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Fast and simple super‑resolution 
with single images
Paul H. C. Eilers1 & Cyril Ruckebusch2*

We present a fast and simple algorithm for super‑resolution with single images. It is based on 
penalized least squares regression and exploits the tensor structure of two‑dimensional convolution. A 
ridge penalty and a difference penalty are combined; the former removes singularities, while the latter 
eliminates ringing. We exploit the conjugate gradient algorithm to avoid explicit matrix inversion. 
Large images are handled with ease: zooming a 100 by 100 pixel image to 800 by 800 pixels takes 
less than a second on an average PC. Several examples, from applications in wide‑field fluorescence 
microscopy, illustrate performance.

There is a fundamental limit to the spatial resolution of optical microscopy, due to the diffraction of light. A 
sharp point source will appear smeared out and have the shape of the point spread function (PSF). Interpret-
ing an observed digital scene as a very fine grid of point sources, a digital microscope image will be a discrete 
convolution of these sources with the PSF, which is often approximated by a Gaussian function.

A major goal of most developments in microscopy is to improve the spatial resolution, from fluorescence 
 imaging1 to electron  microscopy2 with applications in clinical  imaging3 or plant cell  imaging4, among others. 
In particular, the development of fluorescent-labeling techniques has led to spectacular breakthroughs over the 
past two decades, notably with super-resolution optical microscopy techniques based on stochastic switching of 
single-molecule fluorescence  (PALM5,  STORM6, and  SPIDER7). These sub-diffraction-limit imaging techniques 
rely on digital image acquisition and deconvolution algorithms capable of localizing individual fluorescent probes 
in thousands of image frames and projecting the deconvolved images into a single plane.

However, not all situations are amenable to super-resolution fluorescence imaging, because of computational 
limitations, or because one does not have access to advanced optical instruments and experienced person-
nel. Fast and efficient algorithms for resolution enhancement of conventional (fluorescence) images remain 
highly  desirable8. Examples include interpolation  techniques9, learning-based  algorithms10 and reconstruction 
approaches based on deconvolution and  regularization11.

Modern computer languages like Matlab, R and Python provide efficient matrix operations that make it 
easy to implement convolution with little programming. Deconvolution is the inverse operation, estimating a 
source image from the observed image. It is a so-called ill-conditioned problem, but it can be tamed by using 
constraints, implemented as  penalties1,12.

Here we present an algorithm that works on arbitrary single images, and is very fast: zooming a 100 by 100 
pixel image to 800 by 800 pixels takes less than a second on an average PC. The algorithm, which we call Turbo-
Zoom, can be coded in 30 lines of Matlab code.

In the next section we describe the theoretical basis of fast deconvolution by ridge regression and how to 
implement it efficiently with the conjugate gradients algorithm. “Applications” section presents some typical 
applications. In the final section we discuss options for further research.

Convolution and deconvolution
In this section, we present the methods and algorithms.
Convolution and matrix algebra. We assume the following model for an image under study. A latent 
high-resolution source image is convolved with a high-resolution PSF to form a latent blurred high-resolution 
image, from which the pixels of the observed low-resolution image are obtained by averaging. Also we assume 
that the two-dimensional PSF is a radially symmetric Gaussian. This allows us to write it as an outer product of 
one-dimensional PSFs:

where ρ2 = u2 + v2.

g(u, v) = c exp(−(u2 + v2)/σ 2) = c exp(−ρ2/σ 2) = c exp(−u2/σ 2) exp(−v2/σ 2),
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We first explore one-dimensional convolution and deconvolution. Let x, a vector of length n, be a latent 
high-resolution “image”, it has been convolved by a one-dimensional PSF h to form a latent image z. We observe 
the vector y, of length m, which is obtained by averaging groups of r “pixels” of z. Hence n = rm . We can write 
z = Hx , where H is the convolution matrix, the columns of which are shifted copies of h. We can write the aver-
aging as y = Cz , where C is an m by n matrix. In row i of C, the elements r(i − 1)+ 1 to ri are equal to 1/r, while 
all other elements in that row are zero. With S = CH , we have that y = Cz = CHx = Sx

Deconvolution with ridge regression. Deconvolution is the inverse of convolution. If y = Sx and S and 
y are given, the goal is to determine x. Because x has more elements than y, this is a so-called singular problem: 
no unique estimate x̂ can be found. A simple and effective remedy is provided by ridge regression. The objective 
function is Q = |y − Sx|2 + κ|x|2 , where |.|2 indicates the squared norm; e.g. |x|2 =

∑

j x
2
j  . Here κ , a positive 

number, is the regularization parameter. Increasing κ decreases the norm of x̂ , shrinking the solution towards 
zero.

It is simple to find the x̂ that minimizes Q, because an explicit formula is available: x̂ = (S′S + κI)−1S′y , with 
I the identity matrix. As Fig. 1 shows, the best results were obtained with κ = 0.01 and, with κ < 0.01 , essentially 
the same results are obtained. Only for very low values, less than 10−10 , instabilities occur. For κ = 0.1 the esti-
mate of x is strongly shrunk towards zero. Larger values of κ will lead to even more shrinkage. For κ = 0 , Matlab 
reports a solution, but warns that the system is singular, and produces a result that looks more or less random.

Figure 1.  Deconvolution of a sine wave with fourfold super-resolution. The squares show the “observed” series. 
The blue and red dots represent the estimated x̂ for κ = 0.01 and κ = 0.1.

Figure 2.  Fourfold super-resolution of a simulated step wave, demonstrating overshoot (ringing). The squares 
show the “observed” series. The blue and red dots represent the estimated x̂ for κ = 0.01 and κ = 0.1 . They have 
been connected by lines for clarity.
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The ringing artifact. It may seem that small values of κ are safe choices, but unfortunately that is not always 
true. The smoothness of the sine function in Fig. 1 masks a potential artifact. In Fig. 2, y shows sharp jumps, 
leading to overshoot in x̂ . It gets smaller with increased κ , but it does not disappear. In the engineering literature 
this is often called “ringing”.

An effective solution is to add an extra penalty, on the “roughness” of x, as measured by the differences 
between neighboring elements. The objective function is changed to

Here � determines the weight of the roughness penalty and D is a matrix that forms first differences. The differ-
ence penalty is familiar from the Whittaker  smoother13. As an illustration, D is given below if x has five elements.

Figure 3 shows the results of penalized deconvolution for a series of values of κ and � . With a heavy ridge penalty 
the overshoot is reduced, but too much shrinking towards zero occurs. With the extra difference penalty, a light 
ridge penalty is allowed with little ringing.

Two‑dimensional deconvolution
For images we have to deal with two-dimensional convolution, transforming an input image X (an n by ñ matrix) 
to the output image Y (an m by m̃ matrix). There are two ways to accomplish this computationally. One is to stack 
the columns of X to make an ( nñ ) vector x̆ and the columns of Y to make a vector y̆ of length mm̃ . It is easy to 
show that y̆ = (S̃⊗ S)x̆ , where S̃ is the matrix to do convolution of vectors with ñ elements. Note that S̃⊗ S is a 

(1)Q = |y − Sx|2 + κ|x|2 + �|Dx|2 =
∑

i

(yi −
∑

j

sijxj)
2 + κ

∑

j

x2j + �

∑

j

(xj − xj−1)
2.

(2)D =







−1 1 0 0 0
0 − 1 1 0 0
0 0 − 1 1 0
0 0 0 − 1 1






.

Figure 3.  Fourfold super-resolution of a simulated step wave for several combinations of κ , the ridge parameter 
and � , the smoothness parameter. The blue curve is the true input signal and the red curve its reconstruction.
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large matrix. Suppose that we want a fourfold increase of the resolution of an image of 100 by 100 pixels. Then 
S̃⊗ S has 4002 = 160,000 rows and 1002 = 10,000 columns.

In two dimensions, working with vectorized images and only a ridge penalty, the objective function is

However, it is inefficient to follow this route. In “The conjugate gradients algorithm” section we introduce the 
conjugate gradients algorithm, that avoids the explicit solution of a system of linear equations. It also allows us 
to work with images as matrices, avoiding vectorization.

We can avoid vectorizing Y to y̆ and transforming x̆ back to a matrix, because Y = SXS̃′ gives the desired result 
directly. This gives an enormous reduction of storage space and computation, because S̃⊗ S′ is not computed 
at all. The equation Y = SXS̃′ can be interpreted as Y = (SX)S̃′ , or as first convolving the columns of X with S, 
followed by convolution of the rows of the result with S̃′ . Similarly Y = S(XS̃′) says to first convolve the rows of 
X with S̃ and the result with S. The final result does not depend on the order of the multiplications

In two dimensions the ringing artifact appears as spatial ripples. Figure 4 shows an example, using an image 
of stretched DNA (see “DNA mapping” section) . The image reminds us of heavy raindrops falling into a pond.

We have two sets of difference penalties: one with a penalty on every row of X and the other with a penalty 
of every column. The former can be compactly written as |DX|2F , and the latter as |XD̃|2F where |.|2F stands for the 
square of the Frobenius norm of a matrix, i.e. the sum of the squares of all its elements. Here D is the n− 1 by n 
differencing matrix and D̃ an ñ− 1 by ñ differencing matrix.

(3)Q = |y̆ − (S̃⊗ S)x̆|2 + κ|x̆|2.

Figure 4.  Ringing artifacts in image deconvolution. Upper-left: original image. Upper-right: fourfold super-
resolution by deconvolution with κ = 0.001 ; ringing is visible. Lower-left: super-resolution with additional 
roughness penalty with � = 1 . Images displayed as negatives, except in the lower-right panel.
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Note that we present images as negatives. It is more common to use positives, but in our opinion the human 
eye detects details much better in negatives. Compare the upper-right and lower-left panels in Fig. 4. In the 
positive image the ringing is essentially invisible.

The conjugate gradients algorithm. In a modern computer language like Matlab, deconvolution of vec-
tors by ridge regression is not challenging. One line of code does the work: X = (S’ * S + kappa * 
eye(n)) \ (S’ * y). Unless we have very small images this will not work with vectorization of matrices Y 
and X. As we have noted before, too much memory space and computing time are needed when we form vectors 
y̆ and x̆ and work on them.

Conjugate gradients (CG) is an algorithm for iteratively solving systems of linear  equations14. It was developed 
for the standard case with a matrix and vectors. Its key property is that no matrix inversion is used, only products 
of matrices and vectors. For our application to images, we can adapt CG in such a way that only products of 
matrices are needed, and that these matrices are never larger than Y, S, S̃ or X. The Supplemental Information 
shows Matlab code for one-dimensional and two-dimensional CG. Here we discuss some key points.

The conjugate gradients algorithm saves memory space, because we can work directly on the matrix X. Con-
structing a classical system of penalized equations would take much time and solving it even more. Another 
advantage is that we can set the number of iterations at a value that suits our purpose. For initial exploration of 
images, to locate interesting regions, a handful iterations will be enough. This is illustrated in Fig. 5. We show 
the core of the code here.

Figure 5.  Illustration of the convergence of the conjugate gradients algorithm. The upper-left panel shows 
a part of an image of stretched DNA (see “DNA mapping” section). The upper-middle panel shows a small 
selection. The other panels show eight-fold super-resolution images as obtained after increasing numbers of 
steps. The titles of the panels show the number of iterations and the value of δ , the convergence criterion.
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Listing 1 The core of the conjugate gradients algorithm for solving a linear system.

The matrix G = S′S + κI + �D′D and two vectors p and q are computed beforehand, starting from the 
observed y and setting x = 0 . The iterations update p, q and x. The first line in the loop, computing q = Gp , is 
the most expensive one, but it is relatively cheap, the multiplication of a matrix and a vector.

Of course an iterative algorithm is only useful if it converges quickly enough. In our experience this is the 
case for conjugate gradients and deconvolution with super-resolution. We illustrate that with Fig. 5, that shows 
the results obtained for increasing numbers of iterations. In practice ten iterations should be enough. We have 
not studied convergence in a quantitative way.

Applications
In this section we present three typical applications. They show images with different characteristics, to illustrate 
the versatility and effectiveness of our algorithm.

DNA mapping. Optical mapping is used in many core genomics applications. DNA fragments are labeled 
with a functionalized dye and stretched on a coated coverslip. The labeled DNA sample is imaged with a wide-
field fluorescence microscope (Zeiss Elyra microscope, Plan-APOCHROMAT 63x oil immersion objective, 
numerical aperture 1.4, EMCCD camera) and a 576 nm excitation laser. The camera pixel size projected in the 
sample is 80 nm per pixel and the field of view of the image is 24x24 µm2 . More detailed information about 
sample preparation and image acquisition can be found  in15.

The image in the left panel of Fig. 6 represents alignments corresponding to the positions of the individual 
emitters associated with the specifically cleaved DNA molecules that were aligned on a surface.

The blue square in the left panel shows the region to which the TurboZoom algorithm was applied; this region 
is enlarged in the middle panel. The result of super-resolution by a factor 8 is shown in the right panel. The PSF 
of the microscope was approximated by a two-dimensional Gaussian function with full-width at half-maximum 
(FWHM) of approximately 350 nm.

Linearized DNA molecules that could hardly be distinguished on the original image can now be clearly 
resolved. This is of crucial importance as most methods employed for optical mapping of DNA rely on the quality 
of the signal traces extracted from these images (e.g. for database matching) and require a high accuracy of signal 
conversion. Another key aspect for DNA high throughput technologies is of course speed. The computation time 
to obtain the result in Fig. 6 was approximately one second.

Maize stem cross section. The image in Fig. 7 was obtained using a macroscopy imaging system to observe 
the global organization of vascular bundles in cross sections of maize stems. Details about sample preparation 
and image acquisition can be found  in16. The left panel of Fig. 7 corresponds to a 1x1 mm2 cross section of the 
parenchyma of the stem. It allows the cellular morphology of the plant tissues to be quantified.

A factor 8 was set for up-sampling of the original grid. It yielded the reconstructed high resolution image 
shown in the right panel of Fig. 7. As no information was available about the PSF of the instrument, it was here 
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tuned manually and it was observed that FWHM values in the range 10–15 µ m provide good results; the image 
shown in Fig. 7 was obtained for a value of 12 µ m. The improvement obtained on the individual vascular bundles 
and of their distribution within the stem are clear. The visualization and characterization of the individual mor-
phological parameters of the smallest cells of the vascular bundle is usually an  issue16. With our approach, small 
bundles of cells, known as xylem, that can be found around the main vessel elements, can be distinguished clearly.

GATTA cells. GATTA cells (GATTAQUANT GMBH, DNA nanotechnologies) are high-quality standard 
cell slides which are often used for fluorescence imaging benchmarking in wide field, confocal, and super-reso-
lution microscopy. They contain fixed and stained multicolor huFIB/Cos-7 cells. In the image provided in Fig. 8, 
only the channel related to the mitochondria (marked with Alexa Fluor 488) was selected, by using adequate 
fluorescence filters. The image was obtained using a confocal fluorescence microscope (Olympus IX81, Objec-
tive, x100, NA 1.4), a 485 nm excitation laser line and a low pass filter with 500 nm cut-off wavelength. The field 
of view of the image in the left panel of Fig. 8 is 30 by 30 µm2 . More detailed information about the microscopy 
set up can be found  in17.

This low-resolution image was acquired on purpose to mimic situations where measurement conditions do 
not allow the acquisition of a high resolution image. We show the result of super-resolution with a factor 4. The 
PSF is a two-dimensional Gaussian function with full-width at half-maximum (FWHM) of 200 nm. For com-
parison, we show four-fold super-resolution with TurboZoom and a true high resolution image. The similarity 
is strong and no artifacts are visible. Computation takes less than 0.1 s.

The visual impression provided by the reconstructed zoomed image in the bottom-left panel of Fig. 8 is clearly 
an improvement. The zoom factor was intentionally limited to 4, to compare it to the image in the bottom-right 
panel, that was obtained with the same microscope, using a four times larger true resolution.

A reviewer pointed out that in the lower-left panel of Fig. 8, the zoomed image shows, in some places, vague 
blocks of 4x4 pixels that have the same brightness as the pixels in the selected images. It looks as if the original 
pixels have been blown up to 4x4 patches. We discovered that this effect depends on the value of � . Figure 9 

300

Figure 6.  Single image super resolution of the DNA image obtained with a factor 8 up-sampling grid and a 
PSF FWHM of 400 nm. Left panel: the 300× 300 observed image (field of view: 24× 24 µm2 ) of the linearized 
labeled DNA fragments. Middle panel: the selected 100 by 100 pixel image. Right panel: super-resolution with a 
factor 8.

Figure 7.  Single image super resolution of the Stem cells image. Left panel: a 400× 400 selection of the 
observed image. Middle panel: the 100× 100 pixel selection (indicated by a blue square in the left panel). Right 
panel: super-resolution with a factor 8.
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shows deconvolutions with widely different values of � . We see that the roughness penalty can also serve to 
smooth discontinuities.

Contrast enhancement. Some images show spatially varying contrast. We observed that improvements 
are possible by using asymmetric least squares smoothing. It has been  used7 for baseline subtraction. The idea is 
that residuals (the differences between observations and the estimated baseline) below the baseline surface get 
a small weight (0.01) and those above it a large weight (0.99). Similarly, a “top-line” surface can be estimated by 
reversing the weights. We subtract the base surface and divide by the difference between top and base surfaces 
to get a better contrast.

Remarkably, this procedure can lead to a large improvement of our perception of (super-resolution) images. 
This is illustrated in lower-right panel of Fig. 10, where details appear in the empty regions in the left part of 
the image.

A more extreme case is illustrated in Fig. 11, for the stem cell data. The human eye is not good at seeing 
brightness variation on top of a strong background. By subtracting the background, the absolute variations 
stay the same, but the relative variations are stronger, leading to better perception. Of course, it depends on the 
application whether this is useful or not.

We see contrast enhancement as a subjective procedure, improving human perception. Its value depends on 
several properties of the observed image. It is fast, taking less than a second, so experimenting with it is easy.

Figure 8.  Single image super resolution of GATTA cells. Top-left panel: a 120× 120 pixel selection of the 
observed image. Top-right panel: the 20× 20 pixel sub-selection (indicated by the blue square in the top-left 
panel). Bottom-left panel: super-resolution with a factor 4. Bottom-right panel: the corresponding section of the 
image observed at four times higher resolution.
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Discussion
We have presented a fast and simple algorithm for resolution improvement. It is based on ridge regression, a 
familiar tool for solving ill-conditioned estimation problems. There is no need for flashing small molecules, nor 
for multiple frames; a single image is sufficient. By exploiting the tensor structure of two-dimensional convolu-
tion, combined with the conjugate gradients algorithm for (approximately) solving a linear system of equations, 
fast computation with a small memory footprint is obtained.

Overall, in practical terms, the main features of the proposed approach can be summarized as simplicity, 
speed and ease of implementation and application. It is easy for the user to tune manually the regularization and 
PSF parameters, and judge the outcome of the calculations almost instantly.

There are three tuning parameters. One is the width of the point spread function. We expect that users will, 
from experience, have a good idea of its numerical value. Then there are a shrinking and a smoothing parameter. 
We do not offer an automatic procedure for choosing their values.

We have not explored quantitative figures of merit. Some of them are only meaningful for localized emitters. 
We believe that they have received too much attention in recent publications. After all, the part ’scopy’ in the 
word microscopy tells us that visual exploration of images is paramount.

The objective function in Eq. (3) is a penalized sum of squares. Implicitly it assumes a noise model with con-
stant variance. It is possible to introduce iterative weighting to account for other types of noise, like photon noise.

We have not explored it ourselves, but it is obvious that (massive) parallelization is possible by dividing a 
given image into a number of rectangles and processing each of them separately. To fix ideas, suppose we have 
an image with 1000 by 1000 pixels, which we divide into 100 sub-images of 100 by 100 pixels. For an eight-fold 
improvement in resolution, only one second per sub-image is needed. Assuming a modern workstation with 
enough processors to deliver ten times the performance of a PC, the work can be done in 10 seconds. For higher 
speed-ups, graphical processing units can be used. An small experiment with TensorFlow on an NVIDIA GeForce 
GTX 1650 video card showed tenfold improved performance compared to the CPU of the PC.

Figure 9.  The influence of the roughness penalty. When � is low, pixels of the low-resolution image appear as 
squares after zooming.
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Figure 10.  Contrast enhancement with asymmetric smoothing, applied to the DNA image. Upper-left panel: a 
section of the original image. Upper-right panel: idem, after enhancement. Lower-left panel: zoomed section of 
the original image. Lower-right panel: idem, after enhancement.

Figure 11.  Contrast enhancement with asymmetric smoothing, applies to the stem cross section image. Left 
panel: zoomed image. Right panel: after enhancement.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11241  | https://doi.org/10.1038/s41598-022-14874-8

www.nature.com/scientificreports/

The convolution and penalty matrices are sparse, so it seems that there is room for further speed-ups by 
careful programming. Combining all computing options, it should be possible to achieve close to instant 
super-resolution.

Although not strictly related to super-resolution, we did pay attention to two “tricks” to improve human 
perception. In negative images it is easier to detect details than in positive images. In addition we proposed an 
algorithm for correcting local variations in contrast, based on asymmetric smoothing.

There exists a large literature on single image super-resolution using neural networks. One reviewer suggested 
to compare our algorithm to one of the best performing  implementations18. We discovered that this would be a 
very large project. A large number of images has to be supplied to train the network. In compressed form they 
already add up to a 7 Gb file. Only moderate up-scaling factors (2 or 4) are considered. Our algorithm needs no 
training. Only two parameters, for the ridge and the roughness penalty, need tuning. This can be done quickly 
by visual feedback.

An interesting competitor to our proposal is the work by Zhao et al.11. It is fast and Matlab code is available. 
It uses a special interpretation of the way a low-resolution image was formed: as picking every second, fourth 
etc. row and columns of pixels of an underlying high-resolution image. Our model assumes averaging groups 
of 2x2, 4x4 etc. pixels.

Zhao et al.11 investigated modified algorithms to allow sparse super-resolution. The key is to replace the sums 
of squares by the sum of absolute values  (L1 norm) in the ridge penalty. In addition an  L1 norm can be used in the 
difference penalties to obtain sharp edges. It will be interesting to explore if these modifications can be combined 
efficiently with the conjugate gradients algorithm.

Data availability
The data and Matlab programs that support the findings of this study are available in the Git repository https:// 
bitbu cket. org/ PaulE ilers/ turbo zoomr epo.
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