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Variational quantum evolution 
equation solver
Fong Yew Leong *, Wei‑Bin Ewe  & Dax Enshan Koh 

Variational quantum algorithms offer a promising new paradigm for solving partial differential 
equations on near‑term quantum computers. Here, we propose a variational quantum algorithm for 
solving a general evolution equation through implicit time‑stepping of the Laplacian operator. The 
use of encoded source states informed by preceding solution vectors results in faster convergence 
compared to random re‑initialization. Through statevector simulations of the heat equation, we 
demonstrate how the time complexity of our algorithm scales with the Ansatz volume for gradient 
estimation and how the time‑to‑solution scales with the diffusion parameter. Our proposed algorithm 
extends economically to higher‑order time‑stepping schemes, such as the Crank–Nicolson method. 
We present a semi‑implicit scheme for solving systems of evolution equations with non‑linear terms, 
such as the reaction–diffusion and the incompressible Navier–Stokes equations, and demonstrate its 
validity by proof‑of‑concept results.

Partial differential equations (PDEs) are fundamental to solving important problems in disciplines ranging 
from heat and mass transfer, fluid dynamics and electromagnetics to quantitative finance and human behavior. 
Finding new methods to solve PDEs more efficiently—including making use of new algorithms or new types of 
hardware—has been an active area of research.

Recently, the advent of quantum computers and the invention of new quantum algorithms have provided a 
novel paradigm for solving PDEs. A cornerstone of many of these quantum algorithms is the seminal Harrow-
Hassidim-Lloyd (HHL)  algorithm1 for solving linear systems, which can be utilized to solve PDEs by discretizing 
the PDE and mapping it to a system of linear equations. Compared to classical algorithms, the HHL algorithm 
can be shown to exhibit an exponential speedup. Unfortunately, attractive as it may sound, the HHL algorithm 
works only in an idealized setting, and a list of caveats must be addressed before it can be used to realize a quan-
tum  advantage2. Moreover, implementing HHL and many other quantum algorithms would require the use of 
a fault-tolerant quantum computer, which may not be available in the near  future3. Instead, the machines we 
have today are imperfect, noisy intermediate-scale quantum (NISQ)  devices4 with both coherent and incoherent 
errors limiting practical circuit depths.

Over the last few years, variational quantum algorithms (VQAs) have emerged as a leading strategy to real-
ize a quantum advantage on NISQ devices. Specifically, VQAs employ shallow circuit depths to optimize a cost 
function, expressed in terms of an Ansatz with tunable parameters, through iterative evaluations of expectation 
 values5. Applications of VQAs include the variational quantum eigensolver (VQE) for finding the ground or 
excited states of a system  Hamiltonian6–8, the quantum approximate optimization algorithm (QAOA) for solving 
combinatorial optimization  problems9, and solvers for  linear10–12 and non-linear13 systems of equations.

Here, we are interested in variational quantum algorithms for solving differential  equations14, such as the 
Black–Scholes  equation15,16, the Poisson  equation17,18, and the Helmholtz  equation19. Specifically, the Poisson 
equation can be solved efficiently through explicit decomposition of the coefficient matrix derived from finite 
difference  discretization17 using minimal cost function  evaluations18 and shallower circuit depth compared to 
other non-variational quantum  algorithms14,20–22. A natural question to ask, then, is whether such variational 
algorithms for Poisson equations can be extended to solving evolution equations, i.e. partial differential equa-
tions including a time domain. McArdle et al.23 proposed a variational quantum algorithm which simulates the 
real (imaginary) time evolution of parametrized trial states via forward Euler time-stepping of the Wick rotated 
Schrödinger equation, thereby solving the Black–Scholes equation, and by extension, the heat  equation15,16. 
Besides issues of Ansatz selection and quantum complexity, time-stepping based on an explicit Euler method 
may be unstable, a limiting condition exacerbated by noise. With existing variational quantum  algorithms10, an 
implicit scheme for evolution equations is expected to preserve any quantum  advantage1 over classical algorithms, 
with reduced time  complexity18.
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This paper is organized as follows. In section “Theory”, we outline general implicit time-stepping schemes for 
solving evolution partial differential equations and propose the use of a variational quantum solver to resolve the 
Laplacian operator iteratively. In section “Applications to the heat/diffusion equation”, we apply the variational 
quantum algorithm to solving a heat or diffusion equation without source terms as a proof of concept. With 
that, we explore potential applications to more general evolution problems with non-linear source terms, includ-
ing the reaction–diffusion (section “Applications to the reaction–diffusion equations”) and the Navier–Stokes 
equations (section “Applications to the Navier–Stokes equations”), where variables can be coupled through 
semi-implicit schemes.

Theory
Consider the second-order homogeneous evolution equation defined on the set �× J , where � ⊂ R

d denotes 
a d-dimensional bounded spatial domain and J = [0,T] , where T > 0 denotes a bounded temporal domain, as

where u(�x, t) is a function of spatial vector �x and time t, D > 0 is the diffusion coefficient and f is an unspeci-
fied source term. For now, Dirichlet and Neumann boundary conditions are applicable on the boundary 
Ŵ := ∂� = ŴD ∪ ŴN , respectively,

where ∂/∂n is the outward normal derivative on boundary Ŵ.
For a two-dimensional rectangular domain � = (xL, xR)× (yL, yR) ⊂ R

2 , partitioning the space-time domain 
�× J yields the space-time grid points

where nx , ny and nt are prescribed positive integers, such that xi = xL + i ·�x , yj = yL + j ·�y , tk = k ·�t , 
�x = Lx/nx , �y = Ly/ny and �t = T/nt , where Lx = xR − xL and Ly = yR − yL . The discrete domain grid is 
denoted by �d = {(xi , yj) : nx ∈ {0, 1, . . . , nx}, ny ∈ {0, 1, . . . , ny}} and boundary grid by Ŵd.

The finite difference (FD) approximation for the second-order spatial derivative (5-point) of the Laplacian 
operator taken at t = tk is

where δx := D�t/�x2 and δy := D�t/�y2 are diffusion parameters.
Using first-order FD for temporal derivative (uk+1

ij − ukij)/�t weighted by ϑ ∈ [0, 1] , the evolution Eq. (1) 
can be expressed in vector shorthand as

where I  is the identity matrix of the same size, uk =
[

ukij

]

0≤i≤nx ,0≤j≤ny
 and f k =

[

f kij

]

0≤i≤nx ,0≤j≤ny
.

Depending on the choice of parameter ϑ , actual time-stepping may follow an explicit (forward Euler) method 
( ϑ = 0 ), an implicit (backward Euler) method ( ϑ = 1 ), a semi-implicit (Crank–Nicolson) method ( ϑ = 1/2 ) or 
a variable-ϑ  method24. The explicit method ( ϑ = 0 ) is efficient for each time-step but is only stable if it satisfies 
the stability condition v ≤ 1/2 . The implicit (backward Euler) method ( ϑ = 1 ) is unconditionally stable and 
first-order accurate in time ( ε ∼ �t ), which reads

The semi-implicit Crank–Nicolson (CN) method ( ϑ = 1/2 ) is popular as it is not only stable, but also second-
order accurate in both space and time ( ε ∼ �t2 ), which reads

where f k+1/2 = (f k+1 + f k)/2 . However, the CN method may introduce spurious oscillations to the numerical 
solution for non-smooth data unless the algorithm parameters satisfy the maximum  principle25.

Variational quantum solver. Here, we explore a variational quantum approach towards the solution of 
the evolution equation (1). In addition to potential quantum speedup, a variational quantum algorithm could 
also benefit from data compression, where a matrix of dimension N can be expressed by a quantum system 

(1)
∂u(�x, t)

∂t
= D∇2u(�x, t)+ f (�x, t), in�× J

(2)u(�x, 0) = u0(�x), in�× {t = 0},

(3)u = g , in ŴD ×J ,

(4)
∂u

∂n
= 0, in ŴN ×J ,

(5)
(

xij , t
k
)

:=
(

xi , yj , t
k
)

, i = 0, 1, . . . , nx; j = 0, 1, . . . , ny; k = 0, 1, . . . , nt ,

(6)Aui,j = −δx(ui−1,j − 2ui,j + ui+1,j)− δy(ui,j−1 − 2ui,j + ui,j+1),

(7)(I + ϑA)uk+1 = [I − (1− ϑ)A]uk +�tf k+ϑ ,

(8)(I +A)uk+1 = uk +�tf k+1.

(9)
(

I + A

2

)

uk+1 =
(

I − A

2

)

uk +�tf k+1/2
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with only log2 N qubits, where N is the size of the problem. Consider the Poisson equation, which is a time-
independent form of Eq. (1), expressed as

The Laplacian operator ∇2 in one dimension can be discretized using the finite difference method in the x direc-
tion into an N N coefficient matrix Ax,β as

where β ∈ {D,N} refers to either the Dirichlet (D) or Neumann (N) boundary condition, and αD = 1 and αN = 0 . 
This extends naturally to higher dimensions, for instance Ay,β in the y direction.

A variational quantum solution is to prepare a state |u� such that A|u� is proportional to a state |b� in a 
way that satisfies Eq. (10). To do that, a canonical  approach10–12 is to first decompose the matrix A over the 
Pauli basis Pn = {P1 ⊗ · · · ⊗ Pn : ∀i, Pi ∈ {I ,X,Y ,Z}} (where X = |1��0| + |0��1| , Y = i|1��0| − i|0��1| , and 
Z = |0��0| − |1��1| are the Pauli matrices and I = |0��0| + |1��1| is the identity matrix) as

where cP = tr (PA)/2n are the coefficients of A in the Pauli basis. Using simple operators σ+ = |0��1| , σ− = |1��0| , 
the number of terms in the decomposition can be reduced to 2 logN + 117. A more efficient approach, however, 
is to express A as a linear combination of unitary transformations of simple  Hamiltonians18. Accordingly, the 
decomposition of A in one dimension can be written  as19

where I0 = |0��0| and β ∈ {D,N} , as before except here, aD = 0 and aN = 1 . Here, S is the n-qubit cyclic shift 
operator defined as

The expectation values of a Hamiltonian H including the shift operator S are evaluated by applying the unitary 
shift operator to the quantum  state18,

where |φ� is an arbitrary n-qubit state and |φ′� = S|φ� . Note that Eq. (13) can be re-written as

Since expectation values of the identity operator are equal to 1, i.e. �φ|I⊗n|φ� = �φ′|I⊗n|φ′� = 1 , evaluating the 
expectation value of the operator Ax,β requires only the evaluation of expectation values of the simple Hamiltoni-
ans H1−4 ( H1−3 for Dirichlet boundary condition). The required number of quantum circuits is therefore limited 
to a constant O(n0)18. Similar decomposition expressions apply to problems of higher dimensions, including Ay,β 
in the y  direction19.

Once the matrix A is decomposed, a parameterized quantum state |ψ(θ)� is prepared using an Ansatz rep-
resented by a sequence of quantum gates U(θ) parameterized by θ applied to a basis state |0�⊗n , such that 
|ψ(θ)� = U(θ)|0�⊗n . Here, we use a hardware-efficient Ansatz consisting of multiple layers of RY gates across n 
qubits entangled by controlled-X gates (see Fig. 1). For the source term f in (10), a quantum state |b� is prepared by 
encoding a real vector with the unitary Ub , such that |b� = Ub|0�⊗n . Depending on the actual input, conventional 
amplitude encoding  methods26,27 may introduce a global phase that must be corrected by its complex argument 
for computing in the real space.

With |ψ(θ)� and |b� , the cost function E can be optimized in terms of A  as18

where |ψ(θ), b� := (|0�|ψ(θ)� + |1�|b�)/
√
2 . The norm of the state vector |ψ(θ)� is represented by r ∈ R , where

(10)−∇2u = f , in� ⊂ R.

(11)Ax,β =











1+ αβ −1 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
...

0 · · · 0 −1 2 −1
0 · · · 0 −1 1+ αβ











.

(12)A =
∑

P∈Pn

cPP,

(13)Ax,β = I⊗n−1 ⊗ (I − X)+ S†
[

I⊗n−1 ⊗ (I − X)+ I⊗n−1
0 ⊗

(
X − aβ I

)]

S,

(14)S =
2n−1∑

i=0

|(i + 1)mod 2n��i|.

(15)�φ|S†HS|φ� = �φ′|H|φ′�,

(16)
Ax,β = 2I⊗n − I⊗n−1 ⊗ X

︸ ︷︷ ︸

H1

+S†
[
− I⊗n−1 ⊗ X

︸ ︷︷ ︸

H2

+ I⊗n−1
0 ⊗ X
︸ ︷︷ ︸

H3

− bβ I
⊗n−1
0 ⊗ I

︸ ︷︷ ︸

H4

]
S.

(17)E(r(θ), θ) = −1

2

|�ψ(θ)|b�|2
�ψ(θ)|A|ψ(θ)� ,
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The quantum circuit required for the numerators of (17) and (18) consists of an encoding unitary Ub and a 
parameterized Ansatz U(θ) (Fig. 1), both oppositely controlled by an ancilla qubit placed in  superposition17. 
As for the denominators, the number of quantum circuits required corresponds to the number of decomposed 
terms of the Hamiltonian (13), each paired with the Ansatz U(θ) . Finally, the resulting states of these circuits 
are measured in the computational basis.

Using classical optimization tools, the cost function (17) is minimized with θ updated iteratively until conver-
gence is reached. The optimization process follows either a gradient-based or gradient-free approach, depending 
on how the gradient of the cost function is evaluated. A gradient-free optimizer is guided by an estimate of the 
inverse Hessian matrix, whereas a gradient-based optimizer by the partial derivative of the cost function E with 
respect to parameters θ , i.e. ∂E/∂θ , which can be evaluated by a quantum computer (for details,  see18,19). Regard-
less of the choice of gradient optimizer used, the optimization routine halts when the cost error falls under a 
convergence threshold ( ǫ < ǫtol ) whence the parameters are at optimum θ = θopt . The converged solution vector 
|u� = ropt|ψ(θopt�  satisfies10

where ropt = r(θopt) is the norm of the solution to the Poisson equation (10).
In this study, we propose to solve the evolution equation (1) through successive time-stepping of the quasi-

steady Poisson equation using a variational quantum algorithm. Using a parameter set θk obtained at time-step 
k, we encode a normalized source state |b̂k� := |b�/

√
�b|b� from |b(θk)� and seek an implicit solution to

where θk+1 = θopt(t
k+1) is the parameter set and rk+1 = ropt(θ

k+1) is the norm at next time-step k + 1 . This 
process is then iterated in time up to nt number of time-steps as desired (see Algorithm 1).

(18)
r(θ) := |�ψ(θ)|b�|

�ψ(θ)|A|ψ(θ)�

=
∣
∣�ψ(θ), b|X ⊗ I⊗n|ψ(θ), b� − i�ψ(θ), ib|X ⊗ I⊗n|ψ(θ), ib�

∣
∣

�ψ(θ)|A|ψ(θ)� .

(19)roptA
∣
∣ψ

(
θopt

)〉
= |b�

(20)rk+1A
∣
∣
∣ψ

(

θk+1
)〉

=
∣
∣
∣b̂k

〉

,

layer 1 layer n

|0〉 Ry(θ11) • . . . Ry(θn1 ) •

|0〉 Ry(θ12) • . . . Ry(θn2 ) •

|0〉 Ry(θ13) • . . . Ry(θn3 ) •

...
...

. . .
...

. . .
• •

|0〉 Ry(θ1n) . . . Ry(θnn)

Figure 1.  Schematic of the quantum circuit hardware-efficient Ansatz used in this study.
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The cost function E(θk) may be evaluated on a quantum computer by computing each of the inner products 
in the expression in Eq. (17) separately. Using the decomposition provided in Eq. (16), these inner products may 
be expressed in terms of expectation values �ϕ|Oi|ϕ� for preparable states |ϕ� and simple Hermitian operators Oi . 
Each expectation value �ϕ|Oi|ϕ� is evaluated on a quantum computer by preparing the state |ϕ� using the quantum 
circuits described above and then measuring the operator Oi in the state |ϕ�18.

In this study, the variational quantum algorithm is implemented in Pennylane (Xanadu)28 using a statevec-
tor simulator with the  Qulacs29 plugin as a backend for quantum simulations, and the L-BFGS-B optimizer for 
parametric updates. Amplitude encoding is carried out via the standard Mortonnen state preparation  template30 
with custom global phase correction. For hardware emulation via the QASM simulator (Qiskit), we refer the 
reader to the excellent cost-sampling analysis of Sato et al. 18.

Applications to the heat/diffusion equation
Consider the following one-dimensional heat or diffusion equation without a source term

Dirichlet conditions are applied on the boundaries of a 1D domain � = (xL, xR) ⊂ R , where u(xL, t) = gL(t) 
and u(xR, t) = gR(t) , such that the boundary vector uD = (gL, 0, . . . , 0, gR) is known for all t.

To solve Eq. (22), the variational quantum evolution algorithm (Algorithm 1) can be employed with a suit-
able time-stepping scheme (7). For the implicit Euler (IE) method (8), the matrix A and source state |b(θk)� can 
be decomposed into

where |uk� = rk|ψ
(
θk
)
�.

For the Crank-Nicolson (CN) method (9), it follows that the Auk term, which carries a small but non-trivial 
evaluation cost, can be eliminated using the source state of the previous time-step k − 1 , leading to

where 2
∣
∣
∣ū

k+1/2
D

〉

:=
(∣
∣
∣uk+1

D

〉

+
∣
∣ukD

〉)

 . Here, the presence of a k − 1 term in 
∣
∣bk−1

〉
 is not unexpected due to 

temporal finite differencing at second-order accuracy.
For a space-time domain �× J ∈ [0, 1] × [0, 1] , let the number of time-steps be nt = 20 and the spatial 

intervals be nx = 2n + 1 , where n is the number of qubits, and δx = 1 is the diffusion parameter. We employ the 
Dirichlet boundary condition with boundary values (gL, gR) = (1, 0) and initial values u0 = 0 . With initial ran-
dom parameters θ0 ∈ [0, 2π] , we run a limited-memory Broyden-Fletcher-Goldfarb-Shanno boxed (L-BFGS-B) 
 optimizer31–34 to optimize θ with absolute and gradient tolerances set at 10−8.

Figure 2a compares solutions obtained from the variational quantum solver (23) and classical methods to a 
1D heat or diffusion problem in time-increments of 0.1, where the number of qubits and Ansatz layers expressed 
as a set n- l, are 3- 3 and 4- 4. Here we define the time-averaged trace error ǭtr as

where 
∣
∣ûk

〉
:=

∣
∣uk

〉
/

√
〈
uk | uk

〉
 is the normalized classical solution vector at time k. The trace errors of solutions 

shown in Fig. 2a are 0.0008 and 0.0025 for n- l sets of 3-3 and 4-4 respectively.
Figure 2b shows how the cost function E depends on the number of optimization steps for n-l of 3-3 and 

4-4 (10 sampled runs each). Each distinct step in E represents sequential optimization from solution |ψ(θk)� at 
time-step k towards the solution |ψ(θk+1)� at k + 1 . For small time-step �t , θk provides a good initial parameter 
set for solving optimization step k + 1 . If the Ansatz parameters were re-initialized randomly θk ∈ [0, 2π] before 
each time-step, significantly more optimization steps would be required on average for convergence for each 
run (see Fig. 2b, inset).

Time complexity. Here we briefly examine the time complexity of the quantum algorithm excluding the 
classical computing components. Following the analysis of the variational Poisson  solver18, the time complexity 
of the proposed variational evolution equation solver per time-step reads

where the terms within the inner parentheses indicate the time complexity of the state preparation scaling as 
O(l + e + n2) , which consists of the Ansatz depth l, the encoding depth e = O(n2)35, the depth of the circuit 

(21)∂u

∂t
= D

∂2u

∂x2
, in�× J

(22)u = u0(x), in�× {t = 0}.

(23)
A = I⊗n + δxAx,D ,

|bk� = |uk� + δx|uk+1
D �,

(24)
A = 2I⊗n + δxAx,D ,

|bk� = 4|uk� − 2δx

(

|bk−1� + |ūk+1/2
D �

)

.

(25)ε̄tr :=
1

nt

nt−1∑

k=0

√

1−
∣
∣�ψ

(
θk
)∣
∣ûk

〉
|2,

(26)T ∼ O

(

T̄eval

(
l + e + n2

ε2

))

,
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needed to implement the n-qubit cyclic shift operator O(n2) , and that of the number of shots O(ε−2) required 
for estimation of expectation values up to a mean squared error of ε2 . The required number of quantum circuits 
depends on the boundary conditions applied (3 for periodic, 4 for Dirichlet and 5 for Neumann conditions), 
scaling only as O(n0) . T̄eval is the time-averaged number of function evaluations,

where Teval is the sum of function evaluations required for a run with nt time-steps. Using a gradient-based opti-
mizer, the time complexity for gradient estimation via quantum computing would scale as the Ansatz volume 
O(nl) representing the number of quantum circuits required for parameter shifting. Otherwise, with a gradient-
free optimizer, the time complexity simply contributes towards T̄eval as additional function evaluations required 
to evaluate the Hessian for gradient descent.

To see if the time complexity for gradient-free optimization scales as O(nl) , we plot the time-averaged number 
of function evaluations T̄eval against the number of parameters nl (Fig. 3a). Indeed, we found that T̄eval scales 
reasonably with nl (see trendline of slope 1), despite apparent tapering at higher l. Figure 3b shows that the time-
averaged trace error ε̄ tr decreases with circuit depth l, even for over-parameterized quantum circuits where the 
number of layers exceeds the minimum required for convergence, lmin := 2n/n36. For low grid resolution n = 3 , 
the trace error is limited to a minimum of ∼ 10−4. Since the time complexity for solving the Poisson equation 
classically is O(N log2 N) , where N = 2n , quantum advantage could be realized with the proposed algorithm 
with linear time scaling by nt at sub-exponential time  complexity18.

(27)T̄eval :=
1

nt

nt−1∑

k=0

Teval,

Figure 2.  (a) Implicit variational quantum solutions to a 1D heat conduction or diffusion problem in time-
increments of 0.1, with boundary values {gL, gR} = {1, 0} , initial values u0 = 0̄ and diffusion parameter δx = 1 . 
(Left) Qubit–layer count n-l = 3 -3 and time-averaged trace error ε̄ tr = 0.0008 ; (Right) n-l = 4-4, ε̄ tr = 0.0025 . 
Both classical and quantum solutions overlap with vanishingly small trace errors. (b) Cost function vs. number 
of optimization steps for 10 runs. Inset: Input parameters are re-initialized randomly, θ ∈ [0, 2π] , before each 
time-step for 5 runs.
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For deep and wide quantum circuits, the increase in optimization time is exacerbated by the presence of 
barren plateaus, or vanishingly small gradients in the energy landscape, where re-initialization can leave one 
trapped at a position far removed from the  minimum37–39. Conversely, short time-steps lead to efficient solution 
trajectories that remain close to the local cost minima, leading to significant reduction in optimization times. 
To verify this, we conduct numerical simulations varying the diffusion parameter δ with l = n up to time T = 1 . 
Figure 3c shows that the number of iterations, or required optimization steps, per time-step increases linearly 
with δ . Close inspection of the time-averaged trace distance shows bimodal distributions at higher δ , which sepa-
rates success and failure during convergence towards the global minimum (see Fig. 3d, dotted lines), resembling 
local minima traps due to poor optimization or expressivity of Ansätze19,40.

Discretization error. Time evolution can be at a higher order, specifically for the Crank-Nicolson method. 
The problem statement is identical to the previous one, except with Dirichlet boundary values (gL, gR) = (0, 0) 
and the initial condition u0 = sin(πx/Lx ), where we use Lx = 1 as the spatial length of the domain. This admits 
an exact analytical solution,

Figure 4 compares variational quantum and exact solutions using implicit Euler and Crank-Nicolson (CN) 
schemes. The discretization error for the higher-order CN scheme is reduced significantly, especially at lower grid 
resolution ( n = 3 ). Although the complexity costs for both methods (23) and (24) are similar, note however that 
the CN method may introduce spurious oscillations for non-smooth  data24, an issue which may be exacerbated 
by quantum  noise41.

(28)u(x, t) = sin

(
πx

Lx

)

exp

[

−Dt

(
π

Lx

)2
]

.

Figure 3.  Logarithmic plots of time-averaged (a) number of function evaluations T̄eval vs. number of 
parameters nl, (b) trace error ε̄ tr vs. number of layers l, (c) number of iterations T̄ and (d) trace error ε̄ tr vs. 
diffusion parameter δ for l = n up to T = 1 . Each data point and error bar represents, respectively, the mean and 
standard deviation out of 25 runs.
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Higher dimensions. The preceding analysis can be extended to higher dimensions. Consider the following 
two-dimensional heat or diffusion equation in �× J , where � = (xL, xR)× (yL, yR) ⊂ R

2:

Under the implicit Euler scheme (8), the matrix A and source state |bk� can be decomposed into

Dirichlet conditions are applied on the boundaries, where u(xL,R , y, t) = gxL,R (y, t) and u(x, yL,R , t) = gyL,R (x, t) . 
Let the number of spatial grid intervals be nx = 2mx + 1 and ny = 2my + 1 , where mx is the number of qubits 
allocated to the x grid, my to the y grid, and n = mx +my is the total number of qubits. Accordingly, A is decom-
posed in terms of simple Hamiltonians in x and y as

where H1−4 are simple Hamiltonians to be evaluated ( H1−3 for Dirichlet boundary condition).
Figure 5 shows solution snapshots to a 2D heat conduction or diffusion problem taken at time T = 1 with 

Dirichlet boundary values (gxL , gxR ) = (0, 0) and (gyL , gyR ) = (1, 0) , initial values u0 = 0 , nt = 20 and diffusion 
parameters δx = δy = 1 . Results obtained from variational quantum solver agree with classical solutions with 
time-averaged trace errors of up to 10−2.

Applications to the reaction–diffusion equations
Here, we extend applications of our variational quantum solver to evolution equations with non-trivial source 
terms. Consider a two-component homogeneous reaction-diffusion system of equations

(29)
∂u

∂t
= D

(
∂2u

∂x2
+ ∂2u

∂y2

)

, in�× J ,

(30)u = u0, in�× {t = 0}.

(31)
A = I⊗n + δxAx,D + δyAy,D ,

∣
∣
∣bk

〉

=
∣
∣
∣uk

〉

+ δx

∣
∣
∣uk+1

x,D

〉

+ δy

∣
∣
∣uk+1

y,D

〉

.

(32)

Ax,β = 2I⊗n − I⊗n−1 ⊗ X
︸ ︷︷ ︸

H1

+ S†[0,mx)

[
− I⊗n−1 ⊗ X

︸ ︷︷ ︸

H2

+ I⊗my I⊗mx−1
0 ⊗ X

︸ ︷︷ ︸

H3

− bβ I
⊗my I⊗mx−1

0 ⊗ I
︸ ︷︷ ︸

H4

]
S[0,mx),

(33)

Ay,β = 2I⊗n − I⊗my−1 ⊗ X ⊗ I⊗mx

︸ ︷︷ ︸

H1

+ S†[mx ,n)

[
− I⊗my−1 ⊗ X ⊗ I⊗mx

︸ ︷︷ ︸

H2

+ I
⊗my−1

0 ⊗ X ⊗ I⊗mx

︸ ︷︷ ︸

H3

− bβ I
⊗my−1

0 ⊗ I⊗mx+1

︸ ︷︷ ︸

H4

]
S[mx ,n),

Figure 4.  Variational quantum solutions to a 1D heat conduction or diffusion problem for qubit-layers (a) 
n-l = 3 -3 and (b) n-l = 4 -4 in time-increments of 0.1 using implicit Euler and Crank–Nicolson schemes, with 
Dirichlet boundary values (gL, gR) = (0, 0) , initial values u0 = sin (πx) and diffusion parameter δx = 1 . Dashed 
lines denote exact solutions.
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where u = [u1, u2]T  is a concentration tensor, D = diag[D1,D2]T  is a diffusion tensor and 
f = [f1(u1, u2), f2(u1, u2)]T is a coupled reaction source term. First proposed by  Turing42, the reaction-diffu-
sion equations are useful for understanding pattern formation and self-organization in biological and chemical 
 systems43,44, such as  morphogenesis45 and  autocatalysis46.

Here, we propose a semi-implicit time-stepping scheme, whereby the coupled, non-linear source term is solved 
at the current time-step k. With explicit source term f k , the implicit Euler scheme (8) reads

The two-component tensor A = [A1,A2]T and source state b = [b1, b2]T can then be decomposed into

where δx = 22n�tD is the two-component diffusion parameter vector. With a linear Hermitian source matrix f, 
a fully implicit time-stepping scheme becomes available (Appendix A).

Implementation. The semi-implicit variational quantum solver solves for the Laplacian for each compo-
nent using a quantum computer and the solution vectors are explicitly coupled through source terms prior to 
re-encoding in preparation for the next time-step (see Algorithm 2).

(34)
∂u(�x, t)

∂t
= D∇2

u(�x, t)+ f(�x, t), in�× J ,

(35)u(�x, 0) = u0(�x), in�× {t = 0},

(36)(I +A)uk+1 = uk +�tf k .

(37)
A = I⊗n + δxAx,D,

∣
∣
∣bk

〉

=
∣
∣
∣uk

〉

+ δx

∣
∣
∣u

k+1
D

〉

+�t
∣
∣
∣fk

〉

,

Figure 5.  (a) Contour solution plot of 2D heat conduction or diffusion problem at time T = 1 on a 8× 8 
x-y square grid (qubit-layer mx-my-l = 3-3-6) with Dirichlet boundary values (gxL , gxR ) = (0, 0) and 
(gyL , gyR ) = (1, 0) , initial values u0 = 0 , nt = 20 and diffusion parameters δx = δy = 1 . (b) Solution vectors in 
time-increments of 0.1.
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1D Gray–Scott model. The Gray-Scott  model46 was originally conceived to model chemical reactions of 
the type U + 2V → 3V  , V → P , where U, V and P are chemical species with reaction term

where k1 and k2 are kinetic rate constants.
An interesting class of Gray-Scott solutions involves periodic splitting of chemical wave  pulses24,47. Here, 

we conduct a pulse splitting numerical experiment under limited spatial and temporal resolutions, using input 
parameters D = [10−4, 10−6]T , k1 = 0.04 and k2 = 0.02 , with a mid-pulse initial condition and Dirichlet bound-
ary conditions as

where time t extends up to T = 600 on dt = 0.5.
Figure 6a shows how an initial mid-pulse can spontaneously and periodically split in space and time, a 

phenomenon captured using variational quantum diffusion reaction solver (see Algorithm 2) even on relatively 
low spatial resolutions.

1D Brusselator model. So far, we have been looking at only Dirichlet boundary conditions. Here, we 
demonstrate a test example for Neumann boundary conditions in a diffusion-reaction model, namely, the Brus-
selator  model48, which was developed by the Brussels school of Prigogine to model the behavior of non-linear 
oscillators in a chemical reaction system. The model reaction term reads

Using D = [10−4, 10−4]T , k1 = 3 and k2 = 1 , with initial conditions

where time t extends up to T = 400 on dt = 0.5.
Figure 6b shows how a chemical pulse can be spontaneously created, which continually travels leftwards in 

time, creating traveling waves that appear as striped patterns in time despite low spatial resolutions.

Applications to the Navier–Stokes equations
The Navier-Stokes equations are a set of non-linear partial differential equations that describes the motion of 
fluids across continuum length scales. There are several studies aimed at applying quantum algorithms to com-
putational fluid dynamics (see  review49), ranging from reduction of partial differential equations to ordinary 
differential  equations50 and quantum solutions of sub-steps of the classical  algorithm51,52 to the quantum Lattice 
Boltzmann  scheme53.

Here, we look into the potential use of variational quantum algorithms to evolve the fluid momentum equa-
tions in time. Consider the incompressible Navier-Stokes equations in non-dimensional form

(38)f(u) =
[

k1(1− u1)− u1u
2
2

−(k1 + k2)u2 + u1u
2
2

]

,

(39)u1(x, 0) = 1− 1

2
sin100(πx), u2(x, 0) =

1

4
sin100(πx), x ∈ (0, 1),

(40)u1(0, t) = u1(1, t) = 1, u2(0, t) = u2(1, t) = 0, t ∈ [0,T],

(41)f(u) =
[
−(k1 + 1)u1 + u21u2 + k2

k1u1 − u21u2

]

.

(42)u1(x, 0) =
1

2
, u2(x, 0) = 1+ 5x, x ∈ (0, 1),

(43)
∂u1

∂x
(0, t) = ∂u1

∂x
(1, t) = 0,

∂u2

∂x
(0, t) = ∂u2

∂x
(1, t) = 0, t ∈ [0,T],
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where u is the velocity vector and p is the fluid pressure. The ratio Re = UcLc/ν is the Reynolds number, where 
Uc is the characteristic flow velocity across a characteristic length-scale Lc and ν is the fluid kinematic viscosity.

Unlike other temporal evolution equations, the incompressible Navier-Stokes equations cannot be time-
marched directly as the resultant velocities do not satisfy the continuity constraint (45), and hence are not 
divergence-free. To resolve this, the projection  method54, also known as the predictor-corrector or fractional 
step method, separates the solution time-step into velocity and pressure sub-steps, also known as the predictor 
and corrector steps.

Projection method. Predictor step. The predictor step first approximates an intermediate velocity u∗ by 
solving the fluid momentum equation (44) in the absence of pressure, i.e. the Burgers’  equations55, of the form

Through a semi-implicit scheme, the viscous terms are handled implicitly using the variational quantum evolu-
tion equation solver and the non-linear inertial terms explicitly as source terms using classical computation. 
For quantum algorithms for non-linear problems, the reader is referred to separate works on quantum ordinary 

(44)
∂u

∂t
+ u · ∇u = −∇p+ 1

Re
∇2u,

(45)∇ · u = 0,

(46)
(

1− �t

Re
∇2

)

u∗ =
(

1−�tuk∇·
)

uk .

Figure 6.  Space-time solutions of (a) mid-pulse wave-splitting in 1D two-component Gray-Scott model 
obtained using semi-implicit variational quantum reaction-diffusion solver on 26 = 64 grid points up to 
T = 600 , for chemical species u1 (left) and u2 (right). Parameters include D = [10−4, 10−6]T , k1 = 0.04 , 
k2 = 0.02 and dt = 0.5 . (b) Traveling wave solutions for 1D Brusselator model on 24 = 16 grid points up 
to T = 400 on Neumann boundary conditions. Parameters include D = [10−4, 10−4]T , k1 = 3 , k2 = 1 and 
dt = 0.5.
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differential equation  solvers50,55, Carleman  linearization56 and a variational quantum nonlinear processing unit 
(QNPU)13.

On a two-dimensional domain with Dirichlet boundary conditions, the tensor Au = [Au,Av]T and source 
state bu = [bu, bv]T can be decomposed as

where δx := �t/(Re�x2) and δy := �t/(Re�y2) . Fk = Dk
uBx,D + Dk

vBy,D is an operator which approximates the 
non-linear inertial term, where Dk

u are diagonal matrices with velocity vectors |uk� along the diagonals and B is 
a divergence matrix discretized through center differencing, for instance in the x direction, as

where β ∈ {D,N} refers to either Dirichlet (D) or Neumann (N) boundary condition. Here, αD = 0 and αN = −1.

Corrector step. The second corrector step solves for the velocity uk+1 by correcting the intermediate velocities 
u∗ using the pressure gradient as a Lagrange multiplier to enforce continuity. Applying divergence to the correc-
tion equations yields the pressure Poisson equation for the pressure field at half-step

which can be solved implicitly in two dimensions (x, y) via the following decomposition:

Note the addition of a simple Hermitian I0 = |0��0| to the pressure matrix Ap , which would otherwise be singular 
(corank 1) under Neumann boundary conditions for the pressure field.

With the new pressure pk+1 , the velocities are updated at the k + 1 time-step as

where BN = [Bx,N ,By,N ]T are the gradient operators.

Implementation. Overall, the variational quantum solver for Navier-Stokes equations using the projection 
method (see Algorithm 3) involves two sequential steps, the first requiring a number of Algorithm 1 iterations 
equal to the number of velocity components, and the second for the pressure Poisson step. For two-dimensional 
flows, the number of velocity components to be solved can be effectively reduced by one through the vorticity 
stream-function formulation (Appendix B). In computational fluid dynamics, these implicit systems of linear 
equations are often the most computationally expensive parts to solve in classical algorithms, providing incen-
tives for potential speedup via quantum  computing49,52.

(47)
Au = I⊗n + δxAx,D + δyAy,D,

|bku� = (1−�tFk)|uk� + δx|uk+1
x,D � + δy|uk+1

y,D �,

(48)Bx,β = 1

2�x
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2D cavity flow. The lid-driven cavity flow is a standard benchmark for testing incompressible Navier–Stokes 
 equations57. Consider a two-dimensional square domain � = (0, L)× (0, L) ⊂ R

2 with only one wall sliding 
tangentially at a constant velocity. For simplicity, we employ a fixed collocated grid, instead of a staggered grid 
which helps avoid spurious pressure oscillations but at the cost of increased mesh and discretization complexity. 
No-slip boundary conditions apply on all walls, so that zero velocity applies on all wall boundaries except one 
moving at u(x, 0) = 1.

Figure 7a shows a snapshot of a test case conducted on a 2n = 8× 8 grid at �t = 0.5 up to T = 5 , with the 
central vortex shown by normalized velocity quivers in white. In terms of time complexity, we note that the pres-
sure correction step requires a greater number of function evaluations for convergence compared to an implicit 
velocity step (Fig. 7b). This is due to the additional quantum circuits for evaluating the H4 Hamiltonians (32, 

Figure 7.  (a) 2D lid-driven cavity flow ( Re = 100 ) on a 2n = 8× 8 grid at �t = 0.5 up to T = 5 and upper 
boundary sliding in the x direction at u(x, 0) = 1 . Color map indicates velocity magnitude with normalized 
velocity quivers in white indicating direction of flow. (b) Plots of cumulative number of function evaluations 
(Nfeval) vs. time for intermediate velocities (u,v) and pressure (p).
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33) for Neumann boundary conditions and one for specifying the reference pressure (50), leading to a total of 
9 evaluation terms compared to 6, a ratio which corroborates with the apparent ∼ 50% increase in function 
evaluations shown in Fig. 7b.

While not directly comparable to classical computational fluid dynamics in numerical accuracy, this exercise, 
nevertheless, roadmaps potential applications of the variational quantum method towards more complicated 
flow  problems52.

Conclusion
In this study, we proposed a variational quantum solver for evolution equations which include a Laplacian opera-
tor to be solved implicitly. For short time-steps �t , the use of initial parameter sets encoded from prior solution 
vectors results in faster convergence compared to random re-initialization. The overall time complexity scales 
with the Ansatz volume O(nl) for gradient estimation and with the number of time-steps O(nt) for temporal 
discretization. Our proposed algorithm extends naturally to higher-order time-stepping and higher dimensions. 
For evolution equations with non-trivial source terms, the semi-implicit scheme can be applied, where non-linear 
source terms are handled explicitly. Using statevector simulations, we demonstrated that variational quantum 
algorithms can be useful in solving popular partial differential equations, including the reaction-diffusion and the 
incompressible Navier-Stokes equations. Together, our proposed algorithm extends the use of quantum Poisson 
solvers to solve time-dependent problems with reduced time complexity from variational quantum algorithms 
over classical computation.

The present work aims at bridging the gap between variational quantum algorithms and practical applications. 
Our work has assumed that the state preparations, unitary transformations and measurements are implemented 
perfectly, and does not consider the effects of quantum noise from actual hardware or any potential amplification 
from iterative time-stepping. In our implementation, we only considered the hardware-efficient Ansatz with Ry 
rotation gates and controlled-NOT entanglers, and thus leave open the question about the performance of other 
Ansätze. Future work can include noise  mitigation58–60, quantum random access  memory61–63, tensor  networks64, 
Ansatz architecture, non-linear algorithms and cost-efficient encoding.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

A Fully implicit scheme for linear Hermitian source term
For a reaction-diffusion system of equations with non-trivial source terms (35), time-stepping could be rendered 
fully implicit if the source terms can be expressed as a linear Hermitian matrix with constant coefficients. Con-
sider a two-component 1D chemical reaction with source terms of the form

where kij ( i, j ∈ {1, 2} ) are kinetic rate constants that are components of the linear Hermitian matrix 
K = KT ∈ R

N×N , whose off-diagonal elements are equal, i.e. k12 = k21 ; I  is the identity matrix of size N × N 
and [u1, u2]T is a concentration vector of length 2N. This problem requires n+ 1 qubits, where n = log2 N . Fol-
lowing the implicit Euler scheme (Eq. 8), we set up a 2N × 2N coefficient matrix, which decomposes as

where Ax,β is the discretized N × N  coefficient matrix for a single component (Eq. 16) containing up to four 
Hamiltonian terms H1−4 . Note the last three additional Hamiltonian terms contributed by the source term.

B Vorticity stream‑function formulation
For two-dimensional incompressible flows, the vorticity stream-function formulation can be used to eliminate 
the pressure as a dependent variable, such that

where ω = ∂v/∂x − ∂u/∂y is the flow vorticity and the stream-function ψ satisfies u = −∂ψ/∂y and v = ∂ψ/∂x . 
It follows that the re-formulation {u, v, p} → {ω,ψ} can simplify the variational quantum algorithm 3 by reducing 
the number of velocity components by one, at the cost of specifying stream-function values along the domain 
boundaries.

Received: 11 April 2022; Accepted: 14 June 2022

(A.1)f(u) =
[
k11 k12
k21 k22

]

⊗ I

[
u1
u2

]

,

(A.2)A = I⊗n+1 + δxI ⊗ Ax,β −�t(k11I0 + k22I1 + k12X)⊗ I⊗n,

(B.1)
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 1

Re

(
∂2ω

∂x2
+ ∂2ω

∂x2

)

,

(B.2)∂2ψ

∂x2
+ ∂2ψ

∂x2
= −ω,



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10817  | https://doi.org/10.1038/s41598-022-14906-3

www.nature.com/scientificreports/

References
 1. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).
 2. Aaronson, S. Read the fine print. Nat. Phys. 11(4), 291–293 (2015).
 3. Bharti, K. et al. Noisy intermediate-scale quantum algorithms.. Rev. Mod. Phys. 94, 015004 (2022).
 4. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 5. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
 6. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014).
 7. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New 

J. Phys. 18(2), 023023 (2016).
 8. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets.. Nature 

549(7671), 242–246 (2017).
 9. Edward, F., Jeffrey, G. & Sam, G.. A quantum approximate optimization algorithm. arXiv: 1411. 4028 (2014).
 10. Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., & Coles, P. J. Variational quantum linear solver. arXiv: 1909. 05820 

(2019).
 11. Huang, H.-Y., Bharti, K. & Rebentrost, P. Near-term quantum algorithms for linear systems of equations with regression loss 

functions. New J. Phys. 23(11), 113021 (2021).
 12. Xu, X. et al. Variational algorithms for linear algebra. Sci. Bull. 66(21), 2181–2188 (2021).
 13. Lubasch, M., Joo, J., Moinier, P., Kiffner, M. & Jaksch, D. Variational quantum algorithms for nonlinear problems. Phys. Rev. A 

101(1), 010301 (2020).
 14. Arrazola, J. M., Kalajdzievski, T., Weedbrook, C. & Lloyd, S. Quantum algorithm for nonhomogeneous linear partial differential 

equations. Phys. Rev. A 100(3), 9 (2019).
 15. Fontanela, F., Jacquier, A. & Oumgari, M. A quantum algorithm for linear PDEs arising in finance. SIAM J. Financ. Math. 12(4), 

SC98–SC114 (2021).
 16. Miyamoto, K. & Kubo, K. Pricing multi-asset derivatives by finite-difference method on a quantum computer. IEEE Trans. Quantum 

Eng. 3, 1–25 (2021).
 17. Liu, H.-L. et al. Variational quantum algorithm for the Poisson equation. Phys. Rev. A 104(2), 022418 (2021).
 18. Sato, Y., Kondo, R., Koide, S., Takamatsu, H. & Imoto, N. Variational quantum algorithm based on the minimum potential energy 

for solving the Poisson equation. Phys. Rev. A 104(5), 052409 (2021).
 19. Ewe, W.-B., Koh, D. E., Goh, S. T., Chu, H.-S. & Png, C. E. Variational quantum-based simulation of waveguide modes. IEEE Trans. 

Microw. Theory Tech. 70(5), 2517–2525 (2022).
 20. Cao, Y., Papageorgiou, A., Petras, I., Traub, J. & Kais, S. Quantum algorithm and circuit design solving the Poisson equation. New 

J. Phys. 15(1), 013021 (2013).
 21. Linden, N., Montanaro, A. & Shao, C. Quantum vs. classical algorithms for solving the heat equation. arXiv: 2004. 06516 (2020).
 22. Childs, A. M., Liu, J.-P. & Ostrander, A. High-precision quantum algorithms for partial differential equations. Quantum 5, 574 

(2021).
 23. McArdle, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution.. NPJ Quantum Inform. 5(1), 1–6 

(2019).
 24. Lee, P. & Kim, S. A variable-θ method for parabolic problems of nonsmooth data. Comput. Math. Appl. 79(4), 962–981 (2020).
 25. Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-

conduction type. Math. Proc. Camb. Philos. Soc. 43(1), 50–67 (1947).
 26. Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Transformation of quantum states using uniformly controlled 

rotations.. Quantum Inf. Comput. 5(6), 467–473 (2005).
 27. Shende, V. V., Bullock, S. S. & Markov, I. L. Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits 

Syst. 25(6), 1000–1010 (2006).
 28. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Sohaib Alam, M., Ahmed, S.,  Miguel Arrazola, J., Blank, C., Delgado, A., Jahangiri, 

S., et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv: 1811. 04968 (2018).
 29. Suzuki, Y. et al. Qulacs: A fast and versatile quantum circuit simulator for research purpose. Quantum 5, 559 (2021).
 30. Schuld, Maria & Petruccione, Francesco. Supervised Learning with Quantum Computers (Quantum Science and Technology, 

Springer, 2019).
 31. Shanno, D. F. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970).
 32. Goldfarb, D. A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970).
 33. Fletcher, R. A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970).
 34. Broyden, C. G. The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math. 

6(1), 76–90 (1970).
 35. Israel F. Araujo, Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva. A divide-and-conquer algorithm for quantum 

state preparation. Sci. Rep. 2021 11:1, 11:1–12 (2021).
 36. Patil, H., Wang, Y. & Krstić, P. S. Variational quantum linear solver with a dynamic ansatz. Phys. Rev. A 105(1), 012423 (2022).
 37. Huembeli, P. & Dauphin, A. Characterizing the loss landscape of variational quantum circuits. Quantum Sci. Technol. 6(2), 025011 

(2021).
 38. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training land-

scapes. Nat. Commun. 9(1), 4812 (2018).
 39. Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum 

circuits. Nat. Commun. 12(1), 1–12 (2021).
 40. Wierichs, D., Gogolin, C. & Kastoryano, M. Avoiding local minima in variational quantum eigensolvers with the natural gradient 

optimizer. Phys. Rev. Res. 2(4), 043246 (2020).
 41. Cincio, L., Rudinger, K., Sarovar, M. & Coles, P. J. Machine learning of noise-resilient quantum circuits. PRX Quantum 2, 010324 

(2021).
 42. Turing, A. M. The chemical basis of morphogenesis. 1953. Bull. Math. Biol., 52(1-2):153–97; discussion 119–52 (1990).
 43. Van Gorder, R. A. Pattern formation from spatially heterogeneous reaction–diffusion systems. Philos. Trans. R. Soc. A: Math. Phys. 

Eng. Sci., 379(2213) (2021).
 44. Kondo, S. & Miura, T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 

1616–1620 (2010).
 45. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972).
 46. Gray, P. & Scott, S. K. Autocatalytic reactions in the isothermal, continuous stirred tank reactor. Chem. Eng. Sci. 38(1), 29–43 

(1983).
 47. Zegeling, P. A. & Kok, H. P. Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Math. 168(1–2), 

519–528 (2004).
 48. Jiwari, R., Singh, S. & Kumar, A. Numerical simulation to capture the pattern formation of coupled reaction-diffusion models. 

Chaos Solitons Fractals 103, 422–439 (2017).

http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1909.05820
http://arxiv.org/abs/2004.06516
http://arxiv.org/abs/1811.04968


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10817  | https://doi.org/10.1038/s41598-022-14906-3

www.nature.com/scientificreports/

 49. Griffin, K. P., Jain, S. S., Flint, T. J. & WHR Chan. Investigations of quantum algorithms for direct numerical simulation of the 
Navier-Stokes equations. Center for Turbulence Research Annual Research Briefs, pages 347–363 (2019).

 50. Gaitan, F. Finding flows of a Navier–Stokes fluid through quantum computing. NPJ Quantum Inform. 6(1), 61 (2020).
 51. Steijl, R. Quantum algorithms for nonlinear equations in fluid mechanics. In Quantum Computing and Communications, chapter 2 

(ed. Zhao, Y.) (IntechOpen, Rijeka, 2022).
 52. Steijl, R. & Barakos, G. N. Parallel evaluation of quantum algorithms for computational fluid dynamics. Comput. Fluids 173, 22–28 

(2018).
 53. Budinski, L. Quantum algorithm for the advection-diffusion equation simulated with the lattice Boltzmann method. Quantum 

Inf. Process. 20(2), 57 (2021).
 54. Chorin, A. J. Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968).
 55. Oz, F., Vuppala, R. K. S. S., Kara, K. & Gaitan, F. Solving Burgers’ equation with quantum computing. Quantum Inf. Process. 21(1), 

30 (2022).
 56. Liu, J. P., Kolden, H., Krovi, H. K., Loureiro, N. F., Trivisa, K. & Childs, A. M. Efficient quantum algorithm for dissipative nonlinear 

differential equations. Proceedings of the National Academy of Sciences of the United States of America, 118(35), (2021).
 57. Erturk, E., Corke, T. C. & Gökçöl, C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds num-

bers. Int. J. Numer. Meth. Fluids 48(7), 747–774 (2005).
 58. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 

(2017).
 59. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).
 60. Endo, S., Benjamin, S. C. & Li, Y. Practical quantum error mitigation for near-future applications. Phys. Rev. X 8, 031027 (2018).
 61. Chen, Z.-Y. et al. Quantum approach to accelerate finite volume method on steady computational fluid dynamics problems. 

Quantum Inf. Process. 21(4), 1–27 (2022).
 62. Giovannetti, V., Lloyd, S. & Maccone, L. Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008).
 63. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008).
 64. Gourianov, N. et al. A quantum-inspired approach to exploit turbulence structures. Nature Comput. Sci. 2(1), 30–37 (2022).

Acknowledgements
We thank Maria Schuld for helpful comments on amplitude embedding. This work was supported in part by 
the Agency for Science, Technology and Research (#21709) under Grant No. C210917001. DEK acknowledges 
funding support from the National Research Foundation, Singapore, through Grant NRF2021-QEP2-02-P03.

Author contributions
F.Y.L. designed the study. W.B.E. and D.E.K. advised the study. F.Y.L. and W.B.E. wrote the software code. F.Y.L. 
ran simulations and analyzed data. All authors wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Variational quantum evolution equation solver
	Theory
	Variational quantum solver. 

	Applications to the heatdiffusion equation
	Time complexity. 
	Discretization error. 
	Higher dimensions. 

	Applications to the reaction–diffusion equations
	Implementation. 
	1D Gray–Scott model. 
	1D Brusselator model. 

	Applications to the Navier–Stokes equations
	Projection method. 
	Predictor step. 
	Corrector step. 

	Implementation. 
	2D cavity flow. 

	Conclusion
	References
	Acknowledgements


