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Magnetic dynamics 
of ferromagnetic long range order 
in icosahedral quasicrystal
Shinji Watanabe

Quasicrystals lack translational symmetry and have unique lattice structures with rotational 
symmetry forbidden in periodic crystals. The electric state and physical property are far from 
complete understanding, which are the frontiers of modern matter physics. Recent discovery of 
the ferromagnetic long-range order in the rare-earth based icosahedral quasicrystal has made 
the breakthrough. Here, we first reveal the dynamical as well as static magnetic structure in the 
ferromagnetic long-range order in the terbium-based quasicrystal. The dynamical structure factor 
exhibits highly structured energy and wavenumber dependences beyond the crystalline-electric-
field excitation. We find the presence of the magnetic excitation mode analog to magnon with 
unique hierarchical structure as well as the localized magnetic excitation with high degeneracy in the 
quasicrystal. Non-collinear and non-coplanar magnetic structure on the icosahedron is discovered to 
give rise to non-reciprocal magnetic excitation in the quasicrystal as well as non-reciprocal magnon 
in the periodic cubic 1/1 approximant. These findings afford illuminating insight into the magnetic 
dynamics in the broad range of the rare-earth-based quasicrystals and approximants.

The quasicrystal (QC) discovered in  19841 has a unique lattice structure with rotational symmetry forbidden in 
periodic crystals. Although understanding of the atomic configurations has  proceeded2,3, their electronic states 
and physical properties remain elusive, which provide challenging and fascinating frontier of modern matter 
physics. This is because the Bloch theorem based on translational symmetry in periodic crystals can no longer 
be applied. One of the remaining significant issues has been whether the magnetic long-range order is realized 
in the  QC4.

Interestingly, periodic crystals with the local atomic configuration common to the QC is known to exist, 
which is called the approximant crystal (AC). In the rare-earth based ACs, the magnetic long-range order has 
been observed in Cd6 R (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Eu, and Tm)5–8 and Au–SM–R (SM = Si, Al, Ge, and 
Sn; R = Gd, Tb, Dy, and Ho)9–12. The 4f electrons at the rare-earth R site are responsible for the magnetism.

Recently, ferromagnetic (FM) long-range order has been discovered experimentally in the QC Au–Ga–R 
(R = Tb, Gd)13. The temperature dependence of the magnetic susceptibility shows the positive Curie-Weiss 
temperature, which indicates the FM interaction working between the magnetic moments of the 4f electrons.

Theoretically, so far the spin model and the Hubbard model in low-dimensional systems such as the Fibonacci 
chain and the Penrose lattice or small clusters have been extensively  studied14–29. However, the magnetism on 
the real rare-earth based three dimensional QCs remains unresolved because the lack of the microscopic theory 
of the crystalline electric field (CEF), which is essentially important for the 4f electronic state, has prevented us 
from understanding the magnetic property. Recently, the theory of the CEF in the rare-earth based QC and AC 
has been developed on the basis of the point charge  model30. This has succeeded in formulating the full CEF 
Hamiltonian of any rare-earth ion in terms of the total angular momentum, which enables us to analyze the 
CEF accurately. By applying this formulation to the QC Au–SM–Tb and the AC, the CEF has been analyzed 
 theoretically31,32. Then, it has been revealed that the magnetic anisotropy arising from the CEF plays a key role in 
realizing unique magnetic states on the icosahedron (IC) at whose vertices the Tb atoms are located. By analyzing 
the magnetic model considering the magnetic anisotropy in the QC Au–SM–Tb, the FM long-range order of 
the ferrimagnetic state has been discovered theoretically, as shown in Fig. 1a31. The magnetic moments on the 
IC are aligned as Fig. 1b, where the non-collinear and non-coplanar ferrimagnetic state is realized with the total 
magnetization per the IC being finite along the (111) direction. This magnetic structure has actually been identi-
fied in the 1/1 AC Au70Si17Tb13 by the neutron measurement, where the magnetic moment at each Tb site is lying 
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in the mirror plane and is 80◦ tilted from the pseudo 5-fold axis (see Fig. 1b) forming the ferrimagnetic state on 
the  IC12. This state is uniformly distributed at the center and the corner in the unit cell of the body-center-cubic 
(bcc) lattice, which forms the FM-long range order in the 1/1 AC, as shown in Fig. 1c12.

Although the arrangement of the magnetic moments of the FM order has been identified in the real space 
as Fig. 1a, the magnetic structure in the reciprocal space has not been  elucidated31. Furthermore, the dynamical 
magnetic structure factor has not been clarified theoretically nor experimentally. In periodic crystals, the exci-
tation in the magnetically ordered state is known as “magnon”. In the QC, the wavenumber is no longer a good 
quantum number and hence it is interesting whether the magnon-like excitation exists in the reciprocal space. 
It is also curious whether the magnetic excitation unique to the icosahedral QC exists.

So far, the lattice dynamics in the QC has been studied by inelastic X-ray- and neutron-scattering 
 experiments33,34. Theoretical studies of the lattice dynamics have also been  reported33,35. As for the magnetic 
dynamics, the dynamical structure factor has been calculated in the ferromagnetically aligned spins on the 
Fibonacci  chain36 and antiferromagnetically aligned spins on the two-dimensional octagonal  tiling37.

However, little has been known about the magnetic dynamics in the real three-dimensional QC experimen-
tally nor theoretically.

In this article, we for the first time clarify the magnetic dynamics of the FM long-range order in the three-
dimensional icosahedral QC. By analyzing the magnetic model taking into account the effect of the magnetic 
anisotropy arising from the CEF in the QC Au-SM-Tb, we clarify the dynamical as well as static magnetic struc-
ture. The dynamical structure factor is shown to exhibit highly structured energy and wavenumber dependences. 
We find that the pseudo magnon mode as well as the localized magnetic-excitation mode exists in the QC. We 
also find non-reciprocal magnetic excitation in the QC as well as the non-reciprocal magnon in the 1/1 AC. 
These findings provide insight into the understanding of the recently discovered FM long-range order in the 
QC Au65Ga20Tb1513.

Results
Lattice structure of quasicrystal. Let us start with the lattice structure of the QC. Although the detailed 
lattice structure of the QC Au65Ga20Tb15 has not been solved experimentally, the Tb lattice is considered to form 
the Cd5.7Yb-type  QC3 . Figure 1a shows the main structure of the QC where the Tb-12 cluster i.e., the IC is 
located at 30 vertices of the icosidodecahedron. In the Cd5.7Yb-type QC, there exist a few other ICs as well as Tb 
sites located between ICs. In this study, as a first step of analysis, we consider the Tb sites on ICs shown in Fig. 1a 
with the total lattice number is N = 12× 30 = 360 . In this study, we employ the real Tb configuration of the IC 
determined in the 1/1 AC Au70Si17Tb1312 and locate them at the 30 vertices of the τ 3-times enlarged icosidodeca-
hedron in the Tsai-type cluster of Au70Si17Tb13 . Here, τ = (1+

√
5)/2 is the golden mean.
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Figure 1.  (a) FM long-range order of the ferrimagnetic state in the QC. The magnetic moments at the 12 
vertices of the IC located at the vertices of the icosidodecahedron and also at the center. Green (brown) lines 
connect the vertices of the icosidodecahedron in the front (back) side. (b) The ferrimagnetic state in the IC. The 
vector passing through the Tb site from the center of the IC is the pseudo 5-fold axis drawn as the dashed line 
with an arrow, which is in the mirror plane colored by yellow surface. The same is applied to each Tb site where 
the mirror planes are colored by pink and light blue surfaces. The direction of the magnetic moment is defined 
as the angle θ from the pseudo 5-fold axis. The θ = 80

◦ case is illustrated. (c) In the 1/1 AC, the ferrimagnetic 
state for θ = 80

◦ on the IC is located at the center and corner at the bcc unit cell with a being the lattice constant 
a = 14.726 Å. (d) Local coordinate introduced at each Tb site where ê3 is set to be the unit vector along the 
direction of the magnetic moment and ê1 and ê2 are orthogonal unit vectors each other (see “Methods” section). 
The polar angle at the ith Tb site is defined as (θi ,φi) in the global xyz coordinate. (This figure is created by using 
Adobe Illustrator CS5 Version 15.1.0.).
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Minimal model of rare-earth based icosahedral quasicrystal. Then, we consider the minimal model 
for the magnetism of the Tb-based QC as

where Jij is the exchange interaction between the “spin” Si on the ith Tb site and Sj on the jth Tb site. Here Si 
expresses the total angular momentum J . Since the Hund’s rule tells us that the ground multiplet of the Tb3+ ion 
with 4f 8 configuration is given by J = 6 , we set S = 6 . We consider the nearest neighbor (N.N.) interaction J1 and 
the next N.N. (N.N.N.) interaction J2 not only for the intra IC but also for the inter IC as discussed in Ref.31. The 
second term in Eq. (1) represents the magnetic anisotropy arising from the CEF, where e3 is the unit vector set to 
be along the direction of the ordered moment at each Tb site (see Fig. 1d) and D is the parameter of anisotropy.

In the strong anisotropy limit of the model (1), it has been confirmed that the FM long-range order of the 
ferrimagnetic state shown in Fig. 1a is stabilized in the wide parameter region of J2/J1 for 64.1◦ ≤ θ ≤ 80◦ of 
the ground-state phase diagram (see Fig. S3a in Supplementary Information)31. In this study, we analyze the FM 
ground state of the ferrimagnetic state with θ = 80◦ (see Fig. 1b) in the QC lattice shown in Fig. 1a under the 
open boundary condition.

Magnetic excitation in quasicrystal. Since the ferrimagnetic state is the non-collinear alignment 
of “spins”, it is convenient to introduce the local coordinate at each Tb site where the ê3 axis is taken as the 
ordered “spin” direction as shown in Fig. 1d (see “Methods” section). Then, by applying the Holstein-Prima-
koff  transformation38 to H, the “spin” operators are transformed to the boson operators as S+i =

√
2S − niai , 

S−i = a†i
√
2S − ni  and Si · êi3 = S − ni with ni ≡ a†i ai . Here, S+i (S

−
i ) is the raising (lowering) “spin” operator and 

a†i (ai) is a creation (annifiration) operator of the boson at the ith Tb site. We retain the quadratic terms of the 
boson operators since the higher order terms are considered to be irrelevant at least for the ground state.

By diagonalizing H, we obtain the energy spectrum ωi for J1 = −1 and J2 = −1 as shown in Fig. 2a. For 
D ≥ 1.8 , positive ωi for all i (i = 1, . . . 360) is obtained (see Fig. 2b) reflecting the FM long-range order of the 
ferrimagnetic state for θ = 80◦ (see Fig. 1a,b) as the stable ground state. We find that there appear several gaps, 
among which the energy gaps are visible as the step structures at i = 300 and i = 330 (see red and blue arrows 
in Fig. 2a respectively). Interestingly, we find that ωi from i = 234 to 263 are degenerate, i.e., degeneracy is 30, 
irrespective of D. It turns out that these degenerated states give rise to unique magnetic excitation in the dynami-
cal structure factor, which will be discussed later. Below we show the results for D = 10 as a representative case 
for the QC Au–SM–Tb. For D = 10 , the lowest energy is ω360/(|J1|S) = 9.15 ≡ � which is defined as the gap 
� and the largest energy is ω1/(|J1|S) = 19.57 . The degenerated energy mentioned above is ωi/(|J1|S) = 15.00 
for i = 234, . . . 263.

Static structure factor of magnetism. To clarify the magnetic structure in the reciprocal space, we 
calculate the magnetic structure factor

The result of Fs(q) in the qz−qx plane for qy = 0 is shown in Fig. 3a. We find that a sharp peak appears at q = 0 . 
At finite q , sharp peaks also appear with smaller intensities. The top view is shown in Fig. 3b, where the bright 
spots are located along the pseudo 5-fold axis indicated by the dashed line named the de∗2  line with an arrow. 
As shown in Fig. 3e, d∗ei  (i = 1, . . . , 6) is the primitive vector of the six-dimensional reciprocal lattice space as 

(1)H =
∑

�i,j�
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Figure 2.  (a) ωi vs i for J1 = −1 and J2 = −1 with D = 1.8, 5, 10, 20 , and 30. The dashed lines indicate 
i = 234 and i = 263 . Red arrow points to i = 300 and blue arrow points to i = 330 . (b) Magnetic anisotropy D 
dependence of the lowest excitation energy ω360.
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the physical (external) space  components39. The slope of the de∗2  line is 1.736 reflecting the real configuration of 
the Tb sites in the  IC12 employed in this study and it is noted that the slope is to be τ in the case of the regular 
 IC39. In Fig. 3b, the bright spots are also located along the dashed line with the negative slope − 1.736, which is 
named the de∗3  line. We also plot the top views of Fs(q) in the qy−qz plane for qx = 0 as Fig. 3c and in the qx−qy 
plane for qz = 0 as Fig. 3d, where de∗i  lines (i = 4, 6 and i = 1, 5) are drawn. From these results, we confirmed 
that the largest peak is located at q = 0 . This indicates that the uniform long-range order of the ferrimagnetic 
state on the IC (see Fig. 1a) is realized.

Dynamical structure factor of magnetism. The dynamical magnetic structure factor is defined as 
Sαβ(q,ω) ≡ − 1

π
ImGαβ(q,ω) (α,β = x, y, z)36, where Gαβ(q,ω) = 1

N

∑

i,j e
iq·(ri−rj)G

αβ
ij (ω) with

Here, |GS� is the ground state with E0 being the ground-state energy and we set η = 10−6 . We have calculated 
Sαα(q,ω) (α = x, y, z) and below we show the results of Syy(q,ω) as a representative for the dynamical structure 
factor (see Supplementary Information for the results of Sxx(q,ω) and Szz(q,ω)).

The elastic component of the dynamical structure factor Syy(q,ω = 0) is shown for q along the de∗2  line with 
qz ∈ [0, 2] Å−1 in Fig. 4a. The largest peak appears at q = 0 and several peak structures also appear for finite q , 
whose values are typically O(108) . As shown in Fig. 2a, in the magnetic excitation, the gap � is caused by the 
uniaxial anisotropy D arising from the CEF. To grasp the ω dependence of the dynamical structure factor, we 
plot Syy(q = 0,ω) in Fig. 4b. For ω/(|J1|S) ≥ � , the spiky peak structure appears where the peak values are 
typically O(104 ∼ 105).

Next, inelastic part of the dynamical structure factor Syy(q,ω) above the CEF excitation gap is shown in Fig. 4c 
for q along the de∗2  line with qz ∈ [0, 2] Å−1 . The result shows the highly structured energy and wavenumber 
dependences. The largest peak appears at (q,ω/(|J1|S)) = (0,�) . The sharp peak structures appear in the lower 
energy regions above the CEF excitation gap: � ≤ ω/(|J1|S) < 12.7 . Interestingly, it is remarkable that the suc-
cessive mountain-like high intensity structure with a large periodicity �q ∼ 0.6 Å −1 appears at ω/(|J1|S) = 15.0 . 
From the relation of wavenumber and wavelength �q = 2π/� , the wavelength � is estimated to be � ∼ 0.67a Å. 
This roughly corresponds to the diameter of the IC d = 0.72a as shown in Fig. 1d. At ω/(|J1|S) = 15.0 , as |q| 
increases, the intensity decreases with this periodicity. This mode is completely localized, which appears at the 
flat branch, i.e., non-dispersive constant ω with 30 degeneracy, reflecting the degenerated energy ωi from i = 234 
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Figure 3.  (a) Magnetic structure factor Fs(q) in the qz−qx plane for qy = 0 . (b) Top view of (a). (c) Top view of 
Fs(q) in the qy−qz plane for qx = 0 . (d) Top view of Fs(q) in the qx−qy plane for qz = 0 . The gray dashed lines 
with arrows in (b), (c), and (d) denote the pseudo 5-fold axis defined in (e). (e) Primitive vectors in the six-
dimensional reciprocal-lattice space d∗ei  (i = 1, . . . , 6) as the physical (external) space components.
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to 263 shown in Fig. 2a. We confirmed that the degenerated localized modes appear when the N.N. interaction 
J1 and N.N.N. interaction J2 are equal irrespective of θ at least for 65◦ ≤ θ ≤ 80◦ (see Supplementary Informa-
tion). In Fig. 4d, above this localized mode, i.e. for ω/(|J1|S) > 15.0 , the small intensity structures appear in the 
broad range of the q-ω plane.

To analyze the wavenumber dependence of the magnetic excitation in more detail, we plot the top view of 
Syy(q,ω) in Fig. 4d. We find that successive magnon-like mode i.e. sinusoidal-like shape with periodicity about 
�q ∼ 0.15 Å−1 appears around 12.0 < ω/(|J1|S) < 12.7 . These sinusoidal-like modes further form the larger 
sinusoidal-like modes with �q ∼ 0.3  Å−1 around 12.0 < ω/(|J1|S) < 13.3 . These series of excitations form 
unique hierarchical structure. The recursive structure i.e., self-similar structure was also reported in Fibonacci 
chain [36] and in two-dimensional octagonal  tiling37. The similar self-similar structure can also be seen for the 
lower excitation energies � < ω/(|J1|S) < 10.5 . We refer to these modes as pseudo-magnon modes hereafter. 
The pseudo magnon mode propagating along the 5-fold direction shown in Fig. 4d is inherent in the QC.

At ω/(|J1|S) = 15.0 , the flat branch appears, which is the localized mode as remarkably seen in Fig. 4c. Just 
below this branch, bright intensities exist and above the localized mode, the broad continuum-like structures 
appear for 15.0 < ω/(|J1|S) < 19.6.

As shown in Fig. 4c,d, the high intensity appears in the low-energy region for ω/(|J1|S) ≤ 15.0 and in the 
high-energy region, the low intensity appears. This is characteristic of the magnetic excitation in the FM order 
of the ferrimagnetic state (see Fig. 1a,b) irrespective of the strength of the anisotropy. Namely, the similar feature 
was confirmed to appear for 1.8 ≤ D ≤ 30.0.

Comparison with 1/1 approximant crystal. To get insight into the emergence of the pseudo magnon mode 
in the QC, we calculate the magnon dispersion in the 1/1 AC. Namely, the model (1) is applied to the 1/1 AC (see 
Fig. 1c). On the atomic positions, here we employ the lattice structure of the 1/1 AC Au70Si17Tb1312 with the lat-
tice constant being a = 14.726 Å. For the same parameter used in the QC, i.e., J1 = −1 , J2 = −1 , and D = 10 with 
S = 6 , we confirmed that the FM long-range order of the ferrimagnetic state (Fig. 1b) is realized, as shown in Fig. 1c. 
Then, by applying the linear spin-wave  theory38 to the model (1), we calculate the excitation energy of the magnon 
ωq in the reciprocal space. The result for q along the symmetry line in the bcc Brillouin zone is plotted as solid lines 
in Fig. 5a, where the number of the unit cell is taken as 643 . Similarly to the QC, owing to the uniaxial anisotropy 
D = 10 , the energy gap opens for 0 < ωq/(|J1|S) < 10 in the magnon excitation. For 10 ≤ ωq/(|J1|S) ≤ 25.3 , the 
magnon excitation forms the dispersive energy bands. Here, for the comparison with the QC, the energy range of 
� ≤ ωq/(|J1|S) ≤ 19.57 is shown in Fig. 5a (for the result of the whole energy range, see Supplementary Informa-
tion). It is noted that the length of the reciprocal lattice between the Ŵ and H points is 2π/a = 0.43Å−1.

For comparison, we calculate Syy(q,ω) in the QC for the same q as that shown in Fig. 5a. The result for 
� ≤ ωq/(|J1|S) ≤ 19.57 is plotted as the top view in Fig. 5b. We see that the dispersive modes with the broad 
intensity start from the Ŵ point at ω/(|J1|S) = � and also at ω/(|J1|S) = 12.5 , which seem to correspond to the 
dispersive magnon bands starting from the Ŵ point at ωq/(|J1|S) = 10 and 13.3 in Fig. 5a, respectively. These 
two magnon bands have the concave dispersions along the P-Ŵ -N line in Fig. 5a, which seem to correspond to 
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the concave dispersive modes with the broad intensity along the P-Ŵ -N line around � ≤ ω/(|J1|S) ≤ 10.5 and 
12 ≤ ω/(|J1|S) ≤ 13.3 in Fig. 5b.

The quadratic dispersion ω = cq2 starting from the Ŵ point at ω = � is evaluated by using the high-intensity 
data (red data in Fig. 5b) in the QC. The magnon velocity v = ∂ω/(∂q) = 2cq is about 4-times smaller than that 
estimated from the lowest-excitation-energy data in the vicinity of the Ŵ point shown in Fig. 5a in the 1/1 AC. 
Furthermore, the convex magnon band at the H point around ωq/(|J1|S) = 17.5 in Fig. 5a seems to correspond 
to the mountain-like broad intensities at the H point around ω/(|J1|S) = 17 in Fig. 5b. These results indicate that 
even in the QC, the magnetic excitation mode like magnon, i.e., the pseudo magnon mode, exists with broad 
width in their intensities.

Non-reciprocal magnon in 1/1 approximant crystal. In the calculation of the magnon dispersion in 
Fig. 5a, we also plotted ω−q as dashed lines. Notable is that there exists a remarkable difference between the solid 
line and the dashed line indicating ωq  = ω−q . This implies that the non-reciprocal magnon appears in the pre-
sent FM long-range order of the ferrimagnetic state. This is, to our best knowledge, the first discovery of the non-
reciprocal magnon in the AC. Note that in the bcc lattice, the spatial inversion symmetry exists. The emergence 
of the non-reciprocal magnon is ascribed to the non-collinear “spin” configuration shown in Fig. 1b. To check 
this point, we calculated the magnon dispersion for the collinear “spin” configuration such as the FM long-range 
order where all the “spins” are aligned to the same direction in the 1/1 AC. In this case, ωq = ω−q holds for all q , 
which indicates that the reciprocal magnon is realized (see Supplementary Information).

Non-reciprocal magnetic excitation in quasicrystal. Next, we calculate the dynamical structure fac-
tor Syy(q,ω) and also Syy(−q,ω) in the QC for q along the symmetry lines in the bcc Brillouin zone of the 1/1 
AC, as shown in Fig. 6a,b, respectively. By comparing both results, we find that there exist several differences 
between q and −q , i.e., Syy(q,ω)  = Syy(−q,ω) . For instance, near the Ŵ point around ω/(|J1|S) ≈ 17 , a clear 
difference exists. Indeed, the non-reciprocal magnon dispersion, i.e., deviation from the dashed line from the 
solid line, is shown to appear near the Ŵ point around ωq/(|J1|S) ≈ 17 in Fig. 5a. Furthermore, around the H 
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point for 17 ≤ ω/(|J1|S) ≤ 19 , remarkable differences exist as seen in Fig. 6a,b. Actually, the ωq  = ω−q feature 
is prominent at the H point around ωq/(|J1|S) ≈ 17 in Fig. 5a. This is, to our best knowledge, the first discovery 
of the non-reciprocal magnetic excitation in the FM long-range order in the QC. This finding suggests that the 
non-reciprocal magnetic excitation appears generally in the icosahedral QC. This is because the alignment of 
the “spins” at the 12 vertices of the IC (see Fig. 1b) following the uniaxial anisotropy induced by the CEF at each 
rare-earth site inevitably becomes the non-collinear type.

Discussion. We have clarified the static and dynamical structure factor in the FM long-range order of the 
ferrimagnetic state in the icosahedral QC. The static structure factor exhibits the largest peak at q = 0 , which 
indicates the uniform long-range order of the ferrimagnetic state. By calculating the dynamical structure factor 
S(q,ω) , the elastic part for ω = 0 is shown to have the largest peak at q = 0 . The uniaxial anisotropy arising from 
the CEF causes the energy gap in the magnetic excitation so that the non-elastic part exhibits the intensity, whose 
order is 4 decades smaller than that of the elastic part, beyond the CEF gap. The inelastic S(q,ω) shows the highly 
structured energy and wavenumber dependences. In spite of no translational invariance in the QC, we have 
found the pseudo magnon mode with hierarchical structure propagating along the 5-fold direction inherent in 
the QC. We have also found the completely localized magnetic-excitation mode with periodicity characterized 
by the wavelength corresponding to the size of the IC in the wavenumber space as the degenerated modes.

This implies that this mode reflects the magnetic excitation on each icosahedron because of the cancellation 
of the dispersions of the excitation arising from symmetric interaction J1 = J2 (see section II in Supplementary 
Information). The non-collinear and non-coplanar “spin” structure on the IC is shown to give rise to the non-
reciprocal magnetic excitation in the QC as well as the non-reciprocal magnon in the AC. Our model and the 
results are expected to be relevant to the broad range of the rare-earth based icosahedral QCs and ACs with 
strong magnetic anisotropy. Hence, our findings as well as the method for the analysis developed in this study 
open a new research field of the magnetic dynamics in the QCs and ACs. It is noted that consideration of more 
detailed lattice structures of the Cd5.7Yb-type QC and the examination of the effect of the system size i.e., bound-
ary condition on magnetic dynamics are left for future studies.

Methods
Quasicrystal and approximant crystal. The rare-earth based QC and AC consists of the Tsai-type 
cluster with nested shell structures of polyhedrons. The rare-earth atom is located at the 12 vertices of the IC. 
The AC retains the periodicity as well as the common local atomic configuration to the QC. There exists a 
series of the ACs such as 1/1 AC, 2/1 AC, 3/2 AC, . . . , where Fn in the Fn+1/Fn AC is the Fibonacci number 
(Fn+2 = Fn+1 + Fn, F1 = F2 = 1) . In the 1/1 AC, the IC composed of the rare-earth atoms is distributed at the 
center and corner of the bcc lattice. As n increases, the size of the unit cell of the Fn+1/Fn AC expands and for 
the n → ∞ limit (limn→∞ Fn+1/Fn = τ) the size of the unit cell becomes infinite, which corresponds to the QC.

Theory of magnetic excitation in quasicrystal. To calculate the magnetic excitation from the FM 
long-range order in the QC, we transform the spin operators in the model (1) into the boson operators. Since 
the ferrimagnetic state is a noncolinear magnetic state, it is convenient to introduce the local coordinate at each 
Tb  site40. The unit vectors in the global xyz coordinate r̂1 = x̂ , r̂2 = ŷ , and r̂3 = ẑ are expressed by the local 
orthogonal coordinate with the unit vector êi3 , whose direction is indicated by the polar angles (θi ,φi) , as

(see Fig. 1d). Here, Ri is the rotation matrix defined as

Then, the first term in Eq. (1) is expressed as

By using Si · êi1 = (S+i + S−i )/2 and Si · êi2 = (S+i − S−i )/(2i) where S+i  and S−i  are raising and lowering “spin” 
operators, respectively, we apply the Holstein-Primakoff  transformation38 to H. Namely, “spin” operators are 
expressed by the boson operators as S+i =

√
2S − niai , S−i = a†i

√
2S − ni  and Si · êi3 = S − ni with ni ≡ a†i ai . 

We retain the quadratic terms with respect to a†i  and ai , which are considered to be at least valid for the ground 
state. In the noncollinear magnetic state as the hedgehog, anomalous terms such as a†i a

†
j  and aiaj appear. The 

resultant H is expressed as

where χ† = (a†1, a
†
2, . . . , a

†
N ) and � is the 2N × 2N matrix. By performing the para unitary transformation

(4)r̂α = Ri
αβ ê

i
β

(5)Ri =
[

cos θi cosφi − sin φi sin θi cosφi
cos θi sinφi cosφi sin θi sin φi
− sin θi 0 cos θi

]

.

(6)
∑

�i,j�
Ji,j(Si · eiα)(Sj · e

j
β)

∑

γ

Ri
α,γR

j
γ ,β .

(7)H = [χ†χ̃ ]�
[

χ

χ̃†

]

,

(8)
[

ζ

ζ̃ †

]

= J

[

χ

χ̃†

]



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10792  | https://doi.org/10.1038/s41598-022-14796-5

www.nature.com/scientificreports/

where ζ = (α1,α2, . . . ,αN ) and J  is the para unitary  matrix41, we obtain

Here, ω̄ is the N × N diagonal matrix ω̄ = diag(ω1,ω2, . . . ,ωN ) with ωi > 0 , ω̃ = diag(ωN ,ωN−1, . . . ,ω1) , and 
0̄ is the N × N matrix with all elements being zero.

Data availability
All the data supporting the findings are available from the corresponding author upon reasonable request.
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