 11.3 (90.5%) 73.0 ± 12.6 (91.9%)  < 0.001

TC (mg/dL) 170.4 ± 37.7 (99.1%) 170.8 ± 37.1 (99.2%) 165.8 ± 44.4 (98.8%  < 0.001

HDL (mg/dL) 48.5 ± 12.2 (85.1%) 48.7 ± 12.1 (85.6%) 45.2 ± 12.6 (79.5%)  < 0.001

LDL(mg/dL) 92.2 ± 29.0 (78.0%) 92.1 ± 28.6 (78.7%) 93.0 ± 33.8 (70.9%) 0.324

TG (mg/dL) 144.7 ± 80.6 (85.1%) 144.0 ± 80.2 (85.6%) 152.7 ± 85.5 (79.6%)  < 0.001

eGFR (ml/min/1.73  m2) 76.7 ± 22.4 (98.9%) 79.9 ± 19.3 (98.9%) 41.5 ± 24.0 (98.9%)  < 0.001

UACR 72.7 ± 216.9 (51.9%) 45.3 ± 145.6 (52.4%) 420.6 ± 494.4 (45.6%)  < 0.001

Duration of Type 2  Diabetesb 884.5 ± 901.4 (100.0%) 884.3 ± 884.2 (100.0%) 886.4 ± 1074.2 (100.0%) 0.930

Hypertension

No 2446 (12.8%) 2422 (13.8%) 24 (1.5%)  < 0.001

Yes 16,713 (87.2%) 15,154 (86.2%) 1559 (98.5%)

Duration of hypertension 1001.9 ± 973.5 (87.2%) 1009.8 ± 959.1(86.2%) 924.7 ± 1101.0 (98.5%) 0.001

Table 2.  Model performance of the developed model. The values are derived from 9 iterations, which is the 
number of fold (k = 3) * the number of epochs (N = 3). Final performance value is the average of three-fold 
validation over three cohorts. The confidence interval is calculated by bootstrapping first then calculating the 
95 percentile range. ci_low Lowest 95% confidence interval of experiments, ci_high Highest 95% confidence 
interval of experiments, SD Standard Deviation, AUPRC Area Under Precision-Recall Curve, AUROC Area 
Under Receiver-Operator Characteristics.

Model XGB

Metric Accuracy AUPRC AUROC Precision Recall

Count 9.000 9.000 9.000 9.000 9.000

Mean 0.959 0.785 0.947 0.828 0.631

SD 0.002 0.013 0.005 0.018 0.024

ci_low 0.957 0.777 0.944 0.817 0.616

ci_high 0.960 0.794 0.950 0.840 0.644
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ability Resources server from EMR, such as visit history, medication history, laboratory values, and vital signs 
(Supplementary Table 2). For the extraction of unstructured data, such as smoking history, reading of imaging 
studies, and results of electrocardiography, the server directly accessed the EMR and preprocessed the unstruc-
tured data into structured input features for the calculation of the prediction model based on the XGBoost 
algorithm.

Dashboard. A prototype of a comprehensive dashboard for the Machine Learning-based Clinical Decision 
Support System was designed to provide the results of the prediction algorithm and related test results of an 
individual patient. The ESRD risk determined by the prediction model was presented with the SHAP analysis to 
enable users to identify modifiable risk factors among the high-ranking input features according to the SHAP 
results (Supplementary Fig. 4).

Discussion
We successfully developed a 5-year ESRD risk prediction model for type 2 diabetes mellitus using a machine 
learning algorithm based on the medical data of the study cohort consisting of 19,159 patients. Among various 
machine learning methods, the XGBoost classifier showed the best discriminatory performance when process-
ing medical data. Additionally, we applied the SHAP analysis to evaluate the relative importance of each feature, 
which could provide specific medical information to physicians.

Figure 1.  Model discrimination and calibration performance. AUROC area under the receiver-operating 
characteristic, PRC precision recall curve, ROC receiver-operating characteristic.

Table 3.  Model performances of difference machine learning algorithms. ci_low Lowest 95% confidence 
interval of experiments, ci_high Highest 95% confidence interval of experiments, SD Standard Deviation, 
AUPRC Area Under Precision-Recall Curve, AUROC Area Under Receiver-Operator Characteristics.

Model

LR RF SVM XGB

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

count 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000

mean 0.783 0.942 0.792 0.943 0.765 0.929 0.792 0.947

SD 0.012 0.002 0.015 0.005 0.011 0.007 0.009 0.004

ci_low 0.775 0.940 0.782 0.939 0.759 0.924 0.786 0.945

ci_high 0.790 0.943 0.800 0.946 0.772 0.933 0.797 0.950
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Current treatment guidelines for chronic kidney disease in patients with diabetes have suggested stratifying 
the patient’s risk according to GFR and albuminuria  categories28. However, this classification is too simple to 
correctly predict the individual risk of ESRD. Precise prediction of the prognosis of renal function is necessary 
when deciding whether to refer the patient to a nephrologist, preparing a long-term plan (e.g., renal transplanta-
tion), and providing appropriate medical intervention. Our model provided the 5-year risk of ESRD with good 
discrimination power. Additionally, the risk factors for ESRD that we identified in our model are well-known, 
which means our model is clinically explainable. A decreased serum albumin level was one of the strongest 
predictive factors in our model. The albumin level might represent the patient’s nutritional status and could be 
a marker for the poor prognosis of chronic kidney  disease29. Systemic inflammation in a critically ill patient is 
known to cause altered albumin homeostasis and lead to  hypoalbuminemia30. Additionally, hepatic fibrosis indi-
ces were also introduced in our model, which could be related to advanced stages of diabetes  complications31,32. 
Nonalcoholic fatty liver disease has been proven to accelerate the decline in kidney function in chronic kidney 
disease patients through the activation of a pathway that enhances the transcription of pro-inflammatory genes 
and amplification of immunologic inflammatory  responses33.

The high AUROC curve showed that our model was sufficiently able to distinguish between positive and 
negative cases. The high AUPRC of our model also provided significant benefits because it was much higher 
than the prevalence of ESRD in the training data. The recall rate of our model with a default threshold of 0.5 (i.e., 
treating patients when the risk score is higher than 0.5) had a 95% confidence interval between 0.62 and 0.64. If 
a physician provides treatment for patients with a risk score of more than 0.5, then this plan would treat 62–64% 
of patients who will develop ESRD. Physicians can always adjust the threshold based on their case and depending 
on the desired levels of recall and precision (Fig. 2d). For example, if physicians would like to increase the cover-
age (recall) to 80%, they may use a risk score cutoff of 0.1 while still maintaining a precision value as high as 0.6.

Similarly, the precision of our model had a 95% confidence interval between 0.82 and 0.84. Therefore, if the 
model predicts a patient with T2DM will have ESRD, 82–84% of them will actually have ESRD in the future.

Compared to a conventional model from cox regression by Tangri et al.34, our model has several advantages. 
First, our model predicts ESRD, not CKD stages 3 to 5 as in the conventional model, which means our model 
targets most severe case of CKD in T2DM patients. Second, new predictors such as serum albumin and makers 
of fatty livers, which were ranked high in the SHAP analysis. Third, our model can be used directly with EHR 
systems using FHIR resources.

Although our model provided significant improvements in terms of discrimination and calibration per-
formance for ESRD risk prediction, there are several areas that can be improved. First, several features related 
to disease or medication were engineered as binary indicators. However, their effects can vary depending on 
the severity of other comorbidities or the dosage of medication, which were not fully captured in our model. 
Second, although the classification modeling approach using XGBoost enabled us to handle missing values, 
the drawback was that the model required every patient to have sufficient observation periods (i.e., 5 years) to 
correctly identify outcome labels. Therefore, the most recent index date that could be used in our model was at 
least 5 years before the last date of the available data; consequently, almost 10 years of EMR data could not be 

Figure 2.  Cost–benefit analysis.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11232  | https://doi.org/10.1038/s41598-022-15036-6

www.nature.com/scientificreports/

used in our model. Third, no imputations were performed to handle missing data, which could have impacted 
the quality of the modeling process. Future work should consider incorporating data imputation. Fourth, we 
did not reflect the definition of a period in which of eGFR < 15 ml/min/1.73  m2 and the need for dialysis persist 
for more than 3 months to accurately define ERSD. It might overestimate the incidence of patients with ESRD 
in the study cohort. Finally, we did not validate our model for the independent data set and prove the clinical 
effectiveness of our model Therefore, we cannot generalize our results to other environments. Further study is 
needed to evaluate accuracy and clinical effectiveness of the developed model in other environments.

Despite these limitations, our model provides several meaningful clinical and practical implications. The 
inclusion of additional data items from the EMR system contributed to its better performance. Previous studies 
could not find significant improvements in model performance by incorporating more variables beyond the 
traditional chronic kidney disease risk model  variables14. It would be beneficial for future studies to assess the 
extent to which additional EMR data items contributed to the improvement in performance. Our model will be 
a great resource for physicians to assess the developmental and progression risk of ESRD within the next 5 years 
for type 2 diabetes mellitus patients, and it will help them make appropriate treatment decisions to prevent or 
slow the progression of ESRD.

Methods
Development of models. The development of the ESRD prediction model was accomplished through six 
steps. First, the study cohort was selected from the initial dataset by applying the inclusion and exclusion criteria. 
Second, we assigned a random index date for every patient in the cohort. Third, to identify patients with ESRD, 
a primary composite outcome of the study, we labeled the outcome and prediction timeline according to the 
clinical criteria described. Fourth, as a result of processing the time-series data of patients using the eight feature 
generators, 49 features were retained to compose the ESRD prediction model. Subsequently, we trained and vali-
dated the model through k-fold cross-validation. Finally, we repeated step 1 through step 4 N times; therefore, 
the performance of the prediction model could be based on the average of K*N iterations.

To select the study cohort, we used the medical data extracted from the EMR system of Seoul National 
University Bundang Hospital, a tertiary academic hospital in South Korea. Seoul National University Bundang 

Figure 3.  SHAP summary plot. If a feature is located on the upper side of this figure, then it implies a higher 
contribution of the feature to the prediction. More specifically, each dot represents the data of each patient, 
and the color of the dot indicates whether the respective feature value is low or high (as shown on the y-axis 
on the right). The location of the dot indicates whether the feature increases (right) or decreases (left) the risk 
prediction. The farther a dot is from 0, the greater the contribution to the prediction. SHAP Shapley Additive 
Explanations.
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Hospital developed and adopted an electronic health system in 2003. Of 61,936 patients from the initial dataset, 
60,909 patients remained after excluding those without at least three outpatient visit records. Thereafter, we 
continued constructing the final dataset by applying our inclusion criteria and exclusion criterion for the ESRD 
prediction model.

Our inclusion criteria were as follows: age between 18 and 90 years on the index date, no history of ESRD 
or dialysis before the index date, more than one type 2 diabetes mellitus medication record before the index 
date, and a history of more than 5 years of observation after the index date or first diagnosis of ESRD within the 
prediction window after the index date. Our exclusion criterion was a diagnosis of ESRD within 14 days of the 
first visit. As a result of including only patients who satisfied these criteria, we obtained a final cohort of 19,159 
patients (Fig. 4).

The primary composite outcome of the study was ESRD. To identify patients with this comorbidity, we pre-
cisely defined ESRD as a diagnosis including the ICD-10 diagnosis codes N18.5 and N18.6, a history of dialysis 
treatment, a history of renal transplantation with ICD-9 operation codes 55.6 and 55.69, a history of continuous 
ambulatory peritoneal dialysis catheter insertion with ICD-9 operation codes 38.95 and 39.43, and an estimated 
GFR < 15 mL/min/1.73  m235,36.

Next, for each patient, we randomly selected one index date to construct a cohort. For each patient in the 
cohort with a selected index date, we labeled the outcome as 1 if the patient developed the comorbidity of inter-
est during the prediction window (5 years); in other cases, the outcome was labeled as 0. Consider the scenarios 
depicted in Fig. 5. The horizontal line represents the timeline of a patient’s hospital visits, which are denoted as 
v1, v2, and so on. Both scenarios in Fig. 5 represent the same patient, who was diagnosed with the comorbidity 
during v6. Depending on the selection of the index date for this patient, the outcome can be labeled as 0 or 1. 
If v3 was considered as the index date, then it was considered that this patient will not develop the comorbidity 
because the comorbidity was not observed within the prediction window for the given time at risk. However, if 
we considered v5 as the index date, then it was considered that this patient will develop the comorbidity because 
the prediction window includes the visit when the comorbidity was diagnosed.

We used the eight feature generators to process the time-series data of 19,159 patients. Although 52 features 
were initially generated, three (cacs_ewma, imt_max, and lipoprotein_ewma) were excluded because their values 
for more than 90% of patients were missing. Therefore, a total of 49 features were obtained for our ESRD predic-
tion model. For handling time depending variables, we used most recent value, exponential weighted moving 
average value, max value, or length of records depending on the characteristics of the variable. Supplementary 
Table 1 shows the types of feature generators we used and the actual examples of predictors, as well as how to 
handle multiple measures.

New predictors were included for model development. Albumin was included because lower pre-ESRD serum 
albumin was associated with the incidence of ESRD in previous  studies27,37. Markers of fatty livers disease were 
included because non-alcoholic fatty liver disease was related to the increased risk of chronic kidney disease in 
previous  studies38,39.

Figure 4.  Cohort selection. ESRD end-stage renal disease, SNUBH Seoul National University Bundang 
Hospital.
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For model training, we split the data into training and validation sets. We trained the binary XGBoost clas-
sification models using the training set. Then, we calculated the model performance using the validation set by 
repeating this procedure k times (i.e., k-fold cross-validation).

The model was evaluated using N-epoch K-fold cross-validation, which first used regular K-fold validation 
(step 4) and then repeated step 1 to step 4 N times. The final performance was the average of these K*N iterations.

Ethics. This research was approved by the Institutional Review Board of Human Research of Seoul National 
University Bundang Hospital. Informed consent was waived because of the retrospective nature of the research 
and the analysis used deidentified clinical data (B-1904-535-001). The present research was conducted in accord-
ance with the Declaration of Helsinki.

Data availability
Data is not available to public due to the regulation of IRB in SNUBH. S.Y.J. should be contacted if someone 
wants to ask a question about the data from this study.
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