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Significant hot hand effect 
in the game of cricket
Sumit Kumar Ram1,2*, Shyam Nandan3 & Didier Sornette2,4*

We investigate the predictability and persistence of individual and team performance (hot-hand effect) 
by analyzing the complete recorded history of international cricket. We introduce an original temporal 
representation of performance streaks, which is suitable to be modelled as a self-exciting point 
process. We confirm the presence of predictability and hot-hands across the individual performance 
and the absence of the same in team performance and game outcome. Thus, Cricket is a game of skill 
for individuals and a game of chance for the teams. Our study contributes to recent historiographical 
debates concerning the presence of persistence in individual and collective productivity and success. 
The introduction of several metrics and methods can be useful to test and exploit clustering of 
performance in the study of human behavior and design of algorithms for predicting success.

The study of what bring success or failure in battles and wars, in politics, in business, in sports, even in our 
personal lives, has a very long history, being part of the DNA of human evolution that has tended to promote 
the genes of the “successful ones”1. The ‘science of success’ has received a boost in recent years with the growing 
availability of large datasets describing individual’s careers from which much can be learned and importantly 
predicted2–10. The increasing shift towards collaborative and team-based effort (performance) in recent decades 
has made it more important to quantify and predict teamwork11–15. However, the translation of the predictability 
in individual performance to team performance is still missing.

In this study, we develop novel statistical tools to uncover the temporal features that are characteristic of a set 
of performances. We explore the complete history of International cricket16,17 to quantify individual and team 
performances. We study the sequence of consecutive performances of each player and team. By investigating the 
scores of individual players against the index of the games within the career, we note that success breeds success 
in individual career (also supported by ARIMA model in SM). We further document that the best performances 
in a given player’s career are clustered in time (see Fig. 1), contrary to previous findings18,19. However, we cannot 
say the same for teams. We uncover the presence of hot hands in individual careers in both formats of the game 
but the absence of the same in team performances. Our proposed Hawkes model applied to the performance time 
not only outperforms the traditional techniques like ARIMA and autocorrelation measures20,21 (see SM) but is 
successful in capturing the ingredients of self-excitation in the patterns of consecutive superior performances. 
These findings raise intriguing questions regarding the nature and extent of predictability of one’s success and 
team success in a team game. This is particularly interesting, since these findings not only refute the well-
established narratives of the absence of hot hands in team games18,19,22,23 where performances are usually driven 
by stochastic events. Our findings suggest that the hot hand effect is not just a psychological bias18,19. A part of 
results corroborate previous works on hot-hands8,9,24–26. One of the possible explanations for the observation of 
such a peculiar behavior in the game of cricket may be the relatively larger importance of skill in the outcomes 
of a player’s game and luck in the outcomes of a teams’ game10,27.

The rest of the article is structured as follows. In section “Literature review”, we present a short literature 
review to motivate our study and put it in the right context. Section "Methods" includes three subsections Data-
set, Distributions of temporal locations of best performances and Clustering point process representation. Sub-
section “Dataset” describes the dataset that has been used in the study and the data acquisition methodology. 
Subsection “Distributions of temporal locations of best performances” summarizes the empirical observations. 
Subsection “Clustering point process representation” presents our proposed clustering point process representa-
tion in the form of a self-excited point process model to quantify and predict the hot hands in the sequences of 
performances. Section “Results and discussion” presents our main results. We conclude the results of the study 
in Section “Conclusion”.
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Literature review.  A much-debated question is whether or not a string of successes of an individual or 
entity is more likely to cause continued success. When present, this is called The Hot Hand effect. When absent, 
the belief in it is called the hot-hand fallacy, whereas the belief in the opposite, i.e., success is less likely after a 
streak of success is called Gambler’s fallacy28. The question of whether the Hot Hand effect genuinely exists is 
important, as its positive answer has far-reaching consequences in several research fields, including finance and 
econometrics10,26,29–31, psychology18,19,32,33 and sociology2,8,9,34,35. The debate on the “Hot Hand fallacy” vs. the 
“Gambler’s Fallacy” revolves around the deeper question: ‘to what extent, human beings are capable of dealing 
with inherent systemic stochasticity’10,27. In their seminal paper, Gilovich et al. refute the validity of “the hot 
hand” and “streak shooting” in the game of basketball18. Their analyses of the shooting records of the Philadel-
phia 76ers, Boston Celtics, and a controlled shooting experiment with the men and women of Cornell’s varsity 
teams provided no evidence for a positive correlation between the outcomes of successive shots. They further 
showed that the belief in the hot hand and the detection of streaks in random sequences is nothing but an expres-
sion of the general misconception of chance18, according to which even short random sequences are thought to 
be highly representative of their generating process. There has been very strong support for this reasoning in the 
literature, especially in the field of finance and economics23,30–32,36. These studies support the idea that the hot-
hand effect is a fallacy, stating that the hot hand does not exist and is nothing but a psychological bias based on 
the “law of small numbers”. Moreover, these studies warn that this fallacy may often lead people to take costly 
and risky decisions.

On the other side of the debate, Miller and Sanjurjo24 have recently challenged the original findings in18, with 
contrasting conclusions revealing significant evidence for streak shooting. Miller and Sanjurjo showed that the 
method used in18 introduced a sampling bias because they start counting after a series of hits/misses. They further 

Figure 1.   Joint probability distribution and Q(�1,2
j ,�

1,3
j ) and R(�t) . (A,B) show the joint distribution of the 

relative difference of the indices of second best from the best (defined by Eq. (2)  in Subsection "Distributions 
of temporal locations of best performances"), plotted against the third best from the best performances. (C,D) 
show R(�t) defined by Eq. (3) for �t = �

1,2
j ,�

1,3
j ,�

2,3
j  . (A,C) correspond to the batting performances in ODI 

cricket and (B,D) correspond to the performances in Test cricket.
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showed that the method of18 is biased towards more misses, thus claiming that an equal rate of hits to misses after 
a streak presented in18 is, in fact, a sign of a hot hand. Csapo and Raab37 found evidence for the “hot hand” in that 
making the first free throw is associated with a significantly higher probability of making the second free throw. 
The debate about successful streaks has gained fresh prominence in many other fields, with many arguing for 
the presence of such streaks in large scale data sets of scientific careers, artistic career and acting careers8,9,33,38,39.

From the point of view of sport psychology, a belief built out of random sequential events can have positive 
effects on behavior. Athletes believe in the hot hand in volleyball and that streaks do exist for half of the players. 
Coaches can detect players’ performance variability and use it to make strategic decisions, and playmakers are 
also sensitive to streaks and tend to use it "adaptively," which results in more hits for a team40. The belief in hot 
streaks can provide valid cues to decide who to give shots to, and this behavior is supported by the fallacious belief 
in dependency41. This is further validated in42, which analyzed the sequential choices made by expert athletes 
and found that they were sensitive to base rates and adapted their decision strategies accordingly. Additionally, 
defensive pressure and shot difficulty increase during hot streaks, so that defenders seem to behave according 
to the hot-hand belief and try to force hot players into more difficult shots37. Thus, even a single successful shot 
is enough to increase a player’s likelihood of taking the next shot, and also to increase the average distance from 
which that shot is taken43. Arkes44 also found evidence for the “hot hand” in that making the first free throw 
is associated with a significantly higher probability of making the second free throw. However, the success of 
the next shot can be lower, while the coach is less likely to replace the player43. Additionally37, also found that 
shooting percentages of presumably hot players do not increase and that shooting performance is not related to 
streakiness, so that the defenders’ hot-hand behavior cannot be considered ecologically rational.

The above debates revolve around the investigation of presence or absence of the hot-hand effect in individual 
performances. However, they fail to show how these effects can be exploited for better prediction or how the 
aggregated individual performances drive the evolution of team performance. In this study, we present a novel 
methodology to better understand and predict individual and team performances. We derive our methodology 
from the self-excited conditional Hawkes point process45, which has been applied in a variety of fields particularly 
the description of social diffusion processes46–48, financial systems49–51, and seismological predictions52–54. To the 
best of our knowledge, this is the first use of Hawkes processes in the domain of ‘science of success’. We apply our 
methodology for studying the presence (or absence) of the hot hand effect within the performance sequences in 
individual performance in the game of cricket. Our methodology would be useful in predicting and quantifying 
hot-hand effect in performance sequences in many other domains.

Methods
Dataset.  The dataset we use in this study includes 4178 One Day International (ODI) games starting from 
January 5, 1971, till July 1, 2019 (48 years) and 2351 international Test games spanning March 1877 to March 
2019 (142 years) (see SM for data acquisition and preparation). We record 51,699 batting performances of 2959 
Test batsmen and 51,088 bowling performances of 2874 Test bowlers, 90,166 batting performances of 2500 ODI 
batsmen and 90,754 bowling performances of 2505 ODI bowlers (in total 283,707 records) (see Fig. 2). The 
dataset further contains the information about the performance of the teams and the outcomes of the games. To 
have meaningful calibration results, we only analyze the performances of those batsmen who have played at least 
30 games (see goodness of fit in SM).

Distributions of temporal locations of best performances.  To study the self-excited nature of the 
scores in an individual’s career, we investigate the relative positions of the best three performances in each play-
er’s career. We first order the games within one’s career according to calendar time. We define the index (t) of any 
game by the rank of this game within this ordered sequence. We denote t∗j  the index of the best performance in 
player j’s career, i.e.,

Where, Sj(t) is the performance of the player j at tth attempt. We also define t∗∗j , t∗∗∗j  as the indices of the 
second, third best performance, and τj as the length of an individual’s career. We then calculate the relative dif-
ference of indices of the three best performances as

for all players in our dataset and define the marginal probability density functions P(�1,2
j ),P(�1,3

j ),P(�2,3
j ) and 

the joint probability distribution Q(�1,2
j ,�

1,3
j ) . As a control, we shuffle the indices of the performances within 

the individual’s career and reevaluate these quantities. The primed quantities correspond to the shuffled career, 
i.e., t ′∗j  corresponds to the index of the best performance within the randomly reshuffled player j’s career, and so 
on. We define the marginal probability density functions P(�′1,2

j ),P(�′1,3
j ),P(�′2,3

j ), which are the distributions 
of the shuffled versions �′1,2
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2,3
j  . We define the ratios R(�t) of these marginal 

probabilities to quantify the temporal colocation of the best performances in an individual career

Figure 1 presents the joint probability distribution of relative difference of indices of best and second-best 
against the best and third best  (Q(�1,2

j ,�
1,3
j )) (top panels) defined by Eq. (2), for ODI and Test formats over 

all individuals’ careers. We observe a concentration of high probability around the origin (0,0) in both formats 
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of the game. This correlation is interesting since this characteristic is a feature of the self-excited process and is 
not expected in a pure memoryless Poissonian process. We further compare the joint probability distribution 
(Q(�1,2

j ,�
1,3
j )) with the corresponding reshuffled joint probability distribution (Q(�′1,2

j ,�
′1,3
j ))  and present 

in figure S2. The p values from 2D Kolmogorov–Smirnov two sample tests in figure S2 signifies the significant 
clustering around origin. This finding constitutes a first line of evidence for the existence of temporal clustering 
in the performances across players’ careers.

The bottom panels of Fig. 1 shows the ratio R(�t) (Eq. (3)), which compares the marginal probability dis-
tribution of the relative difference of the indices in the real careers against the indices obtained from shuffled 
careers. The distinctive peak around 0 in the plots provides additional support for clustering of performance 
within careers. R(�t) is approximately symmetric around the origin, indicating that the highest performances 
are equally likely to arrive before or after the second highest and third-highest scores. This pattern is expected 
from a self-excited process with approximately equal propensity for performance persistence among the best 
performance streaks55,56. This was shown in the context of earthquake time and space clustering. Here, we can 
think of the highest performance as equivalent to the main shock in a seismic sequence. Then, the main shock 
can be shown to be triggered by large events that occur before it (“foreshocks”) and the main shock itself triggers 
large events (“aftershocks”)55,56.

Figure 2.   Visual representation of the database. (A) The time evolution of the total number of games in 
ODI and Test format. The inset figure represents the total number of games in each format. The brown color 
represents the Test cricket and the purple color represents the ODI cricket. (B) The joint distribution of the 
total number of players against the total number of games played by each player. The four symbols shown in the 
inset can be paired since the number of batsmen and of bowlers coincide by construction of the game. The total 
number of ODI games played and the total number of games won by each country is presented in (C). The same 
statistics for Test cricket is presented in (D). The purple color represents the total games and the green color 
represents the total wins.
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Clustering point process representation.  Definition of the “performance time”.  We call Sj(t) the per-
formance (see SM for more details about the game of cricket) of the player j at his tth attempt within his career. 
We define the subordinate time process Hj(t) of the stochastic process Sj(t)57 as

The t → Hj(t) map represents a nonlinear transformation from the index t  onto an effective “performance 
time” of player j . Hj(t) denotes a transformed time-stamp at which the tth event takes place for player j. This 
defines a point process along “performance time” with the time stamps {Hj(t1),Hj(t2), . . . ,Hj(tn), . . .} . The intui-
tion behind definition (4) is that a series of strong performance values {Sj(ti), Sj(ti+1), . . .} are transformed into 
closely clustered points in “performance time”. This allows us to analyze the relationship between performances 
in time using simple one-dimensional techniques. In other words, by transforming Sj(t) , into Hj(t) , we project 
the stochastic process described by the sequence {Sj(t), t = 1, . . .} onto an one-dimensional point process with 
time stamps {Hj(t1),Hj(t2), . . . ,Hj(tn), . . .} . By construction, the t → Hj(t) transformation preserves the self-
excited component of performance scores described by the stochastic process {Sj(t)} and amplifies it by the 
magnitude of the performance values.

Figure 3 presents the example of the career of Sachin Tendulkar, who has the highest sum of performances 
in both formats of the game. Top panels show the performance time H(t) as a function of t, t is the index of the 
tth attempt, as defined in Eq. (4), for two international cricketing formats, ODI and Test. Bottom panels show 
the scores Sj(t) as a function of t  , for the two international cricketing formats, ODI and Test. The presence of 
local temporal clustering around the high and low performances is clearly visible in both representations of H(t) 
and S(t) for this player.

Hawkes point process along the “performance time”.  The performance time Hj(t) of player j defined by expres-
sion (4) allows us to introduce a point process by the performance times {Hj(t1),Hj(t2), . . . ,Hj(tn), . . .} along 
the H axis. In other words, we consider the “performance time” axis Hj(t) and, along this new time axis, we 
identify “points” at the locations {Hj(t1),Hj(t2), . . . ,Hj(tn), . . .} . When player j has a series of large scores, this 
is expressed as a cluster of closely spaced points along the H axis as shown in Fig. 3.

Inspired by the analyses of46,49,51 using generalized non-homogeneous Poisson processes, we propose to model 
the clustering of the points along the H axis of each player by using the self-excited stochastic Hawkes point 
process model45,50, augmented by some necessary ingredients for constructing a prediction model19. In other 
words, we visualize the points for a given player j along the performance time axis Hj(t) as being generated by a 
Hawkes model with intensity �(t) given by

(4)Hj(t) =
t
∑

ti=1

1
Sj(ti)

(5)�(t) = µ+
∑

ti<t
ϕ(t − ti)

Figure 3.   Sequence of performances in the individual career of Sachin Tendulkar. (A) Performance time H(t) 
as a function of t  , as defined in Eq. (4),  for the highest performer in ODI cricket. (B) Performance time H(t) 
for the highest run scorer in Test cricket. (C) The performance score S(t) of the player in ODI corresponding 
to panel (A). (D) The performance score S(t) of the player in Test cricket corresponding to panel (B). The large 
yellow stars represent the top 3 performances. The top insets in (A,B) give the point process representation of 
H(t) , in which each dot corresponds to an instant of time along the H(t) time axis. We have added noise along 
the y-direction for better visualization.
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In expression (5), the first term μ in the right-hand-side is the background intensity, which quantifies the 
“intrinsic” performance level of a player, uninfluenced by his/her past performances. The second term describes 
how past points can trigger future points along the H axis. This is a convenient and elegant way to account for the 
possibility of a hot-hand effect, since each next point is function of the whole history, with a weight quantified 
by the memory or kernel function ϕ(t − ti) > 0 , which is decaying as a function of its argument (points further 
in the past have a weaker influence). Thus, the sum 

∑

ti<t
ϕ(t − ti) quantifies the influence of the history of past 

performances on a player’s present performance.
Depending on the problem, previous researchers have used different parametric forms for, e.g.46,53,54 use a 

power law kernel, whereas58 use an exponential kernel. In the present case, as there is no reason to favor any 
parametric form, we decide to use a non-parametric kernel function for φ50,59. Thus, shortly after a large perfor-
mance amplitude, model (2) describes the possibility that the excess intensity of observing a similar performance 
is boosted and then decays to the baseline average performance level µ at long times.

The self-excited Hawkes conditional point process is one of the simplest models to account for how the past 
can influence the future, while keeping a very convenient linear dependence of the past onto the future. The most 
important parameter of the Hawkes model is its branching ratio defined by

The branching ratio n is the average number of points (or events) of first generation triggered by a given 
point. It is also the fraction of points (events) that have been triggered by past events60. A value of n close to the 
critical value 1 thus qualifies a large level of triggering (strong hot hand effect) and endogeneity. Please see figure 
S4 for details about the used method.

We use the expectation maximization algorithm as described50 to calibrate the model.

Results and discussion
Hot individual hands.  We partition the career of a player j into training set and validation set. We take the 
first 80% of the performances as the training set and the next 20% as the validation set. We transform the perfor-
mance sequence in training and validation set to performance time representation (4) as discussed in “Methods” 
section. We calibrate the performance time in training set to determine background intensity µ and the memory 
kernel ϕ . We then use the calibrated µ and ϕ to evaluate the prediction performance in validation set using the 
log-likelihood score and call the median value Lmodel

j .
Similarly, we prepare a controlled set of log-likelihood estimation for the same player. Keeping the valida-

tion set unaltered, we shuffle the sequence of the performance in the training set 100 times and use this to 
train the model. We evaluate the trained model on the unaltered validation set to determine the correspond-
ing median log-likelihood estimation Lcontrol

j  . With the above constructions, we define the relative differences 
δ(Lmodel

j ,Lcontrol
j ) by

Additionally, we estimate the branching ratios (see Eq. (6))46,49,53 of the performance time for all players over 
the duration of their entire career. For comparison, we construct null estimations by randomly shuffling the 
performance time times and reevaluating the 100 null branching ratios for each of the players.

The relative difference of log-likelihood prediction scores in Eq. (7) is shown in the bottom panels of Fig. 4, 
for both formats of the games. The insets present the fraction of time control performing better and the fraction 
of time the model performing better. The results show a significant improvement in prediction score in model 
experiments compared to the control experiments. We plot the distribution of the branching ratios obtained 
from the data and the null branching ratios and compare them in the top panels of Fig. 4. In the plots, the shaded 
region marks the fraction of players’ branching ratios that are never found in the null models. This behavior is 
robust against the number of simulated null models, i.e., the fraction of players’ branching ratios that are never 
found in the null model remains the same even if we consider 500 and 1000 null models.

We then compare the log-likelihood score from 100 control estimates with the log-likelihood score obtained 
from the data for each of the player. We evaluate the statistical significance of having a better log-likelihood score 
in the model experiments compared to the control experiments. We perform the Wilcoxon signed-rank test in 
each career to determine the statistical significance. Considering a confidence level of 0.05, we observe that, in 
49.6% of Test careers and in 46.8% of the ODI careers, the log-likelihood prediction score in original sequences 
is significantly higher than the median log-likelihood prediction score in control experiments. This leads us to 
conclude that the probability of falsely accepting the null hypotheses—the control experiments perform equally 
good—is < 10−6(using a binomial probability distribution with success rate 0.05 of false test result) for both the 
cases. This result is sufficient to support the predictive power of our model. Furthermore, our model performs 
better than the standard techniques like ARIMA and autocorrelation measures20,21 (please refer to the SM).

We then compare the branching ratios (see Eq. (6)) of the performance time obtained from data and null shuf-
fling for each player to quantify the Hot-Hand effect. We perform the Wilcoxon signed-rank test to determine the 
statistical significance. We observe that in 56.8% of Test careers and in 53.7% of the ODI careers, the branching 
ratio of original performance time is significantly higher than the median branching ratio in null performance 
time (confidence level = 0.05). These results suggest a significant presence of Hot Hands in the players career, as 
the probability for the absence of Hot Hands is < 10−6(using a binomial probability distribution with success 
rate 0.05 of false test result).

(6)n =
∞
∫

0

ϕ(t)dt.

(7)δ

(

L
model
j ,Lcontrol

j

)

=
Lmodel

j −Lcontrol
j

Lcontrol
j
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Hot team hands.  We repeat the above analysis to predict and quantify the team performances (sum of all 
individual performances in a game) (please see SM for more details). We take the first 80% of the team perfor-
mances as the training set and validate the model on the next 20%. Using the Wilcoxon signed-rank test with 
confidence level 0.05, we observe that, only in 30% and 20% of ODI and Test teams, the log likelihood scores in 
model experiments is significantly better than the control experiments. These results suggest a significant reduc-
tion in prediction (~ 50% reduction) compared to predictability of individual performances (please see SM for 
more details). Further the probability of falsely accepting the null hypotheses—the control experiments perform 
better—increases to ∼ 10−2 and ∼ 10−1 respectively (using a binomial probability distribution with success rate 
0.05 of false test result). The absence of reliable prediction in the above results suggest the absence of exploitable 
self-excited patterns in team performance.

Hot winning hands.  We investigate the presence of hot hands in the team performances by going through 
the complete history of games played by each team and analyze the winning streaks (i.e., the number of continu-
ous wins without losing a single game in between). We note down the length of winning streaks and the cor-
responding frequencies of occurrences of such streaks in each team playing history.

Figure 4.   Analysis of clustering in the time series of performance time with the self-excited point process 
model. (A,B) represent the distribution of branching ratios over the set of players and of the branching ratios 
obtained from synthetic shuffled careers. (A) represents the distribution for ODI cricket and (B) is for Test 
cricket. Shaded regions in the plot represent the domain of branching ratios obtained from the real data that 
cannot be explained by the null models. (C,D) show the distribution of δ(Lmodel

j ,Lcontrol
j ) (see Eq. (7)). (C) 

represents the distribution for ODI cricket, and (D) is for the Test format. The fraction of the times models 
achieve a better log-likelihood score compared to the controls is colored green, otherwise the color is red. The 
insets show the fraction of controls and models outperforming their counterparts. In ODI games, the fraction of 
times models perform better than the controls is: 0.62; for Test cricket, this fraction is 0.60.
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Then, we construct a statistical ensemble of possible performance trajectories. We randomly shuffle the origi-
nal performance sequences to generate 1000 synthetic performance trajectories. Using this statistical ensemble, 
we evaluate the null probability distribution for the joint occurrence of streaks of length n and of corresponding 
frequency f. We use this probability distribution for estimating the p values for the observed events. we define 
the p values p(n) and p(nf ) according to

which respectively represent the p value for observation of streaks with length n and streaks with length n condi-
tional on frequency f. To avoid the problem of multiple hypothesis testing61, because of simultaneous considera-
tion of the multiple individual tests, we correct the error rates of individual tests using multiple hypothesis testing 
methods62–66. We note down the results from the methods62–66 and identify the extreme events (see supporting 
tables for multiple hypothesis testing in SM).

Figure 5 presents the position of the realized winning streaks, along with the null distribution of the winning 
streaks for the 10 teams in the ODI format (top panel) and in the Test format (bottom panel). The red stars in 
figure reveal several highly improbable i.e., one or both of p(n) and p

(

nf
)

 is significant with confidence level 
0.05, after multiple testing. A large number of white stars indicate probable events i.e., none of p(n) and p

(

nf
)

 is 
significant. We present the p(n) and p

(

nf
)

 values for the events that pass the multiple hypothesis tests in figure.
We observe 5 out of 98 (5.1%) streaks in ODI cricket are significantly long, considering both their length 

(n) and frequency (f). In Test cricket, 6 out of 73 (8%) considering the length and 5 out of 73 (7%) considering 
the frequency are statistically significant. Because of the considered significance level, we expect an error rate 
of 0.05 in individual verification. In total we verified 98 possible streaks in ODI cricket and 73 streaks in Test 
cricket. The binomial probability for the observation of 5 hot hands in ODI cricket is 0.18 and more than 5 hot 
hands is 0.36. However, for the Test format, the probability of observing 5 and 6 hot hands are 0.14 and 0.08 and 

(8)p(n) = P(ni ≥ n), p
(

nf
)

= P
(

ni ≥ n|f
)

Figure 5.   Hot hands in cricket teams. (top panel) ODI: Each of the 10 subplots in the figure shows the null 
distribution (obtained through randomly shuffling the performance sequence) of joint occurrence of winning 
streak length and of the corresponding frequency of occurrence. The title of each subplot provides the country 
of the team. Marked points on the plots represent the realized events. The white points represent the probable 
events, and the red points represent the extreme/unlikely events (determined through multiple testing 
methods). The p values ( p(n) and p

(

nf
)

) (see Eq. (8) for definitions) for the unlikely events are provided along 
with the points. (Bottom panel) Test: Same as top figure for the performances in the Test format.
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more than 5 and 6 are 0.15 and 0.07 respectively. This allows us to conclude that we don’t observe any Hot Hand 
effect in winning streaks of teams both in ODI and Test cricket. The length of winning streaks is an important 
variable to consider while investigating hot hands. Both the belief and the behavior of performers are sensitive 
to decision frames that they derive from these streak lengths67. This can inform coaches on the importance of 
how to provide information to athletes.

Conclusion
In this study, we have quantified the predictability and persistence of individual and collective performances 
of the teams in a team game. We introduced a number of novel statistical tools to study the hot hand effect in 
a new dataset on game of Cricket. We quantified and exploited the self-excited patterns in individual and team 
performances to better predict the future compared to traditional methods like ARIMA.

Our investigation has confirmed the presence of significant hot-hands in individual performance. This is 
supported by the fact that the three highest performances in individual career cluster in time, particularly when 
players partake in hundreds of games. Further, the shaded branching ratios in Fig. 4A,B are very rarely found 
in simulated null data, confirming the strength of the self-excitation that qualifies the presence of the hot-hand 
effect. The major finding of our work is that these self-excitation patterns can indeed be exploited for predict-
ing future performances. The findings of this investigation complement those of earlier studies supporting the 
presence of hot hands in individual careers, while raising questions about the validity of those refuting the same.

Additionally, we have showed a significant reduction in prediction of team performances compared with 
single players’ performance, suggesting the dominance of stochasticity in the determinant of teams’ performance. 
While there is still some predictability to a certain extent, the outcome of the game cannot be predicted, nor do 
they cluster in time. This leads us to suggest the somewhat paradoxical conclusion that ‘Cricket is a game of skill 
for individuals and a game of chance for the teams.’

Our study showed that, while an individual can consistently deal with the environmental systemic stochas-
ticity, it is difficult for the team to perform equally well. Thus, these results open door for future research in the 
direction of the impact of group size in predictability and consistency of performance.

Furthermore, the present study established a quantitative framework for detecting and predicting the per-
formances in individual careers. This approach will prove useful in expanding our understanding of the predict-
ability of success in individual careers. This paper contributes to recent historiographical debates concerning the 
presence of hot hands in the sequence of successes in individual performances. Further work needs to be done to 
establish whether the presented methodology for predicting the performances can be improved for commercial 
usage and for financial gains, exploiting the presence of self-excited patterns in individual careers. The findings 
of this study have a number of important implications for future research in the field of quantifying self-excited 
performance patterns involved in the study of human behavior and design of algorithms for predicting success.

Limitations.  Our analysis has been performed on players with more than 30 games. Such minimum sample 
size is required to accurately fit the Hawkes process to data, as shown in the SM with the measures of dispersion. 
We acknowledge that this could have influenced the overall result as we cannot infer the existence/absence of 
hot hands in shorter careers. Additionally, the Hawkes point process used as a representation of the perfor-
mance sequence assumes a constant background rate of new events. Thus, our methodology doesn’t account 
for possible seasonal variation of the performances within the players’ career. A further study could improve 
the methodology by considering the temporal variation of the background rate using the methods developed 
in68 to successfully account of possible complex seasonality effects. Through this study, we analyze the hot hand 
effect within the time frame of individual games. A natural extension of our work would be to analyze alternative 
time frames, such as different sections of a game (half-time, set), a half-season or season or multiple seasons to 
investigate the existence of hot hands.

Data availability
The datasets used in this study is publicly available at https://​www.​espnc​ricin​fo.​com, http://​howst​at.​com/. All 
methods were carried out in accordance with relevant guidelines and regulations. All data, codes, and materials 
used in the analysis would be made available.
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