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Dynamic changes 
in heparin‑binding protein 
as a prognostic biomarker 
for 30‑day mortality in sepsis 
patients in the intensive care unit
Qing‑Li Dou1,2,8, Jiangping Liu1,2,8, Wenwu Zhang1,2, Ching‑Wei Wang3, Yanan Gu1,2, 
Na Li1,2, Rui Hu1,2, Wan‑Ting Hsu4, Amy Huaishiuan Huang3, Hoi Sin Tong5, Tzu‑Chun Hsu3, 
Cheng‑An Hsu6, Jun Xu7* & Chien‑Chang Lee3*

Heparin‑binding protein (HBP) has been shown to be a robust predictor of the progression to organ 
dysfunction from sepsis, and we hypothesized that dynamic changes in HBP may reflect the severity 
of sepsis. We therefore aim to investigate the predictive value of baseline HBP, 24‑h, and 48‑h 
HBP change for prediction of 30‑day mortality in adult patients with sepsis. This is a prospective 
observational study in an intensive care unit of a tertiary center. Patients aged 20 years or older who 
met SEPSIS‑3 criteria were prospectively enrolled from August 2019 to January 2020. Plasma levels 
of HBP were measured at admission, 24 h, and 48 h and dynamic changes in HBP were calculated. 
The Primary endpoint was 30‑day mortality. We tested whether the biomarkers could enhance the 
predictive accuracy of a multivariable predictive model. A total of 206 patients were included in the 
final analysis. 48‑h HBP change (HBPc‑48 h) had greater predictive accuracy of area under the curve 
(AUC: 0.82), followed by baseline HBP (0.79), PCT (0.72), lactate (0.71), and CRP (0.65), and HBPc‑24 h 
(0.62). Incorporation of HBPc‑48 h into a clinical prediction model significantly improved the AUC from 
0.85 to 0.93. HBPc‑48 h may assist clinicians with clinical outcome prediction in critically ill patients 
with sepsis and can improve the performance of a prediction model including age, SOFA score and 
Charlson comorbidity index.

Abbreviations
HBP  Heparin-binding protein
PCT  Procalcitonin
APACHE II score  Acute physiology and chronic health evaluation score
SOFA score  Sequential organ failure assessment score
ΔHBP  Changes in plasma heparin-binding protein
ROC curves  Receiver operating characteristic curves
HBPc-24 h  Heparin-binding protein change at 24 h
HBPc-48 h  Heparin-binding protein change at 48 h
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Sepsis is a leading cause of morbidity and mortality, with in-hospital mortality ranging from 18 to 50%1–3,4,5. 
The incidence of sepsis has steadily increased in the past decade, from 143,000 admissions in 2000 to 343,000 in 
2007 in the United  States6. It is undeniably a major public health burden. The new SEPSIS-3 consensus defines 
sepsis as a “life-threatening organ dysfunction caused by a dysregulated host response to infection” and defines 
Septic shock as a “subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormali-
ties are associated with a greater risk of mortality than with sepsis alone”7. Although the SOFA score had been 
used to predict outcome in septic patients, a recent prospective observational cohort study of 130 patients in 
Brazil suggests that a change in SOFA score at 48 h is only 61.3% sensitive in predicting the 30-day  mortality8.

Heparin-binding protein (HBP), also called azurocidin or cationic antimicrobial protein, is a 37 kDa multi-
functional protein contained within the secretory and azurophilic granules of polymorphonuclear  leukocytes9. 
HBP worsens already dysregulated inflammatory responses and induces capillary leakage in septic  patients10,11. 
There is exocytosis of 89% of the total HBP after only 30 min of phagocytosis of  bacteria11. The rapid release of 
HBP can be explained by its location within the secretory granule, which is mobilized upon neutrophil activa-
tion. After release, HBP increases endothelial  permeability9–13. Recently, HBP has been shown to be a robust 
predictor of the progression to organ dysfunction due to infection and  sepsis12–16. HBP also rises earlier than 
organ dysfunction developed and increased plasma HBP was observed in over 90% of the patients who devel-
oped severe  sepsis17.

Previous studies of other useful biomarkers in sepsis such as procalcitonin, have shown robust results that 
dynamic changes of the biomarker was a better predictor in survival than the absolute value at a given time 
 point18. Therefore, in this study, we hypothesized that dynamic changes in HBP during sepsis may reflect both 
the severity of initial presentation and the response to the initial  treatment18. We measure relative changes 
in HBP compared to the baseline values (HBP change, HBPc) and may predict outcome. This study aims to 
determine if dynamic changes in HBP can enhance the prediction of mortality in patients with sepsis. In this 
study, we prospectively evaluated the predictive value of day 1 (baseline), 24-h, and 48-h HBP changes for sepsis 
mortality. Moreover, we analyzed whether 48-h changes in HBP can enhance the predictive accuracy of a clinical 
prediction model.

Methods
Patient population and design. This study was approved by the Research Committees and Institu-
tional Review Boards for People’s Hospital of Baoan District of ShenZhen, and written informed consents were 
obtained from patients or patient representatives. This study was performed in accordance with the principles 
of the Declaration of Helsinki and the Good Clinical Practice Guidelines. We conducted a prospective observa-
tional study in the Emergency Department Intensive Care Unit (EICU) of People’s Hospital of Baoan District of 
ShenZhen. Patients admitted to the EICU between August 2019 and January 2020 who fulfilled SEPSIS-3 criteria 
were  enrolled7. Exclusion criteria included pregnancy, do-not-resuscitate orders, age under 20 years, leukopenia 
or hyperleukocytosis, hemolysis, and had received albumin or heparin treatment before HBP measurement. All 
septic patients were treated based on guidelines from the current Surviving Sepsis Campaign with modifica-
tions as deemed appropriate by the treating  physicians17–21. The duration of antimicrobial therapy was guided 
by culture data, site of infection, and the treating physician. Patient data collected included: age, gender, vital 
signs, comorbidities, Acute Physiology and Chronic Health Evaluation (APACHE II) score, Sequential Organ 
Failure Assessment (SOFA) score, site(s) of infection, laboratory tests findings (basic biochemistry, complete 
blood count, coagulation, and arterial blood gas), microbiological culture results, duration of hospitalization 
(length of stay in ICU and in total), and clinical outcomes. Infection was diagnosed by clinical, laboratory, and 
microbiological parameters. APACHE II scores and SOFA scores were assessed on the first day of admission (day 
1). Serum concentrations of procalcitonin (PCT) and lactate were measured on the first day of EICU admission. 
HBP was measured right after admission to EICU (baseline HBP) and was repeated at 24 and 48 h. Each patient 
had at least 3 HBP measurements, and were followed for 30 days, until death, discharge, or end of follow-up, 
whichever came first. The primary endpoint was all-cause mortality at 30 days.

Blood sample collection and analysis. The blood samples were collected in 5 ml sodium citrate antico-
agulation tubes (BD vacutainer) and centrifuged at 3000 rpm for 10 min immediately. The HBP level was deter-
mined by a commercial enzyme-linked immunosorbent assay kit (Joinstar Biomedical Technology Co., LTD, 
Hangzhou, China). The HBP detection range was 5.9–300 ng/mL. The intra-assay coefficient of variation was 
11% at 21 ng/mL and 7% at 81 ng/mL. In addition, we investigated the prognostic ability of baseline PCT levels 
for mortality prediction. PCT level was measured via an automatic analyzer, the VIDAS® B.R.A.H.M.S PCT assay 
(bioMérieux, Marcy L’Etoile, France). The lower limit of detection of the assay was 0.01 ng/mL22.

Plasma dynamic change of HBP. Change in plasma HBP was defined as the difference between a given 
timepoint and baseline (Day 1). In particular, we measured the 24-h plasma HBP change (HBPc-24 h) and the 
48-h plasma HBP change (HBPc-48 h), both relative to the baseline (Day 1) measurement. The relative change 
of HBP was calculated by dividing the HBPc-24 h and HBPc-48 h by the baseline HBP, respectively, and was 
presented as a percentage. Baseline APACHE II score, Sequential Organ Failure Assessment (SOFA) score, pri-
mary source of infection, culture results, ICU, and hospital mortalities were recorded. Clinical parameters such 
as body temperature, heart rate, white cell count (WCC), and clinical signs of infection were recorded on admis-
sion and repeated  daily22.

Statistical analysis. To give an overview of the characteristics of the study population, we reported the 
demographic, comorbidity, sites of infection, clinical severity, and length of hospital stay for survivors and 
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nonsurvivors. We then compared the characteristics between survivors and nonsurvivors. The categorical vari-
ables were expressed as absolute numbers and proportions and compared using Chi-square tests. Continuous 
variables were presented as median and interquartile range (IQR) and compared using the analysis of variance 
(ANOVA). For 21 patients who died before 48 h of admission, the missing HBP data at various time points were 
imputed using the machine learning algorithm (random forest). A Spearman’s rank correlation test was used 
to assess the relationship between plasma concentrations of HBP and PCT. The discrimination of different bio-
markers, or 24-h or 48-h HBP change (HBPc-24 h, HBPc-48 h) was assessed by area under the receiver operating 
characteristic (ROC)  curves23. We first determined the best cutoff in terms of sensitivity and specificity by the 
Youden’s Index. Because cutpoints determined by the Youden index maximize the sum of sensitivity and speci-
ficity rather than individual sensitivity or specificity, we further determined the best cut points that maximized 
sensitivity/specificity with a given fixed value of sensitivity (0.9) or specificity (0.9)24. To assess whether the 48-h 
HBP change increases the predictive accuracy of empirical predictors. We built two Cox models for comparison. 
To assess whether the models meet the proportional hazards assumption, we used each predictor in our model 
as a time dependent covariate in Cox models. When the proportional assumption is violated, a time dependent 
covariate is significant in Wald test. The first model was an empirical model that includes three strong empirical 
predictors (age, Charlson score and SOFA score). These predictors were chosen based on previous  studies7,25. 
The second model was a biomarker-enhanced one which added HBPc-48 h to the first model. The models were 
evaluated using c-statistics and calibration plots with Brier scores. A DeLong test was used to compare the 
c-statistics of the two models. Lastly, we created a nomogram of the biomarker-enhanced model. The nomogram 
could be used to calculate the estimated probability of mortality for a given patient. To further visualize the prog-
nostic meaning of absolute value and clearance of HBP, we plotted Kaplan–Meier curves stratified by quartiles of 
the plasma levels of HBPc-48  h26. The survival difference of four quartile strata was compared using the log-rank 
test. For all statistical analyses, P < 0.05 was considered statistically significant. Data analysis and graphing were 
conducted with R statistical software (Foundation for Statistical Computing, Vienna, Austria).

Ethics approval and consent to participate. This study was approved by the Research Committees 
and Institutional Review Boards for People’s Hospital of Baoan District of ShenZhen, and it met the criteria for 
exemption from informed consent.

This study was approved by the Research Committees and Institutional Review Boards for People’s Hos-
pital of Baoan District of ShenZhen, and written informed consents were obtained from patients or patient 
representatives.

Results
Demographics and clinical presentations. During the study period, a total of 245 patients were admit-
ted for sepsis or septic shock. Six patients were excluded from the study due to age < 20 years, four due to preg-
nancy, nine due to leukopenia or hyperleukocytosis, six due to hemolysis, ten had received albumin or heparin 
treatment before HBP measurement, and four were measurement outliers. We included 206 patients including 
21 patients who died within 48 h of admission for final analyses (Fig. 1).

To evaluate the baseline characteristic differences between survivors and nonsurvivors, we performed chi-
square tests for categorical variables and analysis of variance (ANOVA) for continuous variables (Table 1). Com-
pared to survivors, non-survivors were older, had higher serum levels of procalcitonin and lactate, and were 
more likely to have a pulmonary infection and positive blood cultures. Nonsurvivors also had higher APACHE 
II or SOFA scores and were more likely to require mechanical ventilation support. The comparison of patient 
characteristics across the two groups is summarized in Table 1.

Baseline and dynamic change of HBP among sepsis patients. Table 2 compares the baseline and 
dynamic changes of HBP within 48 h of admission between survivors and nonsurvivors by Mann–Whitney U 
tests. Median plasma levels of HBP were higher in nonsurvivors than survivors at admission (235 vs 117 (ng/
mL), p < 0.001), 24 h (173 vs 85 (ng/mL), p < 0.001) and 48 h (196 vs 48 (ng/mL), p < 0.001). Survivors had sig-
nificantly higher median 48-h HBP change (− 54 vs − 15(%), p < 0.001) than nonsurvivors. The time-dependent 
change of HBP between survivors and nonsurvivors is shown in Fig. 2 and Supplementary Fig. 1. Figure 2 illus-
trates the serial measurements of plasma level of HBP for each  patient22. Nonsurvivors had higher admission 
HBP levels. At 24 h, both survivors and nonsurvivors had lower HBP levels. At 48 h, the decrease in HBP was 
more pronounced in survivors than nonsurvivors.

Comparative predictive accuracy of biomarkers. The predictive accuracy for 30-day mortality 
between CRP, PCT and HBP levels at admission were presented in Table 3. As compared to baseline, admission 
HBP demonstrated the highest predictive accuracy with an AUC of 0.79 (95% CI 0.76–0.89), followed by PCT 
(0.72), lactate (0.71), and CRP (0.65). Table 3 also shows that the HBPc-48 h had the highest predictive accuracy 
with an AUC of 0.82 (95% CI 0.75–0.89), followed by admission HBP (0.79) and HBPc-24 h (0.62).

Supplementary Fig. 2 shows the 2 ROC curves of each predictive marker. The AUC with 95% confidence 
intervals, optimal cutoff points, and corresponding sensitivity and specificity are shown in Table 3. At a cutoff 
of − 17.14%, HBPc-48 h had a maximal specificity of 0.91 (95% CI 0.85–0.95) with a sensitivity of 0.58 (95% CI 
0.43–0.72), while at a cutoff of − 57.07%, HBPc-48 h had a maximal sensitivity of 0.92 (95% CI 0.80–0.98) with 
a specificity of 0.45 (95% CI 0.37–0.54), which is shown in Supplementary Table 1. HBP was weakly correlated 
with PCT concentrations (Spearman correlation 0.21, p = 0.004, Supplemental Fig. 2).

Our study then investigated the relationship between change in plasma HBP and survival by plotting 
Kaplan–Meier survival curves stratified by HBPc-48 h quartiles based on plasma HBP change between baseline 
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and at the 48-h mark in Fig. 3, and HBPc-24 h quartiles based on plasma HBP change between baseline and at 
the 24-h mark in Supplemental Fig. 6. Patients with higher 48-h HBP change were associated with increased 
survival probability. HBPc-48 h best differentiated survivor and non-survivor groups in 30-day cumulative 
probability of death (p < 0.0001), while HBPc-24 h had no statistical significance in differentiating survivor and 
non-survivor groups (p = 0.064). For clinical use, we calculated that the patients (81 patients) with a HBPc-48 h 
greater than 50% had a survival rate of 91.4%, while the patients (23 patients) with a HBPc-48 h less than 4% 
had a mortality rate of 86.9%.

Lastly, we explored whether HBPc-48 h had incremental prognostic value in addition to commonly used clini-
cal predictors including age, Charlson score and SOFA score. We built a Cox regression model comprising four 
empirical predictors. The proportional hazard assumption of Cox model was met since all predictors remained 
constant over time (Supplemental Table 2). We then added the quartile HBPc-48 h variable into the model. As 
shown in Table 4, the addition of HBPc-48 h greatly enhances the AUC of the original model from 0.85 (95% 
CI 0.77, 0.90) to 0.93 (95% CI 0.87, 0.95) with a DeLong test p = 0.004. The two models were all well-calibrated 
as shown by calibration plots. (Supplementary Fig. 4) The weight of the component variables in the two models 
were presented in Table 4. The hazard ratio of HBPc-48 h quartiles was 2.19 (95% Cl 1.66, 2.90, p < 0.0001) in the 
HBPc-48 h-enhanced model (likelihood ratio test Chi-square: 53.572, p < 0.0001). A nomogram for the HBPc-
48 h enhanced model was made to calculate the predicted risk for an individual with a given set of predictors 
(Supplementary Fig. 5).

Discussion
Among our prospective observational cohort of 206 patients with sepsis, the sepsis related 30-day mortality rate 
was 33.50%. HBPc-48 h was able to predict in-hospital mortality better than CRP, PCT or lactate. We found that 
patients with a HBPc48h greater than 50% had a 91.4% survival rate, while those with a HBPc48h less than 4% 
had an 86.9% mortality rate. Furthermore, HBPc-48 h showed promise for improving the accuracy of a clinical 
risk prediction model. These findings suggested that the change of HBP may assist in prognostication in patients 
with sepsis. We found that in survivors of sepsis, their plasma levels of HBP dramatically decreased at 48 h, 
whereas in nonsurvivors, the HBP levels decreased at a slower rate or remained elevated. We also observed that 
the initial plasma concentration of HBP and the HBPc-24 h poorly correlated with prognosis. The HBPc-48 h 
of survivors was − 53.88% (IQR − 71.83 to − 35.65), which was considerably higher than that of nonsurvivors 
(− 15.24%; IQR − 38.65 to − 3.13, p < 0.001). Since HBP was a strong indicator for severe sepsis which ampli-
fied vascular leakage and inflammatory  responses15, the dynamic change of HBP may indicate initial treatment 
response and disease status. Further clinical trials are needed to help determine the best strategy for the use of 
the dynamic change of HBP information in guiding clinical treatments.

Figure 1.  Cohort inclusion and exclusion process.
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Our findings were consistent with prior studies showing that HBP was a valuable prognostic marker in 
patients with  sepsis17,27. A study of 233 patients in  200917 reported that plasma HBP levels of ≥ 15 ng/mL was 
a better indicator of severe sepsis (with or without septic shock) than PCT, IL-6, CRP, WBC and lactate. Addi-
tionally, other studies have subsequently confirmed that plasma HBP levels were significantly elevated in sepsis 
associated with circulatory  failure28,29. A 2015 multicenter study of 759 patients also found that HBP could 
effectively predict disease progression to organ dysfunction (AUC = 0.80)14. Based on our study, we found that 
the prognostic value of HBP did not increase with time, with baseline HBP and HBPc-48 h having a higher 
prognostic value than HBPc-24 h. Until recently, the kinetics of HBP in patients with septic shock were not 
systematically studied. A recent experiment that injected HBP intravenously in rats found that a half-life below 

Table 1.  Comparisons of baseline characteristics and outcomes between survivors and nonsurvivors in 
patients with severe sepsis and septic shock.

Survivors (N = 137) Non-survivors (N = 69) p-value

Demographic characteristics

Age, median (IQR), year 65 (29) 61 (31) 0.607

Female, n (%) 48 (35) 22 (31.9) 0.768

Comorbidities, n (%)

Chronic heart failure 13 (9.5) 19 (27.5) 0.002

Diabetes mellitus 31 (22.6) 15 (21.7) 1.000

Cerebrovascular disease 27 (19.7) 19 (27.5) 0.273

Chronic kidney disease 19 (13.9) 23 (33.3) 0.002

Laboratory results, median (IQR)

White blood cell count  (109/L) 11.0 (7.06) 12.0 (9.49) 0.729

Neutrophil percentage (%) 86.0 (11.5) 87.7 (11.9) 0.504

Procalcitonin(ng/dL) 0.65 (5.86) 7.06 (27.70)  < 0.001

Lactate (mmol/L) 1.8 (1.7) 3.5 (5.1)  < 0.001

Site of infection, n (%)

Bloodstream 2 (1.5) 9 (13.0) 0.002

Lung 112 (81.8) 68 (98.6) 0.001

Urinary tract 9 (6.6) 2 (2.9) 0.437

Abdomen 18 (13.1) 15 (21.7) 0.165

Soft tissue 2 (1.5) 1 (1.4) 1.000

Others 4 (2.9) 1 (1.4) 0.867

Clinical scoring, points, median (IQR)

APACHE II score 14 (9) 25 (8)  < 0.001

SOFA score 5 (6) 13 (8)  < 0.001

Charlson score 2 (3) 4 (3)  < 0.001

Number dysfunctional organs 2(1) 4(2)  < 0.001

Organ support, n (%)

Mechanical ventilation 21 (15.3) 30 (43.5)  < 0.001

Renal replacement therapy 6 ( 4.4) 28 (40.6)  < 0.001

Vasopressor 36 (26.3) 53 (76.8)  < 0.001

Duration of hospitalization, mean ± SD, days

Length of ICU stay, median (IQR) 6 (8) 4 (12)  < 0.001

Length of hospital stay, median (IQR) 14 (14) 5 (12)  < 0.001

Table 2.  Comparisons of HBP and HBPc dynamic monitoring levels between survivors and nonsurvivors 
in patients with sepsis or septic shock. HBP-initial, HBP level at admission. HBP-24 h, HBP level at 24 h. 
HBP-48 h, HBP level at 48 h. HBPc-24 h (%), changes in HBP levels between baseline and 24 h, presented as 
percentages. HBPc-48 h (%), changes in HBP levels between baseline and 48 h, presented as percentages.

Variables Survivors (N = 137) Non-survivors (N = 69) p-value

HBP-initial (ng/mL) median (IQR) 117 (75–185) 234 (203–276)  < 0.001

HBP-24 h (ng/mL) median (IQR) 85 (51–120) 188 (141–197)  < 0.001

HBP-48 h (ng/mL) median (IQR) 48 (24–86) 207 (151–210)  < 0.001

HBPc-24 h (%) median (IQR) − 28 (− 42, − 17) − 22 (− 34, − 14) 0.018

HBPc-48 h (%) median (IQR) − 54 (− 72, − 36) − 15 (− 38, − 3)  < 0.001
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10 min and an elimination half-life of 1–2 h. In the acute inflammation stage, HBP’s rapid release and rapid 
elimination makes serum levels  unstable30. Recent observations on serial changes in HBP in 12 patients with 
septic shock corroborated our observations. The study showed that serum HBP levels are highly variable within 
72 h of admission, with baseline and peak levels having the greatest prognostic  value31. They did not analyze 
the relationship between the trend in change in HBP and the outcome. Nevertheless, their findings may help 
explain why the baseline value has a higher prognostic value than HPB-24c, and why HBP levels at later stages 
are more indicative of the final outcome.

Our study has limitations. First, our study was a small single center prospective study of consecutive patients 
admitted to ICU with sepsis. Large prospective multicenter studies are needed to validate our results. Next, 
we did not collect information regarding therapeutic decision-making which includes the appropriateness of 

Figure 2.  Serial measurement of plasma levels of HBP between sepsis survivors (a) and nonsurvivors (b).
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antibiotic choice for the given infection. Variance in antimicrobial resistance, source control procedures or 
antibiotic choice may have confounded our results. Lastly, the predictive model we built was not validated in an 
independent external database. However, we have proven the concept that dynamic change of HBP is potentially 
useful to improve the performance of a clinical prediction model. The strength of this study was that all patients 

Table 3.  Accuracy of different biomarkers in predicting 30-day mortality. AUC refers to the area under the 
ROC curves in which the larger AUC means higher discriminative capability. The cutoff was determined to 
maximize the sum of sensitivity and specificity. PCT, HBP, CRP and Lactate refer to their respective levels at 
baseline.

Maximize the sum of sensitivity and specificity

Variables Cut-off Sensitivity (%) Specificity (%) AUC (95% CI)

PCT (ng/dL) 1.79 0.77 (0.65, 0.86) 0.65 (0.57, 0.73) 0.72 (0.65, 0.80)

HBP (ng/mL) 201.69 0.77 (0.65, 0.86) 0.80 (0.72, 0.86) 0.79 (0.72, 0.85)

CRP 110.10 0.53 (0.40, 0.65) 0.78 (0.70, 0.85) 0.65 (0.56, 0.73)

Lactate 3.00 0.59 (0.47, 0.71) 0.75 (0.66, 0.82) 0.71 (0.63, 0.78)

HBPc-24 h (%) − 23.26 0.63 (0.47, 0.76) 0.60 (0.52, 0.68) 0.60 (0.51, 0.70)

HBPc-48 h (%) − 17.14 0.58 (0.43, 0.72) 0.91 (0.85, 0.95) 0.82 (0.75, 0.89)

Q1: HBPc-48h=-18.18%, Q2: HBPc-48h=-42.58%, Q3: HBPc-48h=-63.91% 
 
Interval 1: HBPc-48h > Q1  
Interval 2: Q1 > HBPc-48h > Q2 
Interval 3: Q2 > HBPc-48h > Q3  
Interval 4: Q3 > HBPc-48h 

Figure 3.  Kaplan–Meier survival curve for HBPc-48 h in four quartiles.
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included fulfilled the SEPSIS-3 criteria. This consideration reduces the potential for heterogeneous definitions 
of sepsis to confound our results.

Conclusions
In our single center prospective observational trial, we found that 48-h HBP change was more accurate than 
CRP, PCT, lactate or initial HBP level in predicting in-hospital mortality. We observed that our patients with a 
48-h HBP decrease greater than 50% had a greater than 90% chance of survival, while patients with a 48-h HBP 
decrease less than 4% had a nearly 90% 30-day all-cause mortality rate. The HBPc-48 h can be used to enhance 
the predictive accuracy of a clinical prediction model. Further studies are needed to better understand the patho-
physiology of elevated HBP in septic patients and how HBP measurement may potentially inform clinical care.

Data availability
The data sets generated and/or analyzed during the current study are not publicly available due to the data con-
fidentiality requirements of the ethics committee, but are available from the corresponding author on reasonable 
request and approval from the ethics committees in all institutions.
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