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Electromagnetic energy density 
in hyperbolic metamaterials
Afshin Moradi1* & Pi‑Gang Luan2

We present the theory of electromagnetic energy propagation through a dispersive and absorbing 
hyperbolic metamaterial (HMM). In this way, the permittivity tensor components of HMM (especially, 
nanowire HMM) may appear to be hopeless, but as a non‑trivial step, we find that they can be cast 
into more transparent forms. We find under the influence of an electromagnetic wave, the responses 
of nanowire HMM (multilayer HMM) in the directions perpendicular to and parallel to the optical axis 
are similar to those of Lorentz (Drude) and Drude (Lorentz) media, respectively. We obtain simple 
expressions for the electromagnetic energy density formula of both typical structures of HMMs, 
i.e., nanowire and multilayer HMMs. Numerical examples reveal the general characteristics of the 
direction‑dependent energy storage capacity of both nanowire and multilayer HMMs. The results of 
this study may shed more physical insight into the optical characteristics of HMMs.

Metamaterials are artificial media that usually refer to arrays of wires and split-ring resonators (SRRs)1,2. They 
have unusual optical properties such as negative refractive  index3, subwavelength  imaging4, and indefinite 
 permittivity5. A fundamental problem concerning dispersive and absorbing metamaterials is how to obtain 
electromagnetic energy  density6–11. Actually, the contradictory results of electromagnetic energy density in lossy 
wire-SRR metamaterials have been the subject of theoretical  controversy12–15.

If the losses are negligible, one can correctly obtain the electromagnetic energy density of such media by 
using the well-known Landau  formula16. In the presence of damping effects, on the other hand, difficulties arise 
in attempting to calculate the energy associated with an electromagnetic wave passing through the wire-SRR 
metamaterials. During past years, several researchers achieved different results in different  ways12–15. The ques-
tion then becomes, what is the correct result for the electromagnetic energy density in dispersive and absorbing 
wire-SRR metamaterials? In this way, one of the present authors derived the electromagnetic energy density 
formula, which is consistent with the Landau formula, when the losses are  negligible17. Then, Luan et al. obtained 
the electromagnetic energy density formula for the single-resonance chiral  metamaterials18, using the same 
approach discussed  in17.

An HMM refers to an extremely anisotropic uniaxial optical media and has received much attention 
 recently19–25,28. This medium has opposite signs of the two principal values of the permittivity tensor along and 
perpendicular to its optical axis. Mathematically, the dispersion of an electromagnetic wave in such a medium has 
a hyperbolic shape. By definition, there are two types of HMMs. Type I with a predominantly dielectric nature, 
and type II with a predominant metallic  behavior26. Typically, HMMs contain alternating deeply subwavelength 
metal and dielectric features and there are different configurations of HMMs such as metallic nanowire struc-
tures and dielectric-metal multilayer structures. Note that the signs of the two effective permittivities of such 
structures are frequency-dependent, so they are not definitely type-I HMM or type-II HMM and therefore an 
HMM is well-known as an indefinite  medium27. However, a periodic array of metallic nanowires (for example 
gold nanowires) embedded in a host dielectric matrix (for example SiO2 ) may be an example of type-I HMM 
in the visible wavelength and near-IR  range28. Also, a multilayer medium consisting of dielectric and metallic 
layers (for example gold-SiO2 HMM) may be an example of type-II HMM in the visible and near-IR  range28. 
There are quite a number of interesting works on the characteristics and applications of HMMs, such as direc-
tional  transmission29,30, long-range  interaction31,32, and super-resolution  imaging33,34. Also, the resonant modes 
of HMMs with oscillators have been studied in waveguide  structures35 and cavity  structures36,37. Interestingly, 
more recently, it has been shown that the propagation of sound waves in HMMs is similar to the gravitational 
waves, which means the quantized sound waves (phonons) are similar to  gravitons38.

But what is the electromagnetic energy formula for a lossy HMM? Recently, one of the present authors 
studied the propagation of electromagnetic energy in a lossy multilayer HMM for a simple  case39. However, the 
electromagnetic energy density formula in a lossy nanowire HMM has not been derived yet, perhaps because 
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of its difficulty. In fact, the effective permittivities of HMMs are more complex than the wire-SRR and chiral 
metamaterials.

Solving the above-mentioned problem is the main motivation of the present work. However, to do this, the 
components of the well-known effective permittivity tensor of a nanowire HMM may appear to be hopeless, but 
they can be cast into more transparent forms. Actually, as a non-trivial and key step, we obtain familiar forms 
for the effective permittivities of nanowire HMMs and multilayer HMMs. Then, we can easily derive the energy 
density associated with an electromagnetic wave passing through them. Note that the new appropriate forms 
for the effective permittivities of nanowire HMMs and multilayer HMMs may shed more physical insight into 
the optical characteristics of HMMs. Finally, for the sake of completeness, we also find a new transparent form 
for the effective permittivity of a composite of metallic nano-spheres embedded in a host matrix (see the  Sup-
plementary Material).

Theory
Let us consider a dispersive and absorbing HMM as an effective uniaxial crystal. In the presence of an oscillating 
electric field E = E� + E⊥ of frequency ω and long-wavelength vibration, the equation of motion of this medium 
may be represented by the Lorentz equation. We  have40

with ϑ =�,⊥ . Also, q is the electric charge, m is the effective mass of each electric charge, r = r� + r⊥ is the 
displacement of the oscillators, ω0ϑ is the resonance frequency of the charges and γ is the damping frequency. 
Note that the z-axis is along the optical axis of the HMM and E� = Ez.

Suppose that there are N oscillators in the HMM with volume V and let us represent the effect of the high 
resonances by real constant background dielectric constants ε∞� and ε∞⊥ . Then, we have

where Pϑ is the ϑ component of complex polarization that has a part due to the oscillators of natural frequency 
ω0ϑ , and a part due to the higher frequency resonances. Therefore, the components of the relative permittivity 
tensor can be determined by using Eqs. (1) and (2) as εϑ = 1+ Pϑ/ε0Eϑ . The final outcome is

where Fϑ = ω2
pϑ/ω

2
0ϑ measures the strength of the HMM resonance, εx = εy = ε⊥ , εz = ε� , and 

ωpϑ =
(

Nq2/ε0ε∞ϑmV
)1/2.

Indeed, Eq. (3) suggests that the Lorentz formula is a general and suitable form for the components of the 
relative permittivity tensor of an HMM. The electromagnetic energy density for a Lorentz type of isotropic media 
[see Eq. (3)] has been derived earlier by  Loudon40. Thus, the time-averaged total energy density associated with 
a harmonic wave in a Lorentz type of HMM is

where

is the electromagnetic energy density ( ε0 and µ0 are permittivity and permeability of free space, respectively, 
and H is magnetic field), and

is the kinetic energy density of HMM, and

is the potential energy density of HMM. Therefore, in general, the total energy includes two parts: the first part 
from the electric and magnetic fields themselves, the second part from the medium response, i.e., the kinetic 
and potential energies of the charges under the influence of the electromagnetic  wave41. Also, the time-averaged 
power loss density can be written as

Using Eq. (1) to eliminate r‖ and r⊥ from Eqs. (5)–(8), we obtain

where �‖ and �⊥ are the effective energy coefficients as

(1)mr̈ϑ +mγ ṙϑ +mω2
0ϑ rϑ = qEϑ ,

(2)Pϑ =
Nq

V
rϑ + ε0(ε∞ϑ − 1)Eϑ ,

(3)εϑ = ε∞ϑ

(
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Fϑω

2
0ϑ

ω(ω + iγ )− ω2
0ϑ

)

,
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1

4
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]
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.

(8)Ploss =
Nmγ

2V

(
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and

where Im means imaginary part, and Ŵ‖ and Ŵ⊥ are the effective energy loss coefficients as

If the losses are negligible, the time-averaged electromagnetic energy density, for a monochromatic (single 
frequency) electromagnetic field,  is16

Setting γ = 0 in Eq. (3) and using Eq. (13), we obtain

that is exactly the same result as that obtained by setting γ = 0 in Eq. (9). This equality is the first verification 
of the presented results.

Nanowire hyperbolic metamaterials. Now, let us consider a periodic array of metallic nanowires with 
axes parallel to z-axis embedded in a host dielectric matrix with the dielectric constant εd , as shown in Fig. 1a. 
The z-axis is along the optical axis. Let f be the filling fraction of the metallic nanowires in a unit cell satisfying 
0 < f < 1 . This periodic array can be used to construct an electric HMM of type I (in an appropriate frequency 
region), with the components of effective permittivity tensor given  by21,42

where

(10)�ϑ = ε∞ϑ
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Fϑω

2
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(15)ε� =f εm + (1− f )εd, (< 0),

(16)ε⊥ = εd
(1+ f )εm + (1− f )εd

(1− f )εm + (1+ f )εd
, (> 0),

Figure 1.  (a) Schematic of a periodic array of metallic nanowires embedded in a host dielectric matrix, as a 
typical 2D geometry of HMMs. The host matrix is not shown. This array of nanowires aligned with the z-axis 
and arranged on a square lattice in the xy-plane. (b) A nanowire HMM is an effective medium that has different 
dynamical properties in the direction parallel and perpendicular to its optical axis (the z-axis).
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shows the relative permittivity of a metallic nanowire with ε∞ that is the permittivity in high-frequency and 
ωp0 as the electron plasma frequency. Here we have relaxed the restrictions in the previous  investigation39 by 
considering ε∞ in Eq. (17). Therefore the formulas might provide more realistic applications.

At this stage, as a non-trivial step, the above effective permittivities can be written as Eq. (3). The recipe for 
reducing Eqs. (15) and (16) to Eq. (3) is as follows

(1) First, replace εm with ε∞.
(2) Replace εϑ with ε∞ϑ to find ε∞ϑ.
(3) Find ω2

pϑ = Fϑω
2
0ϑ from εϑ < 0 , as ω2

pϑ = f ε∞ω2
p0/εϑ and consider ω0ϑ = 0.

(4) Consider ξ as the denominator of εϑ > 0 , and find ω2
0ϑ = (1− f )ε∞ω2

p0/ξ.
(5) Consider ζ as the product of the denominator and numerator of εϑ > 0 , and find ω2

pϑ = η2f ε2dε∞ω2
p0/ζ . 

Note that η is a geometrical factor. η = 1, 2 and 3 for slab, cylinder, and sphere inclusions, respectively.
(6) Finally, for εϑ > 0 find Fϑ = ω2

pϑ/ω
2
0ϑ.

Using the mentioned step-by-step procedure, we obtain

These equations indicate that the optical responses of a nanowire HMM in directions perpendicular to the 
optical axis and parallel to it are similar to the Lorentz and Drude media, respectively, as shown in Fig. 1b. Using 
the above equations, we can obtain the energy relations of a nanowire HMM according to the Eqs. (9) and (11). 
For the case f ≪ 1 , nanowires are well separated by large distances and there is no intermodal coupling between 
eigenmodes of them. Then from Eqs. (18)–(22) we find:

where √ε∞ωp0/
√
ε∞ + εd  is the frequency of dipolar resonance of a single metallic nanowire surrounded by a 

dielectric  medium43. Note that for type-I HMM we should have Re
[

ε‖
]

< 0 and Re[ε⊥] > 0 ( Re means real part) 
and the imaginary parts of them must be small enough to be negligible. Therefore, using Eq. (3) we find 
Re

[

ε‖
]

< 0 ,  i f  ω <
√

ω2
p� − γ 2  ,  and Re[ε⊥] > 0 ,  i f  ω < ω0⊥ ,  that  means  we may have 

ω < min
(√

ω2
p� − γ 2,ω0⊥

)

 . Although the results in this subsection were derived for a type-I nanowire HMM, 

however, the expressions are generally valid and can be used for a type-II nanowire HMM (in an appropriate 
frequency region).  It  is  easy to f ind that for type-II nanowire HMM we may have 

max
(√

ω2
p� − γ 2,ω0⊥

)

< ω <
√
1+ F⊥ω0⊥.

Now, we study the corresponding dispersion/anisotropy and absorption effects in the energy density and 
power loss. Therefore, we use the directionality factors, as Denergy = �⊥/�� , where �‖ and �⊥ are the effective 
energy coefficients in Eq. (9) as mentioned before, and Dloss = Ŵ⊥/Ŵ� , where Ŵ‖ and Ŵ⊥ are the effective energy 
loss coefficients in Eq. (11). We assume εd = εSiO2=3.9 , ε∞ = 1 , and γ = 0.01ωp0.

Figure 3 shows the variation of Denergy (blue curves), and Dloss (red curves) as a function of the dimensionless 
frequency ω/ωp0 for a nanowire HMM as type-I HHM (for example a gold nanowire HMM in the visible and 
near-IR  range28) with different values of f. The energy storage ability and the absorption property of the system 
can be isotropic with respect to the electric field for specific cases. For example, from panel (c) one can see the 

(17)εm = ε∞

(

1−
ω2
p0

ω(ω + iγ )

)

,

(18)ε∞� = f ε∞ + (1− f )εd,

(19)ε∞⊥ = εd
(1+ f )ε∞ + (1− f )εd

(1− f )ε∞ + (1+ f )εd
,

(20)F⊥ =
4f εd

(1− f )
[

(1+ f )ε∞ + (1− f )εd
] ,

(21)ω2
p� =

f ε∞ω2
p0

f ε∞ + (1− f )εd
,

(22)ω2
0⊥ =

(1− f )ε∞ω2
p0

(1− f )ε∞ + (1+ f )εd
,

(23)ω0� = 0.

ε∞� = εd, ε∞⊥ = εd,

(24)ω2
p� =

f ε∞ω2
p0

εd
, ω2

0⊥ =
ε∞ω2

p0

ε∞ + εd
, F⊥ =

4f εd

ε∞ + εd
,
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absorption property becomes isotropic when f = 0.2 and ω =
√

ω2
p� − γ 2 = 0.245ωp0 . Panels (c) and (d) show 

that the electric field should be applied to the direction normal to the optical axis to store more energy in the 
medium, when the frequency is in the vicinity of 

√

ω2
p� − γ 2  . Also, we see Dloss and Denergy decrease with 

decreasing the value of ω/ωp0 . It is easy to find that the energy storage ability of the system corresponding to 
low values of ω is high, although the directionality factor indicates that the energy storage ability of the medium 
is anisotropic. Actually, for low values of ω , the electric field should be applied to the direction parallel to the 
optical axis to store more energy in the medium.

Multilayer hyperbolic metamaterials. Consider now a multilayer structure consisting of isotropic 
metal/dielectric layers, as shown in Fig. 2a. The z-axis is along the optical axis. Let εm ( εd ) be the relative permit-
tivity of the metal (dielectric) layer, and let f be the filling ratio of the metal layer satisfying 0 < f < 1 . Again, 
Eq. (17) shows the relative permittivity of a metallic layer. This multilayer structure can be used to construct 
an electric HMM of type II (in an appropriate frequency region) with the components of effective permittivity 
tensor given  by21,44

Figure 2.  (a) Schematic of a multilayer metal-dielectric structure parallel to the xy-plane, as a typical 1D 
geometry of HMMs. (b) A multilayer HMM is an effective medium that has different dynamical properties in 
the direction parallel and perpendicular to its optical axis (the z-axis).

Figure 3.  Variation of Denergy (blue curves), and Dloss (red curves) as a function of the dimensionless frequency 
ω/ωp0 for a nanowire HMM as type-I HHM (for example a gold nanowire HMM in the visible and near-IR 
 range28). Here, the permittivity εm of the metal is characterized by the Drude model and for the dielectric we use 
SiO2 with εd = εSiO2 = 3.9 . For the other parameters we consider ε∞ = 1 , and γ = 0.01ωp0 . The vertical 
dashed line shows ω =

√

ω2
p� − γ 2 . The different panels refer to (a) f = 0.1 , (b) f = 0.135 , (c) f = 0.2 , and 

(d) f = 0.22.
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We can rewrite Eqs. (25) and (26) as Eq. (3) [see the recipe for reducing Eqs. (15) and (16) to Eq. (3)]. In 
this case, we find

These equations show that the optical responses of a multilayer HMM in directions perpendicular to the 
optical axis and parallel to it are similar to the Drude and Lorentz media, respectively, as shown in Fig. 2b. Using 
the above equations, we can obtain energy relations of a multilayer HMM according to the Eqs. (9) and (11). 
Again, if we consider f ≪ 1 then from Eqs. (27)–(31) we find:

where ωp0 is the resonance frequency of a single metallic layer in a dielectric medium. This result indicates that 
the resonance effect also happens in the metallic layers. Note that this resonance frequency is free from the effect 
of permittivity of the dielectric medium.

Also, note that for type-II HMM we should have Re
[

ε‖
]

> 0 and Re[ε⊥] < 0 . Therefore, using Eq. (3) we find 

Re
[

ε‖
]

> 0 , if ω < ω0‖ , and Re[ε⊥] < 0 , if ω <
√

ω2
p⊥ − γ 2 , that means ω < min

(√

ω2
p⊥ − γ 2,ω0�

)

 . Although 
the results in this subsection were derived for a type-II multilayer HMM, however, the expressions are generally 
valid and can be used for a type-I multilayer HMM (in an appropriate frequency region). It is easy to find that 
for type-I multilayer HMM we may have max

(√

ω2
p⊥ − γ 2,ω0�

)

< ω <
√

1+ F�ω0�.
Let us again study the corresponding dispersion/anisotropy and absorption effects in the energy density and 

power loss, when εd = εSiO2=3.9 , ε∞ = 1 , and γ = 0.01ωp0 . Figure 4 shows the variation of 1/Denergy (blue 
curves), and 1/Dloss (red curves) as a function of the dimensionless frequency ω/ωp0 for a multilayer HMM as 
type-II HHM (for example gold-SiO2 multilayer HMM in the visible and near-IR  range28) with different values 
of f. As a specific case, one can see that the energy storage ability of the system becomes isotropic with respect 
to the electric field, when f ≈ 0.223 and ω =

√

ω2
p⊥ − γ 2 = 0.262ωp0 . The power loss corresponding to these 

specific values is low, although the directionality factor indicates that the absorption property of the medium 
near ω = 0.262ωp0 is also anisotropic. Below this frequency, the system can store more energy if the electric field 
direction is parallel to the layers (normal to the optical axis).

Some applications
Energy velocity of TM wave in hyperbolic metamaterials. As an example of the application of the 
general energy density expression shown by Eq. (9), we now derive the formula for the energy velocity of a 
propagating transverse magnetic (TM) wave in an HMM. We note that the hyperbolic feature appears only for 
the TM polarized waves. For the sake of convenience, we consider a TM polarized wave with the field compo-
nents E⊥ = Ex , E� = Ez , and Hy as

(25)ε� =
εmεd

(1− f )εm + f εd
, (> 0),

(26)ε⊥ = f εm + (1− f )εd, (< 0).

(27)ε∞⊥ = f ε∞ + (1− f )εd,

(28)ε∞� =
ε∞εd

(1− f )ε∞ + f εd
,

(29)F� =
f

1− f

εd

ε∞
,

(30)ω2
p⊥ =

f ε∞ω2
p0

f ε∞ + (1− f )εd
,

(31)ω2
0� =

(1− f )ε∞ω2
p0

(1− f )ε∞ + f εd
,

(32)ω0⊥ = 0.

ε∞⊥ = εd, ε∞� = εd,

(33)ω2
p⊥ =

f ε∞ω2
p0

εd
, ω2

0� = ω2
p0, F� = f

εd

ε∞
,

(34)H = H0eye
i(k�z+k⊥x−ωt),
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where the amplitude H0 , has been defined to be real. Also, ex , ey and ez are the unit vectors along the x, y and z 
axis, respectively, and k⊥ = kx , and k� = kz denote the x, and z components of the wavevector. Note that

(35)E =
H0

ωε0

(

k�
ε⊥

ex −
k⊥
ε�

ez

)

ei(k�z+k⊥x−ωt),

Figure 4.  Variation of 1/Denergy (blue curves), and 1/Dloss (red curves) as a function of the dimensionless 
frequency ω/ωp0 for a multilayer HMM as type-II HHM (for example gold-SiO2 multilayer HMM in the visible 
and near-IR  range28). Here, the permittivity εm of a gold layer is characterized by the Drude model and we use 
εd = εSiO2 = 3.9 . For the other parameters we consider ε∞ = 1 , and γ = 0.01ωp0 . The vertical dashed line 
shows ω =

√

ω2
p⊥ − γ 2 . The different panels refer to (a) f = 0.1 , (b) f = 0.15 , (c) f = 0.223 , and (d) f = 0.3.

Figure 5.  The dispersion relation for (a) a nanowire HMM (for example gold nanowire HMM), and (b) a 
multilayer HMM (for example gold-SiO2 multilayer HMM) in the visible and near-IR  range28, as type-I and 
type-II HHMs, respectively. Here, the permittivity of the metal (for example gold) εm is characterized by the 
Drude model and for the dielectric we use SiO2 with εd = εSiO2 = 3.9 . For the other parameters we consider 
ε∞ = 1 , f = 0.1 , and γ = 0 . Also, kp0 is the wavenumber corresponding to the electron plasma frequency 
kp0 = ωp0/c . The plots are symmetric about the planes k� = 0 and k⊥ = 0.
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is the well-known dispersion relation of this TM  wave25, where c is the speed of light in free space. The resulting 
dispersion relation is plotted in Fig. 5 for a nanowire HMM and a multilayer HMM as type-I and type-II HMMs 
in an appropriate frequency region. We assume that HMMs are nonabsorbing. In both cases, the contours of 
constant ω are hyperbolas. In the type-I HMM, these hyperbolas are centered on the k⊥ axis, while in the type-II 
HMM, they are centered on the k‖  axis23,45.

The exact definition of the velocity, vE , with which energy is transported through the HMM  is46

where S is the time-averaged power flow and can be obtained from the Poynting vector by

in the complex number representation. This vector in the medium has components in the x- and z-directions, as

where, using Eq. (9) and Eqs. (39) and (40), we find the energy velocity components

If the losses are negligible, we obtain

where these results for γ = 0 can be deduced by taking the k-gradient of the dispersion relation (36), i.e., 
vG = ∇kω . Therefore, we find the equality between the group velocity and the energy velocity, when γ = 0 . This 
equality is another verification of the presented results.

Wave damping property. As another example of the application of the energy density expression, we now 
study the frequency dependence of the damping function of a propagating TM wave in an HMM. To obtain an 
analytical expression for the damping function (which depends on the frequency and wavenumber) of a propa-
gating TM wave in an HMM, we use the perturbative method proposed by  Loudon40. Such a procedure enables 
us to calculate the true wave damping rate to the first order in the damping parameter γ , introduced to describe 
the intrinsic damping of crystal oscillations. The advantage of perturbative method is that the damping proper-
ties result from the calculation of real dispersion relations. The plasmonic damping parameter or relaxation rate 
Ŵ(k�, k⊥,ω) of the present case may be determined by the following procedure. The kinetic and total energy 
densities (per unit area) UK , and U are first calculated in the absence of damping. If a small amount of damping 
is now reintroduced, the wave relaxation rate to lowest order in γ is

where from Eq. (14) we have

(36)
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Therefore, we get

Let us note that the frequency dependence of the damping function comes from the retarded part of the 
plasmonc waves and one can find that, in the nonretarded limit, the total energy density becomes twice as large 
as the kinetic energy density of the system. As a consequence, the damping function of plasmonic waves of the 
system equals γ , i.e., it becomes a constant.

Wave relaxation time. Let us note that the wave relaxation time T  , which determines the time rate of 
decay of power flow, is simply the inverse of Eq. (47), i.e.,

In fact, T  is the time at which the power flow at a point moving with the energy velocity is reduced to 1/e of 
its original value.

Wave propagation length. The wave propagation length L is given by

where vE can be found from Eqs. (43) and (44) as vE =
(

v2E� + v2E⊥

)1/2
 . In fact, the wave propagation length L 

is the distance after which the power flow in the wave is reduced to 1/e of its original value. Let us note that the 
absorption coefficient for the wave A is simply the inverse of Eq. (49), i.e.,

Conclusion
In summary, it seems that the structure of an HMM is much simpler than the wire-SRR and chiral metamaterials. 
But, the effective permittivities of HMMs are more complex than those of wire-SRR and chiral metamaterials. 
Therefore, the investigation of electromagnetic energy density in such media may be difficult. To remedy this 
hardship, as a non-trivial and key step, we have obtained familiar forms for the well-known effective permittivities 
of nanowire HMMs and multilayer HMMs, similar to the Lorentz and Drude media. These new transparent forms 
for the effective permittivities of the HMMs simply show that HMMs have different dynamical properties in the 
directions parallel and perpendicular to their optical axes. In this way, we have extended the previous results for 
the electromagnetic energy density in the single-resonance  chiral18 and the wire-SRR11,17 metamaterials, and 
simply derived the energy density associated with an electromagnetic wave passing through an HMM. Note that 
we have checked the validity of the obtained results in two steps. First, we have shown the time-averaged energy 
density formula derived here, i.e., Eq. (9) is consistent with the well-known Landau formula, i.e., Eq. (13), when 
the losses are negligible. Second, we have shown the group velocity of the TM waves in a lossless HMM is the 
same as the energy velocity (i.e., the ratio of the power flow to the storage energy). Here we should stress that 
in the present work, we mainly study the electromagnetic energy density of TM waves in the electric HMMs. 
Similar results can be obtained in the propagation of transverse electric (TE) waves in the magnetic  HMM47.

Data availability
The data that supports the findings of this study are available within the article.
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