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Peristaltic pump with heat 
and mass transfer of a fractional 
second grade fluid through porous 
medium inside a tube
A. M. Abd‑Alla1, S. M. Abo‑Dahab2,3, Esraa N. Thabet1* & M. A. Abdelhafez1

In magnetic resonance imaging (MRI), this MRI is used for the diagnosis of the brain. The dynamic of 
these particles occurs under the action of the peristaltic waves generated on the flexible walls of the 
brain. Studying such fluid flow of a Fractional Second‑Grade under this action is therefore useful in 
treating tissues of cancer. This paper deals with a theoretical investigation of the interaction of heat 
and mass transfer in the peristaltic flow of a magnetic field fractional second‑grade fluid through a 
tube, under the assumption of low Reynolds number and long‑wavelength. The analytical solution 
to a problem is obtained by using Caputo’s definition. The effect of different physical parameters, the 
material constant, magnetic field, and fractional parameter on the temperature, concentration, axial 
velocity, pressure gradient, pressure rise, friction forces, and coefficient of heat and mass transfer 
are discussed with particular emphasis. The computed results are presented in graphical form. It is 
because the nature of heat and mass transfer coefficient is oscillatory which is following the physical 
expectation due to the oscillatory nature of the tube wall. It is perceived that with an increase in 
Hartmann number, the velocity decreases. A suitable comparison has been made with the prior results 
in the literature as a limiting case of the considered problem.

Peristaltic flows of non-Newtonian fluids in the presence of a magnetic field have recently piqued attention in 
physiology, particularly in the form of a device known as Magnetic Resonance Imaging (MRI). This MRI is used 
to diagnose brain and vascular disorder, as well as the entire human body. In the description of viscoelastic prop-
erties, fractional calculus has had a lot of success. Vertical turbine pumps are a tried-and-true workhorse pump 
used in industrial applications all over the world. The oil and gas, chemical, petrochemical, desalination, power, 
and mining industries all benefit from this pump design. Vertical pumps are built to handle difficult apps and 
have a long history dating back to their invention in the Los Angeles more than a century ago. The effects of 
fractional Maxwell fluids on peristaltic with heat and mass transfer were investigated by Bayones et al.1. Moreo-
ver, the analytical solution for concentration, temperature, tangential stress, axial velocity, and coefficient of heat 
transfer was deduced. Hameed et al.2 discussed the peristaltic flow of the fractional second-grade fluid confined 
in a cylindrical tube. They found that an increase in the constant of fractional second-grade fluid results in a 
decrease in velocity profile for the case of fractional second-grade fluid whereas the velocity remains unchanged 
for the case of second-grade fluid. Under the consideration of long-wavelength,  Haroun3 is devoted to the study of 
peristaltic transport of a fourth-grade fluid in an inclined asymmetric channel. Heat and mass transfer analysis in 
the mixed convective peristaltic flow of fourth-grade fluid under viscous dissipation with Dufour and Soret effects 
was debated by Mustafa et al.4 where the resulting coupled nonlinear boundary value problem (BVP) was solved 
numerically by using Keller–box method. Krishna et al.5 explored theoretically the Hall and Ion slip impacts on 
an unsteady laminar MHD convective rotating flow of heat-generating or absorbing second-grade fluid over a 
semi-infinite vertical moving permeable surface. Rasool and  Wakif6 determined the impact of Cattaneo–Chris-
tov model and convective boundary on second-grade nanofluid flow alongside a Riga pattern. The governing 
nonlinear problem was converted into ordinary problems via suitably adjusted transformations and the Spectral 
local linearization method was incorporated to find the solutions to the nonlinear problems. VeeraKrishna and 
 Reddy7 considered the transient MHD flow of a reactive second-grade fluid through a porous medium between 
two infinitely long horizontal parallel plates, and the transient momentum equations were solved analytically 
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using the Laplace transform technique. Hayat et al.8 addressed the heat and mass transfer in the peristalsis of 
MHD third-grade material through curved configuration. Ali et al.9 displayed the peristaltic flow of a third-grade 
fluid in a circular cylindrical tube when the no-slip condition at the tube wall. They observed that an increase in 
the slip parameter decreases the peristaltic pumping rate for a given pressure rise.  Tripathi10 was investigating 
the transportation of a viscoelastic fluid with a fractional second-grade model by peristalsis through a cylindrical 
tube under the assumptions of long-wavelength and low Reynolds number. Abd-Alla et al.11 described the effect 
of the endoscope and heat transfer on the peristaltic flow of the Jeffrey fluid across the distance between the uni-
form concentric tubes utilizing the assumption of the long-wavelength and low Reynolds number to approximate 
the governing equations of motion.  Zhao12 exhibited the convection flow, the magnetic field, and velocity slip of 
a peristaltic motion of a fractional fluid. Javid et al.13 used the fourth-order Runge–Kutta method to analyze the 
interface of the thermal boundary layer, and the porosity effects were modeled using a Navier–Stokes equation 
with a body force term. Wahid et al.14 talked about the boundary layer flow and heat transfer on a viscoelastic 
fluid over a stretched surface in a porous medium with thermal radiation and viscous dissipation. Mainardi and 
 Spada15 offered a comprehensive overview of fractional calculus-based viscoelastic models and investigated the 
basic fractional models in terms of creep, relaxation, and viscosity features. With the help of Hall and induced 
magnetic field effects, Singh and  Vishwanath16 elucidated the convective flow of a viscoelastic electrically con-
ducting fluid within an inclined channel boundary in a porous regime. The heat transfer and second-order slip 
impact on the MHD flow of fractional Maxwell fluid in a porous medium were explained by Amana et al.17. 
Also,  Tripathi18 demonstrated the use of a fractional Maxwell model to investigate the peristaltic transport of 
viscoelastic non-Newtonian fluids in a channel. Under the influence of a uniform transverse magnetic field, 
Waghmode and  Suneetha19 investigated the unsteady MHD rotating free convection flow of viscoelastic fluid 
through a porous media with simultaneous heat and mass transfer near an infinite vertical oscillating porous 
plate. Narla et al.20 used the fractional calculus approach to obtain an analytical solution for the flow of a viscoe-
lastic fluid. The influences of fractional parameter, material constant, amplitude, and curvature parameter on 
the pressure and friction force across one wavelength are discussed numerically with the help of graphs. Tariq 
and Khan 21 revealed the behavior of second-grade dusty fluid flowing through a flexible tube whose walls are 
induced by the peristaltic movement implementing the regular perturbation technique to get the solutions. The 
electro-osmotic peristaltic flow of a viscoelastic fluid through a cylindrical micro-channel was studied by Guo 
and  Qi22 where the analytical solutions of pressure gradient, stream function, and axial velocity were explored in 
terms of Mittag–Leffler function by Laplace transform method. Tripathi and Bég23 applied Caputo’s definition to 
determine approximate analytical solutions of inclined tube peristaltic flow of a fractional second-order biofluid. 
Imran et al.24 discovered the effect of heat and mass transfer on particle–fluid suspension for the Rabinowitsch 
fluid model with the stiffness and dynamic damping effects through Darcy–Brinkman–Forchheimer porous 
medium. Furthermore, Bayones et al.25 displayed the magnetized dissipative Soret of steady viscous incompress-
ible two-dimensional Maxwell fluid flow in a porous medium over a stretching sheet with chemical reaction and 
Joule heating. Abd-Alla et al.26 deliberated the impacts of the gravitational forces, buoyancy forces, and magnetic 
field on velocity profiles, temperature, and concentration of the magneto-hydrodynamic peristalsis of Jeffery 
nanofluid through porous media. El-Dabe et al.27 found numerical solutions for the axial velocity, temperature, 
and nanoparticles concentration of a non-Newtonian nanofluid flow with heat transfer through a non-uniform 
inclined channel. Moreover, the effects of partial slip and the magnetic field on the peristaltic flow of Walter’s B 
fluid through a porous medium were debated by Dabe et al.28.

With these motivations in mind, the present investigation aims to discuss the influence of the magnetic field 
on the peristaltic pump of a fractional second-grade fluid in a porous vertical tube. To our knowledge, a magnetic 
field in the peristaltic pump of a fractional second-grade fluid is still unexplored. The nonlinear equations of 
viscoelastic fluid with fractional second-grade fluid are simplified using the assumptions of long-wavelength and 
low Reynolds number and then the resulting equations have been solved analytically and numerically. Compari-
sons of both the solutions are also made. In the end, the graphical results against different physical parameters 
have also been presented and discussed.

Caputo’s definition
Caputo’s definition of the fractional-order derivative is defined as 10:

where, α1 is the order of the derivative and is allowed to be real or even complex and i is the initial value of func-
tion f . For the Caputo’s derivatives we have:

Formulation of the problem
The constitutive equation for viscoelastic fluid with a fractional second-grade model is given by the following 
relation:

(1)Dα1 f (t) =
1

Ŵ(1− α1)

d

dt

∫ t

i

f n(ξ)

(t − ξ)α1+1−n
dξ , (n− 1, Re(α1) ≤ n, n ∈ N)

(2)Dα1 tβ1 =
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Also, note that Dα1
t

= ∂
α1
t

 , denoting the fractional differentiation operator of order α1 concerning t.
Let us consider a fractional second-grade fluid through a porous vertical tube. In the axisymmetric cylindri-

cal polar coordinate system (R,Z) , R − axis is the radial coordinate and Z-axis is the coordinate along the axes 
of the tube see Fig. 1. The geometry of the tube wall is mathematically given by:

The equations governing the flow of viscoelastic fluid with a fractional second-grade model for axisymmetric 
flows in the fixed frame  are10:

Using the transformations mentioned below to associate the moving (r, z) and fixed frames (R,Z).

The boundary conditions for the flow are defined as follows:
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(10)r = R, z = Z + ct, u = U , w = W − c, p = P, T = T , C = C, q = F − h2.

Figure 1.  Schematic diagram of the physical model.
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Taking into account the dimensionless quantities as follow:

Solution of the problem
The preceding equations are simplified to the following when the above-mentioned adjustments and non-dimen-
sional variables (12) are taken into account:

Analytical solution
Furthermore, the hypothesis of the long-wavelength approach is also supposed. Now, δ is very small so that it 
can be tended to zero. Thus, the δ << 1 dimensionless governing Eqs. (14), (15), (16), and (17) by using this 
hypothesis, may be written as:

The relevant boundary conditions are:

(11a)
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Equation (18) specifies that p is only a function of z.
The non-dimensional formulas for volume flow rate F, pressure rise �P� , and frictional forces F� are gener-

ated by the following equations:

The average of the volume flow rate Q along one time period gives:

Temperature, concentration and axial velocity solutions can be described as follows:

From Eqs. (23), (26), we can deduce:

where, the constants and  ai , i = 1 : 3, f ,A,B are given in Appendix S1.
The heat transfer coefficient is indicated as follows:

So, the solution of heat transfer is given by:

The mass transfer coefficient is indicated as follows:

So, the solution of heat transfer is given by:
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Numerical results and discussion
After getting analytical solutions of Eqs. (19–21) about the conditions Eqs. (22a–22c), and using Matlab software, 
the central purpose is to compute the outcomes of significant parameters relevant to the considered mathematical 
problem. The impacts of these parameters that affect different flow profiles such as the temperature θ , concentra-
tion �, axial velocity w, pressure gradient dpdz , pressure rise �p�, friction forces F�, coefficient of heat and mass 
transfer Zh and Zm in the porous vertical tube are carefully analyzed and sketched in Figures “2–10” for differ-
ent models of fractional second-grade fluid, second-grade fluid, and classical Navier–Stokes fluid, respectively.

It can be observed clearly from Fig. 2 that temperature θ increases with an increase in the heat source / sink 
parameter β and wave amplitude ϕ at the inlet as well as downstream, while it decreases with increasing of the 
radial r . The maximum temperature at inlet and downstream is obtained for different values β and ϕ respectively. 
Also, the temperature satisfied the boundary conditions.

Figure 3 indicates the variations of the concentration � concerning the radial r for different values of Soret 
number Sr and Schmidt number Sc . It is observed that the concentration decreases with an increase in the Soret 
number and Schmidt number at the inlet as well as downstream, while it increases with increasing of the radial r . 

(34)Zm = −
Sr Scβπϕh

2
sin (2π z).

Figure 2.  Analysis of temperature θ . (a) Analysis of θ against β .  (b) Analysis of θ against ϕ. For the values 
z = 0.1,ϕ = 0.4, β = 3.

(a) (b)

Figure 3.  Analysis of concentration �. (a) Analysis of � against Sr. (b) Analysis of � against Sr. For the values 
z = 0.1, ϕ = 0.4, β = 3, Sr = 2, Sc = 0.3.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10608  | https://doi.org/10.1038/s41598-022-14773-y

www.nature.com/scientificreports/

The maximum concentration at the inlet and downstream is obtained for different values Sr and Sc, respectively. 
It is observed that the concentration satisfied the boundary conditions.

The findings are shown in Fig. 4 elucidate the variations of the axial velocity w concerning the radial r for 
different values of fractional time derivative parameter α1, and the ratio of relaxation to retardation times �1 . It 
is observed that the axial velocity decreases with an increase in the fractional time derivative parameter in the 
whole range of r, while it decreases with increasing the ratio of relaxation to retardation times in the interval 
0 ≤ r ≤ 1, as well as it increases in the interval 1 ≤ r ≤ 1.36 . One can observe that axial velocity is in oscilla-
tory behavior, which may be due to peristalsis. In addition, the axial velocity satisfied the boundary conditions.

The variations of the axial velocity w concerning the radial r for different models are plotted in Fig. 5. It is 
remarkable from this figure that an increment in Grashof number Gr, heat source/sink parameter β , and Darcy 
number Da results in a significant increase in the axial velocity. The converse behavior is noted for Hartman num-
ber M,  and Schmidt number Sc. i.e. the axial velocity is reduced by increasing Hartman number, and Schmidt 
number for different models of classical Navier–Stokes fluid, fractional second-grade fluid, and second-grade 
fluid respectively. For Local concentration Grashof number, the axial velocity was also reduced by increasing 
it for different models of second-grade fluid, fractional second-grade fluid, and classical Navier–Stokes fluid, 
respectively. Furthermore, it satisfied the boundary conditions.

Figure 6 depicts the behavior of variations of the axial pressure gradient dpdz concerning the z-axis for different 
values of heat source/sink parameter β Hartman number M Darcy number Da and wave amplitude ϕ respectively. 
It is observed that the axial pressure gradient increases with an increase in the heat source/sink parameter. For 
Darcy number, it has oscillated behavior in the whole range z-axis, while it decreases with increasing of Hartman 
number and wave amplitude. All these previous behaviors for different models of second-grade fluid, fractional 
second-grade fluid, and classical Navier–Stokes fluid, respectively.

The impacts of parameters Grashof number Gr and Darcy number Da on the pressure rise �p�  versus 
the mean flow rate Q are demonstrated in Fig. 7. For the classical Navier–Stokes fluid model, the pressure 
rise increases rapidly with the increase of Grashof number when Q ∈ (−1.5,−0.65), and it decreases rapidly 
when Q ∈ (−0.65, 1.5). whereas, the pressure rise decreases rapidly with the increase of Darcy number when 
Q ∈ (−1.5, 1.5). For fractional second-grade fluid model, it is also observed that the pressure rise increases rapidly 
with the increase of Grashof number when Q ∈ (−1.5,−0.55), and it decreases rapidly when Q ∈ (−0.55, 1.5). 
Although, it increases rapidly with the increase of Darcy number when Q ∈ (−1.5,−1), and decreases with the 
increase of Darcy number when Q ∈ (−1, 1.5). For second-grade fluid model, it is seen that the pressure rise 
increases rapidly with the increase of Grashof number when Q ∈ (−1.5,−0.45), and it decreases rapidly when 
Q ∈ (−0.45, 1.5). However, it increases rapidly with the increase of Darcy number when Q ∈ (−1.5,−0.6), and 
decreases with the increase of Darcy number when Q ∈ (−0.6, 1.5). As expected, the pressure rise results in 
higher values for small mean volume flow rates and lower values for large Q . Furthermore, peristaltic pumping 
takes place in this area −1.5 ≤ Q ≤ 1.5, otherwise augmented pumping occurs.

Figure 8 is schemed to check how the friction forces F� is affected with the variations of heat source/sink 
β and Local concentration Grashof number  Gn. For classical Navier–Stokes fluid model, the friction forces 
decreases rapidly with the increase of heat source/sink parameter when Q ∈ (−1.5,−0.65), and it increases rap-
idly when Q ∈ (−0.65, 1.5). while, the friction forces increases rapidly with the increase of Local concentration 
Grashof number when Q ∈ (−1.5,−0.85), and decreases rapidly when Q ∈ (−0.85, 1.5). For fractional second-
grade fluid model, It is also observed that the friction forces decreases rapidly with the increase of heat source/
sink parameter when Q ∈ (−1.5,−0.5), and it increases rapidly when Q ∈ (−0.5, 1.5). Although, it increases 

(a) (b)

Figure 4.  Analysis of axial velocity w. (a) Analysis of w against α1. (b) Analysis of � against Sr. For the values 
z = 0.1, ϕ = 0.4, β = 3, Sc = 0.3,  Sr = 2, α1 = 0.4, t = 0.2, Gr = 3, Gn = 3, M = 0.1, Da = 1.
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(c)

(b)(a)

(d)

(e) (f)

Figure 5.  Analysis of axial velocity w in different modules. (a) Analysis of w against Gr. (b) Analysis of w against 
β . (c) Analysis of w against M. (e) Analysis of w against Da.(d) Analysis of w against Sc. (f) Analysis of w against 
Gn. For the values z = 0.1, ϕ = 0.4, α1 = 0.4, Sc = 0.3, Sr = 2, �1 = 1, t = 0.2, Gr = 3, Gn = 3, M =

0.1 ,β = 3, Da = 1.
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rapidly with the increase of Local concentration Grashof number when Q ∈ (−1.5,−0.7), and decreases with the 
increase of it when Q ∈ (−0.7, 1.5). For second-grade fluid model, It is notice that the friction forces decreases 
rapidly with the increase of heat source/sink parameter when Q ∈ (−1.5,−0.5), and it decreases rapidly when 
Q ∈ (−0.5, 1.5). Nevertheless, it increases rapidly with the increase of Local concentration Grashof number 
when Q ∈ (−1.5,−0.6), and decreases with the increase of Darcy number when Q ∈ (−0.6, 1.5). As expected, 
the friction forces results in higher values for small volume flow rates and lower values for large Q. Furthermore, 
peristaltic pumping takes place in this area otherwise −1.5 ≤ Q ≤ 1.5,  augmented pumping occurs.

Figure 9 represents the behavior of heat and mass transfer coefficients at the wall of the tube. Heat and mass 
transfer coefficients have an oscillatory behavior due to peristalsis. It is obvious that the heat transfer coefficient 
Zh increases and decreases with increasing of β and ϕ. while the mass transfer coefficient Zm decreases and 
increases with increasing of Sr and Sc. Obviously, the increase in β . ϕ, Sr and Sc increase in the amplitude of the 
heat and mass transfer coefficient in the whole range z. From Fig. 9, one can observe that heat and mass transfer 
coefficient is an oscillatory behavior in the whole range, which may be due to peristalsis. When compared to the 
heat transfer coefficient, the mass transfer coefficient has the opposite behavior.

Figure 10 is plotted in 3D schematics concerning the temperature θ , the concentration �, the axial velocity 
w, axial pressure gradient dpdz and the heat and mass transfer coefficient Zh and Zm concerning r a z xes in the 
presence of β , Sc, Gr, Da, ϕ and Sr. It is indicated that the temperature increases by increasing the β . Moreover, 
the concentration decreases and increases by increasing of Sc, Besides, the axial velocity, and the heat transfer 
coefficient are increasing and decreasing by increasing Gr and ϕ, respectively. In addition to, the axial pres-
sure gradient and the mass transfer coefficient are decreasing and increasing by Da and Sr, respectively. For 

(a) (b)

(c) (d)

Figure 6.  Analysis of the axial pressure gradient dpdz in different modules. (a) Analysis of dpdz against β . 
(b) Analysis of dpdz against M. (c) Analysis of dpdz against Da. (d) Analysis of dpdz against ϕ. For the values 
z = 0.1, ϕ = 0.4, α1 = 0.4, Sc = 0.3, Sr = 2, �1 = 1, t = 0.2, Gr = 3, Gn = 3, M = 0.1 ,β = 3, Da = 1.
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all physical quantities, we obtain the peristaltic flow in 3D overlapping and damping when the state of particle 
equilibrium is reached and increased. The vertical distance of the curves is greater, with most physical fields 
moving in peristaltic flow.

Conclusion
The study examines the interaction of heat and mass transfer and peristaltic flow of a fractional second-grade 
fluid through a porous tube under low Reynolds number and long-wavelength approximation. Caputo’s definition 
is used for differentiating the fractional derivatives. Analytical solutions are derived for temperature, concentra-
tion, axial velocity, pressure gradient, pressure rise, frictional forces, and coefficient of heat and mass transfer. 
The main achievement of physical parameters is illustrated. A side-by-side comparative analysis is performed 
to compare our findings between second-grade fluid and fractional second-grade fluid. Moreover, the fractional 
second-grade fluid model reduces to second-grade models for α1 = 1 and classical Naiver Stokes fluid model 
can be deduced from this as a special case by taking �1 = 0 . This provides a useful accuracy check about the 
correctness and validity of our results and provides a strong confidence in the presented mathematical descrip-
tions. The major findings of the performed analysis are listed as follows:

(a) (b)

Figure 7.  Analysis of pressure rise �p� in different modules. (a) Analysis of �p� against Gr. (b) Analysis of �p� 
against Da. For the values z = 0.1, ϕ = 0.4, β = 3, Sc = 0.3, Sr = 2, α1 = 0.4, t = 0.2, Gr = 3, Gn = 3,

M = 0.1, Da = 1, �1 = 1..

(a) (b)

Figure 8.  Analysis of friction forces F� in different modules. (a) Analysis of F� against β . (b) Analysis of F� 
against Gn. For the values z = 0.1, ϕ = 0.4, β = 3, Sc = 0.3, Sr = 2, �1 = 1, t = 0.2, Gr = 3, α1 = 0.4,

M = 0.1, β = 3, α1 = 0.4..
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1. The axial velocity decreases and increases with the increase of α1, ϕ, β , Da, M, Gr, Gn, �1 and Sc due 
to different models of second–grade fluid, fractional second-grade fluid and classical Navier–Stokes fluid, 
respectively.

2. The temperature increases and decreases with increasing source/sink parameter and wave amplitude.
3. The concentration decreases with the increase of both Sr and Sc.
4. Pressure rise decrease and increase with an increase in Grashof number and Darcy number.
5. It is observed that frictional forces have an opposite behavior to that of pressure rise.
6. The value of heat and mass transfer coefficient has an oscillatory behavior due to peristalsis.
7. The existence of magnetic resonance imaging (MRI) and magnetic gadgets with a magnetic field allows for 

explaining the essential functions of living species. Inspired by these ideas, the current research project aims 
to investigate the influence of magnetic field, heat and mass transfer responses on the peristaltic pump of a 
fractional second-grade fluid.

8. It is found that the magnetic field effect controls the velocity and temperature of the fluid. Hence magnetic 
field is used in cancer therapy.

9. The results presented in this paper should prove useful for researchers in science and engineering, as well as 
for those working on the development of fractional second-grade fluid in a tube. Study of the phenomenon 
of the different physical parameters, material constant, magnetic field, and fractional parameter.

(a) (b)

(c) (d)

Figure 9.  Analysis of coefficient of heat and mass transfer Zh and Zm, respectively in different modules. (a) 
Analysis of Zh against β . (b) Analysis of Zh against ϕ. (c) Analysis of Zm against Sr. (d) Analysis of Zm against 
Sc. For the values z = 0.1, Da = 1, β = 3, Sc = 0.3, φ = 0.4, α1 = 0.4, t = 0.2, Gr = 3, α1 = 0.4, Sr =

2, M = 0.1, �1 = 1.
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Figure 10.  (a) 3D Analysis of temperature θ . (b) 3D Analysis of concentration � . (c) 3D Analysis of axial 
velocity w .  (d) 3D Analysis of axial pressure gradient dpdz . (e) 3D Analysis of coefficient of heat transfer Zh . (f) 
3D Analysis of coefficient of mass transfer Zm.
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