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Deep learning in veterinary 
medicine, an approach based 
on CNN to detect pulmonary 
abnormalities from lateral thoracic 
radiographs in cats
Léo Dumortier1, Florent Guépin2,3, Marie‑Laure Delignette‑Muller4, 
Caroline Boulocher1,5,7* & Thomas Grenier6,7

Thoracic radiograph (TR) is a complementary exam widely used in small animal medicine which 
requires a sharp analysis to take full advantage of Radiographic Pulmonary Pattern (RPP). Although 
promising advances have been made in deep learning for veterinary imaging, the development of a 
Convolutional Neural Networks (CNN) to detect specifically RPP from feline TR images has not been 
investigated. Here, a CNN based on ResNet50V2 and pre‑trained on ImageNet is first fine‑tuned 
on human Chest X‑rays and then fine‑tuned again on 500 annotated TR images from the veterinary 
campus of VetAgro Sup (Lyon, France). The impact of manual segmentation of TR’s intrathoracic 
area and enhancing contrast method on the CNN’s performances has been compared. To improve 
classification performances, 200 networks were trained on random shuffles of training set and 
validation set. A voting approach over these 200 networks trained on segmented TR images produced 
the best classification performances and achieved mean Accuracy, F1‑Score, Specificity, Positive 
Predictive Value and Sensitivity of 82%, 85%, 75%, 81% and 88% respectively on the test set. Finally, 
the classification schemes were discussed in the light of an ensemble method of class activation maps 
and confirmed that the proposed approach is helpful for veterinarians.

Digital radiograph is a complementary exam largely used in veterinary medicine for its practicality and its 
 quickness1,2. As digital radiograph, Thoracic Radiograph (TR) is especially indicated for diagnosis of intrathoracic 
and systemic  diseases3. In TRs, pathological pulmonary lesions result in increasing the radiographic opacity of 
lungs and the radiographic appearance depends on the structures involved (interstitium, alveoli, bronchi, ves-
sels)3. These characteristic features are called Radiographic Pulmonary Patterns (RPPs) and 5 types are described: 
the interstitial pattern, the alveolar pattern, the bronchial pattern, the vascular pattern and the nodular  pattern3. 
A correct description of RPPs (localization, distribution and intensity) is crucial for diagnosis, treatment and 
aftercare of the  animal3,4. However, accurate reading of a TR is challenging for veterinarians because most pulmo-
nary diseases involve several RPPs in various pulmonary localizations, and can result in error rates concerning 
RPP identification on TR varying from 10% to about 50% .3,5.

In this context, a computer-aided-diagnosis could help veterinarians in description of RPPs. Recently, deep 
learning approaches based on Convolutional Neural Networks (CNN) have achieved interesting results for vari-
ous diagnosis using human radiographs, such as detection of interstitial lung  diseases6, breast cancer  diagnosis7 
or more recently for COVID-19 disease  detection8. In veterinary medicine, studies have proved that CNN 
models are efficacious for classification issues with canine medical images. CNNs are able to classify superficial 
or deep corneal ulcers in  photographs9, to detect diffuse degenerative hepatic diseases in ultrasound  images10, 
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to distinguish between meningiomas and gliomas in MR-images11, to detect cardiomegaly in TR  images12 and 
to detect hip joints in pelvis radiographs and to classify their hip dysplasia  status13. In TR images in particular, a 
CNN-based approach was more efficacious than veterinarians to evaluate ventricular and left atrial enlargement, 
cardiomegaly and bronchial RPP in feline and canine  radiographs5. In feline medicine, two CNNs were evaluated 
for detection of thoracic abnormalities including bronchial, interstitial and alveolar  RPP14.

However, to the best of the authors’ knowledge, no CNN has been proposed exclusively for assessing RPPs 
in feline TR images. In veterinary medicine, feline population is unmissable with more than 42 billions of cat 
owners in the US in  202015, even though canine population tends to represent the  majority16. In addition, from 
a deep learning perspective, studying cats enables to minimize the size and shape variation between individuals 
which is maximized in  dogs17,18. For these reasons, this study focused on feline TR images.

The objective was to assess the performances of a CNN to classify feline TR images with or without RPPs and 
to propose an optimized framework that achieves better performances. To achieve that objective, four different 
pre-processings were assessed. First, the impact on the training of a manual segmentation of the intrathoracic 
area in TR images was assessed. Second, the use of an enhancing contrast method (ECM) was assessed. Using 
a voting ensemble method over 200 random shuffles of training sets and validation sets, we demonstrated that 
focusing the training of our CNN on a region of interest optimized its performances as described in the visual 
attention  concept19, while the ECM showed no significant improvement of performances. Finally, using the 
Gradient-weighted Class Activation Mapping (Grad-CAM)  algorithm20, the interpretability of the proposed CNN 
was discussed. Such visual explanation ensures its usefulness into everyday lives and complete the significance 
of the final prediction returned.

Results
Feline TR images database. After parsing the tabular database of all Medical Imaging Report (MIR) 
from the veterinary campus of VetAgro Sup, 2729 MIRs were obtained. Only MIRs which described normal 
or abnormal TR images are selected. TR images with extra material or extra lung disorders were excluded of 
the study. As cats may have been examined several times on different dates to VetAgro Sup, several MIRs could 
have corresponded to the same cat. Indeed, RPPs may change in the time resulting in different TR images, even 
though TR images came from the same cat. That is the reason why a case was defined as a single veterinary visit 
resulting in a unique TR exam and a unique MIR.

The database represented 348 cases, 296 cats and 500 TR images (250 normal and 250 abnormal). Training 
set and validation set were created with 455 TR images randomly selected corresponding to 303 cases and 252 
cats. The test set was composed of the 45 remaining TR images corresponding to 45 cases and 44 cats. Details of 
the database are presented in Table 1. Reasons which justified the TR exams were mainly related to impairment 
of general condition (e.g. fatigue, anorexia, adipsia), traumatic (e.g. accident on public way, bite), cardiorespira-
tory signs (e.g. dyspnea, murmurs), medical follow-up and neoplastic diseases (e.g. mammary tumors, tumoral 
extension assessment). Supplementary Fig. S1 illustrates their frequencies.

Among the 250 abnormal TR images used in the study, 225 were allocated for the training and 25 for the 
test; corresponding respectively to 158 and 25 abnormal cases. Cases with a maximum of two different RPPs 
represented 85% and 96% of the 158 and 25 abnormal cases. Thus, the abnormal cases with strictly more than 
two RPPs were infrequent (< 15% and <4%, respectively for the training and the test). Cases including Inter-
stitial RPP or including Bronchial RPP were preponderant. Interstitial RPP was described in 81% of abnormal 
cases used for the training and 76% of abnormal cases used for the test. Bronchial RPP was mentioned in 61% 
of abnormal cases used for the training and 60% of abnormal cases used for the test. The Alveolar RPP was the 
third most described, mentioned in 29% and 24% of abnormal cases respectively for the training and for the 
test. The Nodular and Vascular RPPs were in the minority, each mentioned in less than 8% of abnormal cases. 
All RPP combinations among the abnormal cases (e.g. only with one RPP, only with Interstitial, at least with 
Interstitial, only with Interstitial and Bronchial) are summarized in Table 2.

Pretraining with human CXR images. The fine-tuning of our model with human CXR images was 
inspired from a Keras classification CNN that predicts presence of  pneumonia21. A total of 5840 CXR images 
from the large human database were used for the fine-tuning, including 4265 CXR images of pneumonia and 
1575 normal CXR images. Our model was fine-tuned with the CXR images and achieved the performances of 
92% and 93% respectively for Accuracy (Acc) and F1-score on the validation set. Weights of the model obtained 
after this fine-tuning were used for the training with TR images.

Table 1.  Features of the database used in the study. Number of cases a case is defined as a veterinary visit, 
thus distinct cases could come from a unique cat. Number of cats represents the number of cats enrolled in the 
study. Number of TR images represents the number of TR images composing the sets.

Features Training set and validation set (normal; abormal) Test set (normal; abnormal)

Number of cases 145; 158 20; 25

Number of cats 127; 125 20; 24

Number of TR images 230; 225 20; 25
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Pre‑processing selection. From the 455 TR images used for the training, 200 training sets and 200 valida-
tion sets were built by random sampling. Performances achieved on each validation set were calculated for the 
four pre-processings “Original”, “Segmented”, “Original + ECM” and “Segmented + ECM”. Those performances 
were assessed using five metrics : Acc, F1-Score, Specificity (Sp), Positive Predictive Value (PPV) and Sensibility 
(Se). The distribution of the 200 values of metrics were reported in Fig. 1.

For all the metrics, a global significant difference was observed between the means achieved with respect to 
the four pre-processings (ANOVA p-value < 2 × 10−16 for each metric). Pair-wise t-tests with Bonferroni-Holm 
correction more often demonstrated significant differences between all pairs of means, except between “Seg-
mented” and “Segmented + ECM” for all the metrics and between “Original” and “Original + ECM” for F1-score 
and Se. Thus, we demonstrated that segmenting TR images improves all the metrics and we demonstrated no 
significant improvement by applying ECM, (Fig. 1). When applied with the pre-processing “Original”, ECM 
even significantly decreased the means for Acc, Sp and VPP. Best global performances were achieved using the 
pre-processing “Segmented“ with mean values for Acc, F1-Score, Se, PPV and Se of 77%, 75%, 83%, 81% and 
72% respectively (Table 3). As the pre-processing “Original” was considered as the baseline with mean values for 
Acc, F1-Score, Sp, PPV and Se of 73%, 70%, 81%, 78% and 65% respectively, segmenting TR images improved 
the mean metrics of 5.4%, 8.6%, 2.5%, 3.8% and 11% respectively.

Classification performances with feline TR images. With the unweighted averaging voting ensem-
ble method, the best performances were achieved with the pre-processing “Segmented” with means for Acc, 
F1-Score, Sp, PPV and Se respectively of 82%, 85%, 75%, 81% and 88% (Table 3). Concerning the predicted label, 
a TR image was classified as “Normal“ if its final prediction was <0.5 and as “Abnormal“ otherwise. The more 
the final prediction tends towards 0 or 1, the more the predicted label is trustworthy, considered respectively as 
“Normal“ or “Abnormal”.

For the pre-processing “Segmented”, the distribution of the final predictions were represented in Fig. 2 accord-
ing to three groups : the 15 TR images correctly classified as “Normal” (True Negative), the 22 TR images correctly 
classified as “Abnormal” (True Positive) and the 8 misclassified TR images (False Negative and False Positive). The 
median predictions are 0.33, 0.58 and 0.80 respectively for True Negative, misclassifications and True Positive. 
All incorrect final predictions (8/8) and a part of correct final predictions (16/37) are in the range from 0.25 to 
0.75. On the contrary, there are exclusively correct final predictions out of this range, i.e. lower than 0.25 and 
higher than 0.75. Details of the results concerning the predicted labels are presented in confusion matrices as 
Supplementary Table S2.

Table 2.  Number (and relative percentage) of abnormal cases showing the following radiographic findings 
among abnormal cases used for the training and the test.

RPP’s combination Training set and validation set (158 cases) Test set (25 cases)

Only one RPP 55 (35%) 8 (32%)

Only two RPPs 79 (50%) 16 (64%)

Only three RPPs 21 (13%) 1 (4%)

With four and more RPPs 3 (2%) 0

Including interstitial 126 (81%) 19 (76%)

Including bronchial 91 (61%) 15 (60%)

Including alveolar 46 (29%) 6 (24%)

Including nodular 12 (8%) 2 (8%)

Including vascular 4 (3%) 1 (4%)

Only interstitial 33 (21%) 4 (16%)

Only bronchial 14 (9%) 2 (8%)

Only alveolar 6 (4%) 1 (4%)

Only nodular 2 (1%) 1 (4%)

Only vascular 1 (<1%) 0

Only interstitial and bronchial 53 (34%) 10 (40%)

Only interstitial and alveolar 16 (10%) 2 (8%)

Only bronchial and alveolar 6 (4%) 2 (8%)

Only interstitial and nodular 2 (1%) 1 (4%)

Only interstitial and vascular 2 (1%) 0

Only bronchial and vascular 0 1 (4%)

Only interstitial, bronchial and alveolar 15 (9%) 1 (4%)

Only interstitial, bronchial and nodular 4 (3%) 0

Only interstitial, bronchial and vascular 1 (<1%) 0
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Figure 1.  Metrics achieved over the 200 validation sets with the four pre-processings. Notched box plots  the 
medians are represented by the thickest black horizontal lines framed by a notch which represents the 95% 
Confident Interval of the median. The red dots correspond to the means and the black dots represent the 
outliers which are values numerically distant from the rest of the data.
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Interpretation with averaged Grad‑CAM. The activation map of the input TR image was obtained with 
an averaged Grad-CAM. The averaged Grad-CAM was computed from the 200 predictions used for calculating 
the final prediction with the voting ensemble method. The activation map for the 45 TR images of the test set 
enabled how far activated areas were recognized as “Abnormal”.

For a clear interpretation of the averaged Grad-CAM, it is important to consider the final prediction and the 
colors of activated areas. True Positive classifications had a final prediction higher than 0.5 associated with an 
activation map with warm areas. Although False Positive classifications had also a final prediction higher than 
0.5, the activated areas were cool. True Negative classifications had a final prediction lower than 0.5 associated 
with a blue filter superimposed or with cool areas. False Negative classifications also had a final prediction lower 
than 0.5, but with warm activated areas. Four representative examples of classification, chosen for their relevance, 
are reported in Fig. 3. Exhaustive details are in free-access on GitHub (see in section “Data availability”).

The 22 TR images correctly classified as “Abnormal” were in accordance with the medical imaging findings 
described in their MIR, particularly for RPPs localized in the cranial, caudal and middle lobes. In addition, the 
cool-to-warm color scale was consistent with the severity of RPPs.

Table 3.  Metrics achieved according to pre-processing. Over 200 validation sets  the percentage represents the 
mean metric over the 200 validation sets with the standard deviation in parenthesis. On test set the percentage 
represents the metric on the test set with the voting ensemble method.

Metrics Original Original + ECM Segmented Segmented + ECM

Over 200 validation sets

Acc 73% (4.3%) 72% (4.4%) 77% (4.2%) 78% (4.1%)

F1-score 70% (6.8%) 70% (6.0%) 75% (5.6%) 76% (5.2%)

Sp 81% (7.4%) 79% (7.7%) 83% (6.0%) 83% (6>6%)

PPV 78% (6.2%) 76% (6.7%) 81% (5.7%) 81% (5.6%)

Se 65% (10.7%) 65% (9.5%) 72% (8.6%) 72% (8.7%)

On test set

Acc 71% 69% 82% 78%

F1-score 70% 65% 85% 81%

Sp 63% 90% 75% 65%

PPV 60% 87% 81% 76%

Se 83% 52% 88% 88%

Figure 2.  Distribution of final predictions on the test set obtained with the voting ensemble method. Green 
areas final predictions of these areas correspond exclusively to correct classifications (True Negative for 
final predictions lower than 0.25; True Positive for final predictions higher than 0.75). Red area all incorrect 
classifications and a part of correct classifications have their final prediction in this area. Red diamond The 
median of each of the three groups is represented by a red diamond.
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Discussion
To the best of the author’s knowledge, this is the first study which presents a CNN-based approach to classify 
exclusively RPPs from feline TR images. The validity of the predicted label was assessed with an indicator (a final 
prediction in the range of 0 to 1) and a qualitative analysis (an averaged Grad-CAM ).

The present study was designed to overcome the major critiques of artificial intelligence in medical imaging. 
According to Gregory et al.22, these major critiques concern the lack of information on the material and method 
(e.g. about data, CNN or labels) and on the methodology of the analysis (e.g. about statistics, data variability).

Firstly, to overcome the database limitation problem, a complete inventory of the abnormal cases was pro-
vided. On the training sets, the validation sets and the test set, cases with interstitial RPP, bronchial RPP or 
alveolar RPP represent more than 85% of abnormal cases. Thus, it is expected that our approach is particularly 
adapted for veterinarians who suspect the presence of these frequent RPPs, but with less significance for the 
detection of nodular RPP and vascular RPP. Those limitations are due to the lack of TR images for these RPPs. A 
CNN-based approach to classify canine and feline TR images has already been described by Boissady et al., but 
has not concerned exclusively RPPs in  cats5. Boissady et al. described performances of their CNN detection of 
RPPs: they reported error rates of about 44% for interstitial RPP, 20% for bronchial RPP, 10% for alveolar RPP and 
6% for vascular RPP. Although in the present study performances of our model were not assessed according to 
each RPP, an error rate of 23% was achieved for all RPPs and should be lower for interstitial RPP, bronchial RPP 
and alveolar RPP due to the RPP’s combinations. Indeed, interstitial RPP, bronchial RPP and alveolar RPP are the 
three most prevalent RPP in the dataset. However, we highlight that considering each RPP independently is not 
more relevant than our approach which instead considered two categories : “Normal” and “Abnormal”. Indeed, 
Thrall et al explained that in most pulmonary diseases, more than one compartment of the lung is involved, 
conducting generally in more than one  RPP3. Thus, if we want to go further than our CNN-based approach or 
CNN-based approaches which study RPPs independently, we should instead consider a classification according 
to all RPP’s combinations. But studying all RPP’s combinations with a CNN-based approach requires a much 
larger dataset.

Furthermore, the impacts of four pre-processings on performances were assessed. Those pre-processings 
have been introduced by Al-antari et al. who have proposed a CNN-based approach to detect breast cancer on 
mammograms consisting in segmenting first a region of interest and applying  ECM23. To Al-antari et al., seg-
menting allowed a CNN to focus on a smaller region of interest and applying ECM enhanced abnormalities in 
surrounding tissues, therefore facilitating the diagnosis. Since such an approach has never been undertaken in 
veterinary medicine, the pre-processings of the present study were further investigated. To conduct our study, 
we assessed performances of our model with five metrics (Acc, F1-Score, Sp, PPV and Se) over 200 training 
sessions in order to highlight precisely the strengths and weaknesses of the four pre-processings. Moreover, the 
variability inherent to splitting between the training set and the validation set was considered. These 200 training 
sessions enabled a robust statistical analysis of results, more precise than a small k-cross validation or a single 
training. Hence, significant differences were obtained over all validation sets such as the pre-processing “Seg-
mented“ improved all metrics in comparison with the baseline pre-processing “Original“. However, we obtained 
no significant improvement of the metrics over all validation sets with the pre-processing “ECM”, excluding our 
initial hypothesis about this pre-processing. According to the author’s opinion, probably that the pre-processing 

Figure 3.  Examples of activation maps obtained with the pre-processing “Segmented“ on the test set, in 
comparison with the original TR image. The final prediction is indicated for each example. True Positive a TR 
image presenting a bronchial, interstitial and alveolar RPP in the caudal and accessory lobes in a context of 
chronic neutrophilic bronchopneumonia. True Negative a TR image without RPP realized after an impact with a 
car. False Positive a TR image without RPP in a context of accident on public way. False Negative a TR image with 
a focal bronchial RPP in the middle lobe, in a context of dyspnea. A zoom is applied for segmented TR images 
for representative purposes.
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“ECM“ used in our study is a linear application which does not discriminate enough the difference between 
normal and abnormal TR images.

Above the statistical benefit for the assessment of pre-processings, the 200 random shuffles of training sets 
and validation sets enabled the voting ensemble method. The voting ensemble method used in our study took 
the unweighted average of the output prediction for all the 200 models and returned a final prediction ranged 
between 0 to 1. The voting ensemble method has been proved essential in the optimization of the training with 
a limited database. Another voting method which is called “majority voting”24 has also been assessed. This 
alternative method counted the votes of all the predicted labels from the 200 models and returned the predicted 
label mostly represented. Both methods were compared and the best results on the test set were achieved for 
the unweighted average. Moreover, the unweighted average provided a final prediction which reflected how far 
the predicted label was trustworthy. With our 45 TR images used for the test, the distribution of final prediction 
confirmed the results expected in theory : final prediction tends towards 0 for “Normal” TR image, towards 1 
for “Abnormal” TR image and stays nearly 0.5 for incorrect classifications. However, we did not observe distinct 
ranges of final prediction between True Negative, misclassifications ans True Positive. With our test set, we 
observed that all final predictions lower than 0.25 truly correspond to “Normal“ and all final predictions higher 
than 0.75 truly correspond to “Abnormal”. The numbers 0.25 and 0.75 were determined from our 45 final predic-
tions but could most likely change if the test set is larger. The key point of these results was that final predictions 
around 0 and 1 were a reliable indicator. Between 0.25 and 0.75, the veterinarian has to keep in mind that the 
predicted label could be incorrect.

In order to help the veterinarian for assessing TR image, especially if the final prediction is in the range of 0.25 
to 0.75, we proposed a qualitative analysis of classification. With a final prediction between 0.25 and 0.75, it was 
impossible to know if the final prediction corresponded to a False Negative or a False positive. That is the reason 
why a novel approach in deep learning for veterinary medicine was developed in the present study, using averaged 
Grad-CAM. This new approach allowed us to visualize an activation map which represented areas recognized as 
“Abnormal” and how far they corresponded to the “Abnormal” predicted label. Thanks to the activation map, the 
veterinarian is able to differentiate a False Negative and a False Positive. Indeed, a final prediction lower than 0.5 
associated with warm areas corresponded to a False Negative and a final prediction higher than 0.5 associated 
with cool areas corresponded to a False Positive. In addition, the veterinarian was able to confirm a correctly 
predicted label. A final prediction lower than 0.5 with cool areas or with a blue filter confirmed a True Negative. 
On the contrary, a final prediction higher than 0.5 with warm areas confirmed a True Positive.

Bearing in mind the challenge to develop a reliable CNN with a limited database, full advantages of 
ResNet50V2 were obtained by training on ImageNet completed by pretraining with human CXR images. The 
model was finally fine-tuned with TR images. The pretraining with CXR images allowed a sharper learning with 
human radiographs which were closer to TR images. The model without fine-tuning with CXR images was tested, 
but the performances were reduced.

This study has several limitations. As it is often reported, the lack of data in deep learning for medical imaging 
is a challenge to train a robust and scalable CNN. That is why several strategies were experimented to maximize 
the performances : data-augmentation, fine-tuning with CXR images, testing four pre-processings, running 200 
training sessions and obtaining 200 fine-tuned models, predicting with a voting ensemble method and providing 
activation map. Nevertheless, enlarging at least the test set could be relevant to confirm the high performances 
of our model and could also create a larger training set to sharpen RPP detection. Besides, a larger dataset could 
permit to develop a CNN-based approach for a multi-label classification which considers all RPP’s combinations. 
Ventro-dorsal TR images were excluded from the study whereas they are used in routine. In the present study, 
lateral views were selected to keep a uniform morphology between TR images and ease the training of the model. 
In addition, TR images came from the veterinary campus of VetAgro Sup implicating an excellence realisation 
and description. So, the metrics of our model could be different in other conditions. A solution could be to use 
several X-ray machines, with TR images shot by several veterinarians. Another limitation of the present study 
was that TR images composing our database did not have major abnormalities of the pleural and mediastinal 
space but also of the cardiovascular system, the airways and the musculoskeletal system. Thus, our model should 
probably have lower performances with TR images presenting these types of abnormality. The last important 
limitation was the time-consuming constraint to segment manually the intrathoracic area on TR images, even if 
it spent less than one minute with a basic image viewer. Keeping in mind that CNN-based approaches are also 
elaborated to speed up workflows, we plan to elaborate an automatic CNN-based segmentation in a future work.

All in all, this is the first study in veterinary medicine which presented CNN developed to detect specifically 
RPPs from lateral TR images in cats, especially with a voting ensemble method associated with an averaged 
Grad-CAM.

The activation map combined with the final prediction really helps the assessment of the result, in particular 
to differentiate potential False Positive and False Negative. Thus, veterinarians might use our approach as a 
non-invasive complementary exam for exploring radiographically potential lung lesions. Our approach has the 
potential to facilitate the workflow for TR images description.

For future research, development of a multi-view CNN with veterinary TR images to consider the combina-
tion of all views appears as a very interesting question. The multi-view approach has been explored in human 
medical imaging for mammogram classification by Sun et al.7.

Methods
Study population. TR images were extracted from the image database of the veterinary campus of VetA-
groSup, France, over the period from September 2012 to January 2020. The image database was composed of 
72,567 records. In this database, each record has a Medical Imaging Report (MIR) which contained details rela-
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tive to the animal (e.g. specie, age, breed), its condition (e.g. : reason of consultation, clinical sign, follow-up), the 
radiographic procedures (e.g. X-ray machine, projections) and the medical imaging findings. All MIRs formed a 
secondary tabular database, where each MIR was used to label its corresponding image from the first database. 
The MIR was reviewed by at least one veterinary radiologist expert (ECVDI board-certified).

Feline TR images selection. For a same cat, sets of TR images could have been acquired on different 
dates and the medical imaging findings could have changed : that is why a case was considered as a couple (cat; 
day). For each animal, one up to three views have been realized among the following projections: left-lateral, 
right-lateral and ventro-dorsal. The acquisition of TR images was supervised by veterinary technicians from the 
diagnostic imaging unit of the veterinary campus of VetAgro Sup in accordance with their animal welfare guide-
lines. No direct cats were involved in this study. Two softwares were used for acquisition: ImagePilot (KONICA 
MINOLTA) and Console Advance (FUJIFILM CORPORATION). All MIRs and all TRs were validated by the 
veterinary radiologist expert. A first request on all MIRs selected those with or without description of RPP and 
led to the creation of two sets of cases: TR images with RPP(s) and TR images without RPP. Based on these two 
sets, corresponding DICOM files were extracted and then converted into JPEG files with  med2image25. Each 
JPEG image and corresponding MIR were reviewed by a veterinarian to check if there is misclassification and to 
conserve only normal TRs or TRs with RPP(s) without any extra material (e.g. infusion line, bandage, lead shot) 
or extra lung disorders (e.g. diaphragmatic hernia, severe pleural effusion, pneumothorax).

Feline TR images pre‑processing. Initial TR image files size ranged from 138 to 545 KB and their image 
matrix size ranged from 1692× 1350 to 2964× 2364 pixels, with a width-height ratio from 1.2 to 1.3, depend-
ing on the size and detector density of the radiographic detector plate used during TR image acquisition. For 
conserving the ratio and pixel intensity range of CNN, all TR images were resized to 256× 192 and normal-
ized during pre-processing. Then, TR images were said as “Original” if no more modification was done or as 
“Segmented” if the intra-thoracic area was manually segmented with the image-viewer Preview (v.10.1, macOS 
Mojave v.10.14.6). The intra-thoracic area was defined as the radiographic part on TR image delimited dorsally 
by the ventral side of spine, ventrally by the dorsal side of sternum, cranially by the first ribs and caudally by 
the diaphragm. This segmentation was made by a unique veterinarian. Moreover, the effect of “ECM” based on 
Contrast Limited Adaptive Histogram Equalization for “Original“ and “Segmented“ TR images was  tested26. 
These two additional image pre-processings were called respectively “Original + ECM” and “Segmented + ECM”. 
The manual segmentation was performed after the use of ECM. Thus, four different image pre-processings are 
assessed in this work. The workflow used is presented in Fig. 4.

Model and architecture. ResNet5027, a well used deep learning classification architecture, recently showed 
the highest performance in comparison with four other CNNs for the detection of coronavirus pneumonia using 
CXR  images28. Inspired by ResNet50,  ResNet50V229 is a modified version that performed better on  ImageNet30, 
one of the hugest database composed of millions of images from hundreds of categories. That is why the model 
in this study was built on the model ResNet50V2. All layers above the last convolutional layer were replaced by 
a 4-layers block including two fully connected layers with only one neuron on the last layer for binary classifi-
cation purposes. Fig. 5 details the proposed model. A binary cross-entropy loss function was used and a final 
output sigmoid function predicted the class. Thus, the model takes a TR image as input and returns a prediction 
probability in the range of 0 to 1. If the returned prediction probability is less than 0.5, the predicted label is 
“Normal“, else the predicted label is “Abnormal“.

Keras library on top of TensorFlow (version 2.3.0, Google) was used to implement the model. All algorithms 
were run on a Tesla P100 16G (NVIDIA) GPU from the computational platform of the Centre Blaise Pascal 
(ENS, Lyon, France). Training such a deep classification network is challenging and we proposed to use transfer 
learning and fine-tuning and then a data augmentation for the final model’s training.

Transfer learning from ImageNet and human CXR images. In order to get the most out of the data-
base of TR images on a very deep architecture such as ResNet50V2, a pre-training was performed at first on a 
natural image database and then a fine-tuning was run on a human radiography database. These approaches are 
also known as transfer learning. Transfer learning refers to storing knowledge learned from solving one problem 
and then using it to another related problem. In the context of classification of TR images by CNN, this corre-
sponds to reusing the weights of a classification network trained on another database (i.e. natural color images), 
as initial weights for the coming training on other database (i.e. X-ray images)31. This strategy often produces 
better results after training (or fine tuning) on a new database than using random initial weights for training 
even for medical applications (an example using magnetic resonance imaging to evaluate positron emission 
tomography scans can be found  in32). For instance a CNN model trained on ImageNet has been fine tuned for 
pneumonia and tuberculosis localization on  radiographs33. Thus, transfer learning was used from ImageNet to 
the “Large database of Labeled Optical Coherence Tomography and Chest X-Ray”34 which contains hundreds of 
human CXR images with or without signs of pneumonia.

Training model on feline TR images. Two sets were randomly generated from the 500 TR images: 455 
TR images for the training (performed with the training set and the validation set) and 45 TR images for the test 
(performed with the test set). TR images used for the training and for the test represented respectively 90% and 
10% of the total amount of TR images. Among the 455 TR images used for the training, 80% were allocated for 
the training set and 20% for the validation set. Setting of such ratios (90%/10% and 80%/ 20%) were inspired 
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by a similar study which used a limb radiograph database for the detection of hip fractures on plain pelvic 
 radiographs35.

A data augmentation strategy was applied only on the training set using the following transformations: ran-
dom rotation (± 15°) random width and height shift (at max of 0.05% of total width or height), random shear 
(0.5) and random zoom (0.8 to 1.2). Although flipping could extend the training set, it was not used because TR 
images are conventionally oriented with the cat’s head and the cat’s back on the left part and on the top part of 
TR images  respectively36.

Inspired from a methodological CNN-based study with ultrasound images in  dogs11 an exponential decay 
learning rate schedule with an initial learning rate of 0.001 was used. The batch-size was set to 40, a dropout 
of 0.5 and Adam  optimizer37 were used. The initial number of epochs was set arbitrarily to 500 although an 
early-stopping function was implemented to stop the training when the loss on the validation set has stopped 
decreasing after 25 consecutive epochs in order to avoid overfitting and reduce the training  time38.

The model firstly fine-tuned with human CXR images was secondly fine-tuned on the 455 TR images with 
each of the four pre-processings (“Original”, “Original + ECM”, “Segmented”, “Segmented + ECM”). To rigor-
ously compare the four pre-processings it was essential to run a lot of different training sessions. Indeed, it was 
necessary to overcome variations of training due to the distribution of the 455 TR images between the training 
set and the validation  set24. That is the reason why our model was fine-tuned with 200 random distributions of 

Figure 4.  Workflow used in the study for detection of RPP in TR image. Model 1, …, Model 200: models fine-
tuned with the 200 random shuffles splits.
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the 455 TR images between the training set and the validation set. Thus, 200 different fine-tuned models were 
obtained and saved for each of the four pre-processings. This approach enabled a robust statistical analysis and 
justified the choice of the best pre-processing with a quantitative assessment over the 200 random shuffles valida-
tion sets. In the Supplementary Fig. S3, we justify the choice of the number 200 as a result of an analysis of three 
metrics (Accuracy, Sensitivity, Specificity) obtained on the test set, according to the number of fine-tuned models.

Quantitative assessment and ensemble methods approach. The quantitative assessment of the 
200 fine-tuned models was performed using 5 five metrics: Sensitivity (Se) also called “Recall”, Specificity (Sp), 
Accuracy (Acc), Positive Predictive Value (PPV) also called “Precision“ and the F1-score. Negative Predic-
tive Value was not calculated because the TR exam is realized most of the time when abnormalities are sus-
pected, thus PPV was preferred. Metrics were calculated such as: Se = TP/(TP + FN) , Sp = TN/(TN + FP) , 
Acc = (TP + TN)/(TP + TN + FP + FN) , PPV = TP/(TP + FP) and F1-score = TP/(TP +

1
2 (FN + FP)) . 

With TP, TN, FP and FN were respectively the number of True Positive, True Negative, False Positive and False 
Negative classifications.

These five metrics were calculated for each of the 200 validation sets for the four pre-processings. A statistical 
analysis of metrics’ distribution allowed to demonstrate which pre-processing achieved the best performances 
over 200 random shuffles validations sets. To complete the quantitative assessment, the metrics were computed 
also on the 45 TR images of the test set. These 45 TR images had never been used for training. For each pre-
processing, the 200 fine-tuned models worked as independent classifiers of TR image, thus 200 predictions 
were provided for the same TR image. To take full advantage of these 200 fine-tuned models, a voting ensemble 
method was applied to make the final prediction. The final prediction was obtained by the unweighted averag-
ing method which is the most common ensemble method for neural  networks24: it consisted of considering 
the average of prediction of the 200 fine-tuned models. In this way, the variance of prediction from these 200 
fine-tuned models was reduced and less dependent on the split between the training set and validation  set24. 
The final prediction was compared to the medical imaging findings described in the MIR. For one TR, the final 
prediction was obtained in about 40 s.

Qualitative assessment with an averaged Grad‑CAM. To facilitate the interpretability of the final 
prediction an averaged Grad-CAM was  applied20. We refer as activation map, a function that maps all the points 
of the input data (the TR image), to understand where the feature of interest lies. In practice, it means that it 
takes in input the TR image, and understand which pixels give the more information to the model for its final 
prediction. The averaged Grad-CAM produced an activation map of the input TR image. This activation map 
represented areas on the TR image which permitted the final prediction. The intensity of activation was repre-
sented by a continuum of colors from cool (blue) to warm (red) hues. For a human eye, it produces a new picture, 
where points of interest are highlighted.

In medical terms, these activations corresponded to “Abnormal“ areas, i.e. areas with signs of RPP. The more 
the color was warm, the more the activated area was recognized as a strongly abnormal area. On the contrary, 

Figure 5.  Architecture of model used in the study.
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an activated area in cool colors was recognized as a slightly abnormal area. Thus, with the averaged Grad-CAM 
the veterinarian is able to double check the final prediction with a critical and analytical eye.

Statistic and data analysis. For each metric, a comparison of means achieved with the four pre-process-
ings was realized with an ANOVA and followed by a pairwise t-test with the Bonferroni-Holm correction for 
multiple comparisons. In addition the 95% Confidence Interval (CI) of the median value for each distribution 
was graphically represented with notched box plots.

Conclusion
The present study demonstrated that our approach achieved promising performances to detect RPP from lat-
eral TR images in cats with an Acc, F1-score, PPV and Se scores greater than 80%. Segmenting TR images on a 
region of interest has significantly improved the CNN’s training, whereas enhancing the contrast of TR image 
has shown no benefit. To take full advantage of a CNN-based approach with a limited database, authors have 
proposed a voting ensemble method and an ensemble class activation map from 200 different training sessions.

This approach could be full of interest for veterinarians. Further studies will investigate the use of Generative 
Adversarial Networks to challenge the lack of medical image in veterinary medicine.

Data availability
The database of TR images and the algorithm used in the current study are not publicly available because they 
are property of the veterinary school of VetAgro Sup but authors remain available for sharing on reasonable 
request. However, details of results (TR images, their corresponding activation map, their final prediction, their 
predicted label and their label) obtained on the test set are provided in free-access on GitHub, /Latreth/Vet_public 
repository (https:// github. com/ Latre th/ Vet_ public/).
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