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Foot contact forces can be used 
to personalize a wearable robot 
during human walking
Michael Jacobson1,4, Prakyath Kantharaju1,4, Hyeongkeun Jeong1, Jae‑Kwan Ryu2, 
Jung‑Jae Park2, Hyun‑Joon Chung3 & Myunghee Kim1*

Individuals with below‑knee amputation (BKA) experience increased physical effort when walking, 
and the use of a robotic ankle‑foot prosthesis (AFP) can reduce such effort. The walking effort could be 
further reduced if the robot is personalized to the wearer using human‑in‑the‑loop (HIL) optimization 
of wearable robot parameters. The conventional physiological measurement, however, requires a 
long estimation time, hampering real‑time optimization due to the limited experimental time budget. 
This study hypothesized that a function of foot contact force, the symmetric foot force‑time integral 
(FFTI), could be used as a cost function for HIL optimization to rapidly estimate the physical effort 
of walking. We found that the new cost function presents a reasonable correlation with measured 
metabolic cost. When we employed the new cost function in HIL ankle‑foot prosthesis stiffness 
parameter optimization, 8 individuals with simulated amputation reduced their metabolic cost of 
walking, greater than 15% (p < 0.02), compared to the weight‑based and control‑off conditions. The 
symmetry cost using the FFTI percentage was lower for the optimal condition, compared to all other 
conditions (p < 0.05). This study suggests that foot force‑time integral symmetry using foot pressure 
sensors can be used as a cost function when optimizing a wearable robot parameter.

A below-knee amputation (BKA) is one of the most common types of major amputation  worldwide1,2, yet it 
can be difficult to walk easily with an artificial  limb3–5. As a result, individuals with BKA have expressed the 
desire for prosthetic devices that reduce the physical effort of  walking6. One strategy to reduce physical effort 
is to prescribe a prosthetic foot with stiffness that is personalized to the  wearer7–10. The stiffness is individually 
adjusted by clinical experts according to their observations, but this becomes difficult with an increasing number 
of prosthesis  users11 along with a shortage of clinical resources in the near  future12,13. The user’s body weight can 
also be used to adjust the  stiffness14; however, recent studies suggest that a weight-based stiffness may not be the 
most metabolically  economic8.

Human-in-the-loop (HIL) optimization has been developed for the task of identifying an optimal, personal-
ized parameter that accounts for inter-subject variability in  performance15–18. HIL optimization has been used 
to identify a user-specific assistance parameter in a wearable device and thus contributed to reducing physical 
effort during walking for healthy  individuals15–18 and simulated  amputees8. Individuals with BKA present wide 
inter-subject performance  variability19. This increase in performance variability may be partially due to differ-
ences in residual limb tissue composition, geometry, and intended prosthetic components to be used distal to 
the  socket20. Therefore, an individually tuned ankle-foot prosthesis through HIL optimization may improve 
assistance benefits by accounting for inter-subject performance variability.

In an HIL optimization scheme that uses metabolic cost as an indicator of physical effort, Bayesian optimiza-
tion is used due to its sample-efficient and noise-tolerant  characteristics15,21. Bayesian optimization optimizes a 
posterior distribution of metabolic cost over the control parameter space to minimize the user’s physical effort. 
The metabolic cost, used in the cost function, is the energy demand needed to perform a given  task22. Its meas-
urement, however, is challenging due to slow mitochondrial dynamics and noise in respiratory  measurements23. 
As a result, it typically takes at least 5 min to obtain a reasonable estimate per testing condition. This estimation 
results in increased experimental time; thus, this optimization method has only been performed for walking and 
partial  running18 for a healthy individual. In addition, the respiratory measure for this metabolic cost estima-
tion requires an uncomfortable and non-portable physiological sensor. These limitations have led to a search for 
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alternative cost functions to be used with individuals with reduced physical strength, and they should be based 
on measures that are both time-efficient and comfortable.

Electromyography (EMG) has been used to estimate the metabolic cost of  cycling24 and joint  moments25, 
and this could be leveraged to have a reasonable estimate the metabolic cost of  walking26,27. Recent advances in 
measurement systems enabled obtaining additional information such as area of muscle cross-section, length, and 
velocity of muscle  fiber28 and calculating accurate metabolic cost. The sensors, however, may be uncomfortable 
and interfere user’s  gait29. Another approach is applying machine learning techniques with EMG to estimate 
the metabolic cost with high correlation. The method demands exponentially higher computational  costs24. For 
instance, the estimate of a joint moment with reinforcement  learning25 requires a relatively long learning time (a 
maximum of 6 hours), which limits the practical application of EMG on site. Another widely used cost function 
is a user-based subjective preference. Due to its subjective characteristics, this method often finds different opti-
mum points for each trial, and the optimized assistance tends to show a low correlation with metabolic  cost30,31.

The ground reaction force can be another candidate to estimate the metabolic cost of walking. Ground 
reaction force has been used to identify gait characteristics such as deviations from the center of  mass32, gait 
 symmetry33, and the energy  relation34 in individuals with  BKA35. In particular, gait symmetry can be a distin-
guishing feature as healthy individuals present closer to symmetric ground reaction forces between the left and 
right limbs during  walking36, compared to  BKA37. An assistive device can improve the gait  symmetry38, and such 
a symmetric gait can reduce the metabolic cost of  walking34, perhaps by reducing the balance-related  effort39. 
These studies suggest that gait symmetry of ground reaction forces (e.g., foot force-time integral (FFTI)40) can be 
used as an objective function for optimizing assistance and can serve as an alternative measure of the metabolic 
cost. Also, the FFTI information can be quickly obtained using a portable and comfortable foot pressure  sensor33, 
which can address another important challenge in HIL optimization, reduced estimation time.

In this study, we hypothesized that the foot force-time integral (FFTI) symmetry could be used to estimate the 
physical effort of walking as a fast, portable and comfortable measure, and the cost function using the estimated 
effort can be used in a rapid human-in-the-loop (HIL) optimization scheme. To test this hypothesis, we devel-
oped a cost estimation method using the FFTI and evaluated the performance of this algorithm with individuals 
with simulated  amputation8,41 using an ankle-foot prosthesis (AFP) emulator as an experimental platform. The 
cost estimation method was employed in HIL Bayesian optimization of the AFP stiffness parameter to identify 
subject-specific personalized assistance (Fig. 1). The optimized assistance was compared with the baseline condi-
tions. We expect that the results of this study will broaden the use of HIL optimization with clinically accepted 
measures such as symmetry and foot pressure. In doing so, the contributions of this study may inform follow-up 
experiments among individuals with amputation, eventually leading to the design and clinical prescription of 
prosthetic limbs to reduce walking effort.

Results
The measured and predicted metabolic cost showed a statistically significant and moderately high  correlation42(R 
= 0.64 for time interval 60 - 90 s and R = 0.63 for 210 - 270 s, p < 0.001) (Fig. 2).

Figure 1.  Overview of the human-in-the-loop optimization using the symmetry cost function. (A) Mid-
level controller: the desired ankle torque was generated depending on ankle angle and stiffness parameter, 
commanded from the high-level controller. (B) Emulation system: the torque was delivered through the ankle-
foot prosthesis emulator to a participant while collecting foot pressure and respiratory data. (C) Symmetric 
foot force-time integral (FFTI) cost function: the collected foot pressure was summed in the left ( SPleft ) and 
right side ( SPright ) to estimate the cost of walking. (D) High-level controller: Bayesian optimization updated the 
stiffness parameter to minimize the estimated cost of walking. (E–H) Functional block diagram of the system: 
this block diagram describes how the system works in (A–D).
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The optimal personalized stiffness condition significantly reduced the metabolic cost by 15.9% and 16.1% 
compared to the weight-based condition and the control-off condition, respectively (paired t-test, p < 0.02) 
(Fig. 3A).

The symmetry cost was statistically significant and was reduced by 76.5% (paired t-test, p = 0.004) when 
comparing the optimal personalized stiffness condition to the weight-based condition. The optimal condition 
also reduced the symmetry cost by 67.5% (paired t-test, p = 0.032) when compared to the control-off condition 
(Fig. 3B).

The net push-off work energy tended to be maintained for the optimal and weight-based conditions (paired 
t-test, p = 0.618). The mean values for push-off work were −0.01± 0.05 and 0.01± 0.07 J/kg for the weight-based 
and the optimal conditions, respectively.

The perceived effort was statistically significantly reduced for the optimal condition ( 12± 2.39 ) compared to 
the weight-based (14 ± 3.07) (paired t-test, p = 0.024), but not compared to the control-off condition ( 13± 2.90 ) 
(paired t-test, p = 0.177). Comfort was tended to be increased for the optimal stiffness condition ( 6± 2.05 ) 
compared to the weight-based ( 5± 1.89 ) and control-off ( 5± 1.41 ) conditions, but not significantly for either 
condition (paired t-test, p > 0.05).

Bayesian optimization identified the subject-specific optimal stiffness parameters between 0.5 and 1.8 which 
were scaled between 0 and 100 (Fig. 3C, D, Table 1). The optimization ran for 10 iterations with 60-90s sampling 
periods to calculate the symmetry cost during each iteration. Each iteration was used to select the next stiffness 
parameter. The optimization converged within 15 min for all subjects.

Discussion
In this study, we developed a new cost function using a portable and comfortable mechanical sensor, namely a 
foot pressure sensor, for use in a human-in-the-loop (HIL) optimization. The cost function using the foot force-
time integral (FFTI) also has an important benefit: fast cost estimation. When this cost function was used in the 
HIL optimization, the optimal stiffness parameter was found within 15 min. The optimized assistance resulted 
in a lower symmetry cost and reduced the metabolic cost of walking (Fig. 3A). A reduction of approximately 
16% in metabolic cost from the optimal stiffness condition to all other conditions demonstrates the efficacy of 
using a symmetry cost for HIL optimization, as our previous experiment using indirect calorimetry resulted in 
a metabolic cost reduction of 6% for the optimal stiffness condition for simulated amputees wearing the same 
 device8 while maintaining zero push-off work across  conditions43. The optimal stiffness parameter was varied 
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Figure 2.  Cost function using symmetric foot force-time integral (FFTI) percentage evaluation results. (A,B) 
the correlation between FFTI symmetry cost and normalized measured metabolic cost at time intervals of 
60–90 s (A) and 210–270 s (B). The measured and estimated cost using foot pressure symmetry (gray dots) was 
fitted with a linear regression (dark curve); also plotted are the confidence bounds of the data (light shade). For 
both time intervals, each dataset shows a statistically significant and moderately high  correlation42.

Table 1.  Optimal stiffness parameter (third row) determined through HIL optimization (second row) for each 
subject (first row). The HIL optimization identified the normalized stiffness parameter (second row) and the 
corresponding stiffness parameter was used to control the device.

Subject 1 2 3 4 5 6 7 8

Optimal normalized stiffness 90.21 80.00 36.16 64.77 20.00 95.00 4.34 9.94

Optimal stiffness parameter 1.67 1.54 0.97 1.34 0.76 1.74 0.56 0.63
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depending on the participant (Table 1), and each participant presented a subject-specific estimated metabolic 
cost response surface (Fig. 3C, D). The FFTI-based cost estimation requires a shorter time to find an optimal 
condition; hence, it has the great potential to enable the application of this personalization method to individuals 
with limited physical strength. Also, with the portable measurement feature, HIL optimization using a pressure 
sensor can be used in a natural environment setting.

During the discrete sweep day, we found that the measured metabolic cost using indirect calorimetry and 
symmetry cost measured with foot pressure showed a statistically significant correlation. The correlation values 
were 0.64 and 0.63 for 60-90s and 210-270s time intervals using six subjects’ data from Day1, which meant 
that the correlation was moderately  high42 and consistent throughout the walking period. When we included 
Day3 validation data, the correlation values increased to 0.72 for 60-90s and 0.74 for 210-270s, a high positive 
 correlation42. Our definition of reasonable correlation values is consistent with the definition from the research 
guide for medical  research42 and previous studies for physiological measurement correlation in which values 
of 0.59-0.64 were used for reasonable  correlation26,44,45. For instance, changes in integrated EMG and muscle 
synergy activation were considered to have a high correlation to change in metabolic cost with a correlation 
coefficient value of 0.6426. Our study similarly statistically significantly correlated a physiological signal with 
another anatomical signal. One of the reasons these values may be acceptable could be due to the noisy and 
complex nature of physiological data.

The optimized assistance found using the symmetric FFTI and minimizing the symmetry cost helped reduce 
the metabolic cost of walking. Evidence suggests that an asymmetrical gait caused by varying step length or step 
frequency could be energetically less  optimal46,47. In addition, such a gait may result in failure to stabilize the body 
during the transition between the swing phase and stance  phases48. Body stabilization to mitigate asymmetrical 
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Figure 3.  HIL optimization experimental results using the symmetric foot force-time integral (FFTI) 
percentage. (A) Measured metabolic cost of walking, tested in validation trials. Optimized assistance reduced 
metabolic cost compared to baseline conditions (bars: means; error bars: standard deviations; asterisk: statistical 
significance (p < 0.05)). (B) Symmetry cost during validation trials (double asterisk: statistical significance 
(p < 0.005)). Optimized assistance presented lower symmetry cost compared to the weight based and control 
off conditions. (C–D) Change in symmetry cost using symmetric FFTI percentage for two representative 
participants.
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gait has been shown to increase metabolic  cost34,49,50. For example, when participants experienced asymmetrical 
gait while walking on a split-belt treadmill where each belt moved at a different speed, they adapted to the given 
condition with better symmetric step length along with less metabolic  cost51. Similarly, our results showed that 
when participants had a symmetrical gait while walking with a wearable robot (i.e., symmetric FFTI percentage 
when walking as a result of optimal stiffness), the metabolic cost was statistically significantly lower than with 
asymmetrical walking.

Our optimization result suggests that HIL optimization using foot pressure can be applied to individuals 
with amputation as it can find the optimal stiffness parameter in a relatively short time. People with neurological 
diseases (e.g., stroke, Parkinson’s disease, multiple sclerosis, etc.) and amputation typically present impaired gait, 
and robotic exoskeletons have been developed to improve their gait  performance37,52,53. In particular, personal-
ized assistance has been developed to improve gait performance using HIL optimization based on metabolic 
 cost15,18,54. Due to noise and slow mitochondrial  dynamics55, however, the optimization would take a minimum 
of 24 min, including exploration  periods15,18,21,56,57. Thus, the optimization method has only been performed for 
walking and partial  running18 by an able-bodied counterpart and has been limited regarding the application of 
patients (e.g., individuals with neurological diseases or amputation having reduced physical strength). This fast 
estimation (60-90s to calculate the symmetry cost) contributed to reducing the optimization time by 15min, 
38% improvement in optimization time, which may enable the use of HIL optimization to the individuals with 
reduced physical strength.

The data analysis of this study was limited due to the reduced usable Day1 data. The repeated use of the foot 
pressure sensor caused sensor failure, and we were able to use data from six subjects for the correlation analysis 
between symmetry cost and metabolic cost (Fig. 2). Prior studies using exoskeleton have conducted experiments 
and data analysis with 7-10  subjects15,18,58,59. Future studies could use more robust sensors, especially considering 
real-world applications. Additionally, an experiment can be conducted with an increased number of participants 
to address a potential measurement error with automatic sensor quality check systems.

We hypothesized that the symmetric foot force-time integral would result in metabolically efficient walking. 
It is possible that a slightly asymmetric gait may be energetically optimal for some subjects. One participant may 
have an intrinsically asymmetric gait due to long term adaptations to their particular bio-mechanics60,61. With 
our newly developed symmetry cost function, we could shift our ideal location of the global minimum to suit 
an individual’s intrinsic asymmetrical gait. Future work could explore these intrinsic properties to see how an 
individual’s neural system may adapt to a perfectly symmetrical assistive condition while walking with an ankle 
exoskeleton and determine whether providing a slightly asymmetric condition as the optimal parameter could 
further reduce the metabolic cost of walking.

This study was conducted with only eight male participants. To account for the added height due to the 
simulator boot and prosthesis, the participants were required to wear a lift shoe. Currently, we have one lift shoe, 
and to ensure safety, we recruited participants who could comfortably wear the lift shoe. This might limit the 
applicability of this study’s outcomes. The gait symmetry could be different between males and  females62,63even 
if a gender difference in the functional asymmetry is  limited64. The gait training program helped improve gait 
symmetry for both males and  females65, suggesting that the proposed personalization method may be applicable 
for female participants, but considering the gender differences, it needs to be thoroughly evaluated. Future stud-
ies could have multiple lift shoes suitable for diverse demographics and conduct experiments with an increased 
number of participants.

In this study, we adjusted foot stiffness, a passive parameter, to minimize the symmetry cost in the human-in-
the-loop optimization scheme. Evidence suggests that a powered ankle-foot prosthesis could improve metabolic 
 efficiency66. Future work can include the active ankle-foot prosthesis control study and compare its effectiveness 
to the passive prosthesis parameter optimization results.

Further studies are required to test the applicability of symmetric pressure optimization to individuals 
with amputation. There are numerous differences between individuals with simulated amputation and those 
with below-knee amputation, such as the training duration for wearing prostheses and sensory-motor control 
pathways. Perhaps due to these differences, researchers previously observed different outcomes between these 
 populations53,67. For the purpose of our study, these differences become less concerning because, similar to a 
previous  study21, we used the same factors of mass, height, and alignment, and these factors are unlikely to 
interact with the summed foot pressure symmetry cost function. While our results are promising, an experiment 
needs to be conducted with individuals with amputation to draw a conclusion regarding the effect of this HIL 
optimization using foot force-time integral symmetry. In addition, the investigation of our cost function using 
foot force-time integral symmetry may also provide insight into the user adaptation to the device and may lead 
to an efficient method for considering human-robot co-adaptation.

Methods
We performed an experiment to test the hypothesis that the physical effort can be estimated using foot force-
time integral (FFTI) symmetry, and therefore a function of FFTI symmetry can be used to optimize assistance. 
We conducted walking experiments to evaluate the performance of the physical effort estimation method using 
FFTI symmetry. The performance of estimating effort with FFTI symmetry was evaluated by conducting a cor-
relation analysis between the measured and estimated metabolic cost, and we assessed the performance of the 
optimized assistance using the new cost function using FFTI symmetry.

Prosthesis control. Hardware platform. We used a tethered robotic ankle-foot prosthesis emulator to 
permit real-time adjustments of free control parameters such as stiffness and net push-off  energy9,39,58,68. The 
device provided active plantarflexion torque as a function of ankle angle using the control parameters while us-
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ers walked with the device (Fig. 4), as described in detail  in56,69. The rear part of the toe was connected to the two 
off-board servomotors (Caplex, Humotech, Pittsburgh, PA), which provided power. Control was performed us-
ing a real-time control system (Performance Real-Time Target Machine, Speedgoat, Switzerland). The emulator 
demonstrated performance of 250 Nm plantarflexion peak torque, more than 10 Hz control bandwidth, 17 Hz 
disturbance rejection bandwidth, and less than 5 Nm error on average in both plantarflexion and dorsiflexion. 
Those values are well within human ankle torque ranges during typical walking (120 Nm for plantarflexion)59. 
This characteristic enables our device to optimize free control parameters according to continuous biofeedback 
in the HIL optimization scheme. We also further improved the ankle-foot prosthesis emulator to meet the ro-
bustness demand of HIL optimization given an extended experiment  duration56.

Prosthesis control with a free parameter. We developed a controller composed of low-, mid-, and high-level 
controllers with a free control parameter, namely stiffness (Fig. 1A). The stiffness parameter was selected before 
an experiment to examine it’s effect on the symmetric FFTI percentage and measured metabolic cost, or it was 
selected in real-time in the high-level controller during the HIL optimization. The stiffness parameter was used 
in the mid-level controller for generating a desired trajectory during the stance phase. The low-level controller 
then conducted linear control to track the desired trajectory.

The low-level controller provided linear torque and position control. The controller calculated the actuation 
command based on the error between the desired and actual values of ankle angle position and torque. Subse-
quently, the calculated signals were sent to each Humotech Caplex actuator unit. The desired torque and position, 
as well as the control mode, were received from the mid-level controller (Fig. 1E, F).

The mid-level controller sent control commands, desired torque and position, and the control mode to the 
low-level controller based on gait mechanics. For walking, the gait mechanics were divided into a swing and 
stance phase. The stance phase was further divided into dorsiflexion and plantarflexion. Once there was a transi-
tion toward dorsiflexion from the swing phase, torque control was enabled. During the stance phase, the desired 
ankle torque was commanded based on a piecewise linear function of the ankle angle (Fig. 1A). The piecewise 
linear function was separated into dorsiflexion and plantarflexion phases where the slope of each phase was scaled 
by the stiffness  parameter41. The stiffness parameter was a free control parameter, which was optimized with the 
high-level controller (Fig. 1D, H). The swing phase acted to enable position control by holding each motor at the 
desired position. The stiffness parameter, therefore, had no influence during the swing phase.

The high-level controller optimized a control parameter of the mid-level controller, such as the stiffness 
of the ankle-angle torque curve. In our control scheme, HIL Bayesian optimization performed this high-level 
control action (Fig. 1D). Bayesian optimization is a sequential design strategy for near-global optimization of a 
parameterized black-box function and it is a sample-efficient and noise-tolerant  method70. This method is well 
suited to optimizing objective functions, which are expensive to evaluate under constraints of noisy physiological 
signals with a limited time  budget9,71,72. Bayesian optimization was used here to optimize a posterior distribution 
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Figure 4.  Experimental setup: tethered ankle-foot prosthesis emulator with a cast boot to immobilize the ankle 
and lift shoe for individuals with simulated amputation. The pressure sensors (green) were located at the insole 
of the lift shoe and the cast boot. The pressure sensor and respiratory data were used to develop a cost function 
and to evaluate the performance of the cost function in the HIL optimization scheme.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10947  | https://doi.org/10.1038/s41598-022-14776-9

www.nature.com/scientificreports/

of estimated cost using the foot force-time integral over the control parameter space (Fig. 1C, G). In this case, 
the control parameter, x, is the stiffness, which alters the ankle torque curve in the mid-level controller (Fig. 1A).

HIL Bayesian optimization. The HIL Bayesian optimization was divided into two phases, initialization 
and optimization. We initialized the HIL Bayesian optimization by evaluating the estimated metabolic cost for 
three iterations, which correspond to pseudo-randomly chosen stiffness parameters in the range of 0.5 to 1.8 to 
avoid myopic sampling and premature  convergence15,21,71. The upper and lower bounds of the stiffness condition 
were adjusted based on the safety torque limit (180 Nm) and were scaled to 0 to 100 using the min-max method.

After initialization, Bayesian optimization was iteratively performed over two steps using the estimated cost 
function (Fig. 1C, G): first estimating the posterior distribution of the cost as a function of ankle-foot prosthesis 
stiffness using a Gaussian process (Fig. 1D, H)17,73, and then selecting the next ankle-foot prosthesis stiffness, 
xn+1 , to evaluate using the expected improvement (EI) acquisition function (Fig. 1D, H)17. This stiffness parame-
ter was sent to the mid-level controller to regulate the torque as a function of ankle angle (Fig. 1A), and assistance 
was provided to the participant (Fig. 1B). Bayesian optimization was terminated if the experiment time budget, 
15 min, was reached or same stiffness parameter was selected by EI for three consecutive iteration by the BO.

The Gaussian process calculated the estimated metabolic cost response surface, which is represented using 
the mean, µx , the covariance, k(x, x′) . As a standard  practice71, we used zero mean. For the covarience function, 
we selected a squared exponential (SE) kernel ( k(xi , xj) ) as shown in Eq. (1)21,56:

where, σ 2
f  is the signal variance of the estimated cost (estimated metabolic rate using foot force-time integral 

symmetry) variance, and l is the length scale parameter (stiffness). The σf  and l are hyperparameters, and we 
optimized the hyperparameters at each iteration to maximize the log marginal likelihood of the data, D = {x, y}; 
where x is the array of stiffness parameters used at iteration ( 1 . . . n ), given by x = [x1 . . . xn] and y is array of 
the estimated costs evaluated for each stiffness, represented as y = [y1 . . . yn].

The samples of estimated metabolic cost using foot force-time integral symmetry (f(x)) are assumed to have 
an additive, independent, and identically distributed noise,

where σ 2
noise is the noise variance and is a hyperparameter. Given the Gaussian process and data, D, the posterior 

estimated metabolic distribution was computed for a stiffness parameter, x∗ , as y(x∗) ≡ y∗ ∼ N(µ∗, σ
2
∗ ),

where the K and k were calculated using:

where x∗ is discrete stiffness parameter, x1 . . . xn are the stiffness parameter for previous n iterations, and y1 . . . yn 
are estimated metabolic cost using the foot force-time integral from the previous n iterations.

To acquire the next stiffness parameter, we used the expected improvement (EI), which balanced between 
minimum predictive points and high uncertainty. EI selected the next parameter by calculating the expected 
reduction in the estimated metabolic cost over the stiffness previously evaluated using Gaussian process posterior 
distribution using Eq. (3):

where ybest is given as min1...n E[y(xi)] , u∗ is (ybest − µ∗)/σ∗ , and CDF and PDF corresponds to cumulative dis-
tribution function and probability distribution function of the posterior function (Gaussian process). EI value 
was set to zero when σ∗ was zero. The next parameter was then calculated using Eq. (4):

where the argmax function identified stiffness corresponding to the maximum EI value in the parameter range 
( x∗ ). This newly selected parameter is then passed to the mid-level controller.

New cost function to estimate metabolic cost. We developed a cost function (f(x)) to be used in HIL 
Bayesian optimization based on the symmetry  index74. Several symmetric indexes have been used with tempo-
ral, pressure, and force  features75. The combination of the ground reaction force and time (force-time integral) 
had shown the lowest standard deviation compared to other temporal- and force-parameters-only  methods76. In 
this study, we calculated the force-time integral using an F-scan insole pressure sensor (Tekscan, MI, USA). We 
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−1y
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(4)xn+1 = argmaxx∗(EI[x∗])
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first summed the pressure on each foot to estimate the foot force and then integrated the force through the stance 
phase. This force-time integral was then used to estimate the metabolic cost of walking.

The F-scan insole sensors were placed at the insole of the lift shoe (right) and the insole of the cast boot (left) 
(Fig. 4). Each F-scan sensor was connected to the port hub through an ethernet cable. We calibrated both the 
left and right sensors using the F-scan step calibration function. In this calibration, a subject was asked to stand 
on the opposite-side leg for 5 seconds and then switch to leg to be calibrated for a remaining 15 seconds. Using 
the pressure information from the sensor cells and a subject’s body weight, a calibration file was generated. The 
sensor has 25 sensel per square inch, and we replaced sensors when we saw a 10% drop in the sensing cells. For 
the real-time streaming, we used F-scan’s Matlab SDK to extract the magnitude of all the sensors in a single 
frame at 100Hz.

We first obtained the symmetric foot force-time integral (FFTI) percentage, focusing on the limb which is 
assisted by the ankle-foot prosthesis (AFP), left side:

where SPleft is the summed pressure in the left side and SPright is the summed pressure in the right side. The sum 
of the pressure (SP) for each foot is obtained by adding the pressure in each cell over the stance phase of the 
gait. Similar to the force-time integral  measure76, SP captures the sum of force applied during the stance time.

Then, we constructed a cost function based on a symmetry index (SI) with a hypothesis that the metabolic 
cost would be minimized when a participant loaded equal force between the left and right feet during the stance 
 phase33,74 as suggested by the simplified dynamic walking  model46. Hence, we aim to minimize a function of 
symmetry index, SI = |SPleft − SPright |/(0.5(SPleft + SPright)):

where A = α/(252) , and B = β . The detailed derivation can be found in the supplementary equations.

Experimental methods. We conducted human subject experiments to evaluate the developed cost func-
tion by investigating the correlation between symmetric FFTI percentage and metabolic cost and then by 
employing the new cost function to optimize the ankle-foot prosthesis (AFP) stiffness parameter in human-in-
the-loop (HIL) Bayesian optimization.

Participants. Eight healthy male adults (age 28.1± 3.3 years, weight 74.7 ± 9.1 kg, height 174.8± 6.8 cm) par-
ticipated in this study. The experimental protocol was approved by the University of Illinois at Chicago Insti-
tutional Review Board. All subjects provided written informed consent in accordance with the Declaration of 
Helsinki.

For the experiment with individuals with simulated amputation, the ankle-foot prosthesis (AFP) end effector 
was modified by attaching a cast boot. The intent of walking similarly to amputation was simulated by immobi-
lizing the non-amputated individual’s ankle, which effectively restricts the wearer’s ankle range of motion. The 
cast boot (Fig. 4) allowed a non-amputated individual with an intact lower extremity to safely interface with 
the AFP via a pyramidal adapter receptacle attached to the sole of the cast  boot43,67,77. Subsequently, the non-
amputated individual was raised above the opposite limb’s ground reference point, thus requiring the need to 
wear a lift shoe. The lift shoe is a boot consisting of an elevated sole manufactured from composite foam with a 
height of approximately 0.1 m.

Experimental protocol. Participants experienced three days of experimental protocol: discrete trials of eight 
AFP stiffness conditions, HIL optimization training, and HIL optimization data collection (Fig. 5). We provided 

(5)FFTI =
SPleft

SPleft + SPright
× 100

(6)f (x) = α · SI2 + β = A(FFTI − 50)2 + B

WBHIL COWBHIL CO

Discrete sweep day 

HIL training day 

HIL data collection day 

WBHIL CO

Quiet Standing

Rest OP

WB

CO

(Order randomized)

OP

WBHIL COWBHIL COWBHIL CO

(Order randomized)

OP

Figure 5.  Experimental protocol. The first day was a discrete sweep day when randomly chosen stiffness 
parameters were tested. The second day was an HIL training day that allows participants to familiarize 
themselves with the HIL procedure. The final day was the data collection day of the HIL optimization.
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an additional training day for the three novice participants who wore the device for the first time with the lift 
 shoe52,78.

During the discrete trial day (Day1), the neutral angle of the AFP was adjusted to match what was comfort-
able for the subject and then participants experienced a quiet standing condition for 3 min, which served as a 
baseline for the metabolic cost and foot pressure. Then, the subjects went through 8 stiffness parameter condi-
tions, from 0.5 - 1.8 in a random order while they walked on a treadmill at a walking speed of 1.25 m/s for 5 min 
for each condition with a 5 min sitting break in between. If a participant expressed extreme discomfort and was 
almost unable to walk, we terminated the condition and excluded the stiffness during the following optimization.

On Day2, the participants experienced a HIL optimization training study to become familiarized with the long 
experimental time (15 min) while walking on a treadmill during multiple stiffness conditions without a break. 
After a minimum 24-hour rest, the subjects participated in the same protocol for the data collection on Day3.

For the HIL optimization training (Day2) and data collection days (Day3), participants initially experienced 3 
min of standing to measure the base metabolic cost and foot pressure, followed by a 3 min sitting break. The HIL 
optimization started after 2 min of warm-up, and then the Bayesian optimization occurred over a maximum of 
15 min while the subject walked on a treadmill at 1.25 m/s. The Bayesian optimization was said to be converged 
if three consecutive parameters of the same value were selected. After optimization, the participants experienced 
a 30 min sitting break. Then, the participants experienced the control-off condition, the weight-based condition, 
and the optimal condition in a random order for 5 min each. Subjects had a 5 min sitting break in-between each 
condition and during this break period they were also verbally asked their comfort and perceived effort  scores79. 
For the control-off condition, we fixed the motor position; therefore, the participants walked while experiencing 
compliance from the Bowden cable tether. Characterization of the tether’s compliance has been derived from 
previous experiments with a similar AFP end-effector43. The weight-based condition provided assistance using 
a stiffness parameter based on the participant’s weight. For this experiment, we selected 1% of subject’s  weight80. 
The control-off condition and the weight-based condition served as a  baseline81 to evaluate the performance of 
optimized assistance from HIL optimization using the foot force-time integral based cost function.

We collected respiratory rate (Cosmed, Rome, Italy) and foot pressure (Tekscan, Boston, Massachusetts, USA). 
The obtained respiratory rate was collected with a mask which uses a sampling line to measure the  VO2 and  VCO2 
output of the subject and encoder to measure flow rate. Foot pressure was measured by an insole placed under 
the feet of the subject which creates a pressure map from vertical ground reaction forces.79. Comfort scores were 
measured on a scale of 1-10 and perceived effort scores were measured on a scale of 6-2079.

Data analysis. Foot force‑time integral symmetry and metabolic cost. Using the data from the discrete trial 
day, we examined our hypothesis that symmetric gait, shown by symmetric foot force-time integral, could be 
used to minimize metabolic cost. Due to pressure sensor failure, two subjects’ pressure data were not used. We 
conducted a correlation analysis between estimated metabolic cost using the foot force-time integral and meas-
ured metabolic  cost82. We first calculated the symmetric foot force-time integral (FFTI) percentage using Eq. (5). 
The symmetric FFTI was further normalized with the min-max method to transform the data range from 0 to 1 
(Fig. 2). Outliers were removed with the criterion of three standard deviations from the mean. Then, we obtained 
the symmetry cost using Eq. (6). The measured, steady-state metabolic cost was calculated by taking the last 2 
min data from the respiratory measure and inputting the  VO2 and  VCO2 data into the Brockway  equation83. 
Then, we normalized the measured metabolic cost for each subject by subtracting the resting metabolic measure 
obtained from the standing condition and dividing it by the weight of the  subject15,21. The measured metabolic 
cost was further normalized in the same manner as the estimated metabolic cost using symmetric FFTI by em-
ploying the min-max method and removing outliers.

The correlation between the estimated and measured metabolic costs was examined using a linear Pearson 
correlation  analysis42 (Fig. 2). We calculated the p-value and Pearson coefficient, R, for two different time inter-
vals: 60 - 90s, and 210 - 270s. The 60 - 90s time period was chosen to represent the minimum possible adaptation 
period to update the symmetry cost. The 210 - 270s time period was chosen to indicate a consistent measure of 
the correlation between metabolic cost and symmetry cost throughout the 5 min walking period.

HIL optimization using the new cost function. We calculated the normalized steady-state metabolic cost, sym-
metry cost, and net ankle push-off work for the optimized, weight-based, and control-off conditions from the 
validation trials. We used the steady-state metabolic  cost83, divided by body weight and with standing steady-
state metabolic cost subtracted. The symmetric FFTI percentage was obtained using the Eq. (5). Then, the FFTI 
was used to calculate the symmtery cost using the Eq. (6). The net ankle push-off work was calculated by first 
thresholding the data to extract each step within the stance phase. The threshold used was approximately 10% 
of the maximum ankle  torque84. An average of ankle torque and ankle angle was then taken for the total amount 
of extracted steps. The ankle push-off work was calculated using trapezoidal numerical integration of the ankle 
torque data with the ankle angle data in time-series as the scalar spacing of each  trapezoid73.

Statistical analysis. We compared the optimal condition to the control-off and the weight-based  conditions18 
for the metabolic cost, symmetry cost, and net push-off work. We first tested normality tests for each condition 
with the Kolmogorov-Smirnov (KS) test. For the KS test, the alpha level was set to 0.05 and each condition had 
equal sizes of data. If normality was confirmed, we conducted the paired t-test. The significance levels for statisti-
cal analyses were defined at p < 0.05.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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