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Scaling quantum approximate 
optimization on near‑term 
hardware
Phillip C. Lotshaw1*, Thien Nguyen2,3,6, Anthony Santana2,7, Alexander McCaskey2,3,8, 
Rebekah Herrman4, James Ostrowski4, George Siopsis5 & Travis S. Humble1,3

The quantum approximate optimization algorithm (QAOA) is an approach for near‑term quantum 
computers to potentially demonstrate computational advantage in solving combinatorial 
optimization problems. However, the viability of the QAOA depends on how its performance and 
resource requirements scale with problem size and complexity for realistic hardware implementations. 
Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits 
for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we 
estimate the number of measurements needed to sample the output of the idealized QAOA circuit 
with high probability. We show the number of measurements, and hence total time to solution, grows 
exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate 
infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing 
hardware connectivity or by recently proposed modifications to the QAOA that achieve higher 
performance with fewer circuit layers.

Combinatorial optimization problems are commonly viewed as a potential application for near-term quantum 
computers to obtain a computational advantage over conventional  methods1. A common approach to solving 
these problems uses the quantum approximate optimization algorithm (QAOA)2, which begins with a “cost” 
Hamiltonian typically defined as

with real coefficients Ji,j and hi that encode a quadratic unconstrained binary optimization problem in the 
eigenspectrum of C3. The QAOA prepares a quantum state |γ ,β� on n qubits using p layers of unitary opera-
tors, where each layer alternates between Hamiltonian evolution under C and under a “mixing” Hamiltonian 
B =

∑n
i=1 Xi composed of independent Pauli-X operators,

The state is then measured to yield the n-bit binary string z as a candidate solution to the problem. The angles 
β = (β1, . . . ,βp) and γ = (γ1, . . . , γp) are variational parameters chosen to minimize or maximize the expecta-
tion value �C� = �γ ,β|C|γ ,β� , depending on whether the optimal solution in C is the minimum or maximum 
value, respectively.

Farhi et al. have argued that QAOA recovers the ground state of C as p → ∞2, but the primary interest in 
QAOA is in reaching high performance with a modest number of layers p that could realistically be implemented 
on a quantum computer. A significant body of  theoretical4–8,  computational9–13, and  experimental14,15 research 
has focused on understanding QAOA performance at p ≈ 1 , mostly on the MaxCut problem with a small num-
ber of qubits n, but also for other types of  problems16–18. These studies have shown some promising results, 
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for example, with QAOA outperforming the conventional lower bound of the GW algorithm for MaxCut on 
some small  instances19,20. There have also been a variety of proposed modifications to the algorithm to improve 
 performance21–28 and solve optimization problems with  constraints29–31. The results from these and other studies 
have encouraged research into extending the QAOA to larger and more complex problems.

In contrast to the QAOA studies focused on a small number of variables n, conventional computational 
methods are capable of handling problem instances with hundreds of variables or more. To assess the usefulness 
of QAOA it will be necessary to scale to larger and more complex instances where it can be directly compared 
against these methods on practically relevant problems. A recent study suggests that hundreds of qubits are 
 needed32 to compete in time-to-solution, while the theoretical and experimental performance in this context are 
important open questions. Theoretical considerations indicate that the number of layers p will need to scale at 
least as log(n) in some instances, as the locality of the ansatz limits the ability to build global correlations that are 
needed for globally optimal  solutions33,34. Classical algorithms have also been developed that outperform QAOA 
at low p35,36, further suggesting large p may be necessary to compete with conventional methods. To optimize 
parameters at large n and p, a variety of  computational37,38 and  theoretical39–44 approaches have been developed 
and in some cases the theoretical performance has been characterized. With parameter setting strategies at 
hand, what remains to be seen is how the QAOA will perform in experimental implementations. The prospect 
of experimentally implementing the QAOA at large n and p raises questions about how quantum computing 
resources will scale with problem size and complexity, and how noise will influence the behavior of the algorithm.

Here we report on the scaling of resources needed by QAOA on near-term intermediate-scale quantum 
(NISQ) devices. We show how features of the combinatorial problem and the target hardware influence the 
total number of gates and measurements required to reach a specified threshold of accuracy. First we consider 
problem features such as the average degree dG of the graph defining the problem instance, where dG is related 
to the number of non-zero terms in the quadratic unconstrained binary optimization problem. While much of 
the QAOA literature has focused on problems with small dG , larger dG arises naturally in constrained combina-
torial optimization  problems45,46. In addition to dG , the problem size n and the number of QAOA layers p also 
contribute to the gate counts and hence the resources required to implement the algorithm. It is furthermore 
important to consider the constraints that arise in current NISQ hardware due to limited connectivity on the 
hardware device qubit register, which can require costly SWAP gates to transport logical qubits. We show that 
the interplay between these logical requirements and hardware constraints generate steep scaling in the resources 
required for high-fidelity implementation of QAOA as n, p, and dG increase.

Our approach synthesizes optimized circuit representations of QAOA for varying problem sets targeting 
constrained noisy hardware. We compile circuits in terms of a generic gate set of controlled-not, Hadamard, and 
rotation gates; these can be translated into native gates for specific hardwares, though we do not include this here. 
We optimize both the number of gates and the overall performance through placement of the logical qubits and 
injected SWAP gates. Placement and routing are difficult optimization problems and it is not clear a priori how an 
ideal QAOA instance expressed as Eq. (2) will map to a given  hardware47–50. To understand the role of hardware 
connectivity, we synthesized optimized QAOA circuits on scaled versions of each of the connectivity architectures 
shown in Fig. 1. These planar architectures correspond to contemporary and hypothesized hardware designs. 
Each architecture has a distinct connectivity defined as the average hardware graph degree dH , i.e., the average 
number of distinct two-qubit gate connections per hardware register element (ignoring perimeter elements to 
give a size-independent dH ). The architectures range from dH = 2.5 for the heavy hexagonal lattice in Fig. 1a to 
dH = 6 for the triangular lattice in Fig. 1d. We quantify the SWAP gate counts with respect to dH , dG , n, and p, 
and we fit scaling relations to these results.

Resource counts also give insight into the scalability of the QAOA in the presence of noise. We define a simple 
noise model for a quantum state traversing a circuit with gate counts estimated from our resource analysis and use 
this to quantify the reliability of QAOA as it scales to larger and more complex problems. Our analysis comple-
ments previous theoretical results describing how noise influences the QAOA cost expectation value, trainability, 
and eigenvectors of the density  operator51–54. We compute an upper bound for the number of measurements M 
that are needed to obtain a single result from the idealized state that would be produced by a noiseless version of 
the circuit, based on effective gate error rates but without assuming any specific structure or correlations in the 
noise process. This characterizes the reliability of the algorithm and the expected time-to-solution T, assuming 
T ∝ M . The results assess the scalability of the QAOA on noisy near-term hardware and the expected influence 
of dH , dG , n, and p.

Results
Mapping to hardware. We express the QAOA unitary operators of Eq. (2) in terms of a hardware gate set 
of Hadamards H , Z-rotations R(θ) , and controlled-not CNOT , as described in “Methods”. The gate-to-unitary 
operator correspondences given there provide the minimal numbers of each type of gate that must be imple-
mented in the algorithm, for example, on fully connected hardware.

It is useful to classify problem instances C in terms of their circuit structure. We define problem graphs G with 
vertices for each qubit i and edges 〈i, j〉 for each non-zero Ji,j constant in Eq. (1). Each edge 〈i, j〉 requires a set of 
two-qubit gates CNOTi,jRj(2Ji,jγl)CNOTi,j and the total set of edges defines all two-qubit gates that are needed 
on fully connected hardware. The specific values of the parameters Ji,j  = 0 , hi , γl , and βl enter as rotation angles 
in the circuit, hence all problem instances with the same problem graph have the same circuits up to choices 
of these angles. When an hi = 0 then a single-qubit gate can be further removed from the circuit, but this does 
not affect the two-qubit gate structure. We consider all non-isomorphic connected problem graphs with n = 7 
qubits to determine how the circuits scale with the average problem graph degree dG ; to determine scaling with 
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the number of qubits we assess 3-regular problem graphs with dG = 3 at varying n. On fully connected hardware, 
the number of gates of each type are

where η is the number of non-zero hi in Eq. (1) and N0 ≤ ⌊n/2⌋ is an instance-dependent number of CNOT gates 
that can be removed from the first layer of the circuit as they do not affect the initial  state55, see Supplemental 
Information for details.

However, on hardware with limited connectivity, it is often the case that some of the two-qubit gates cannot 
be implemented by any initial placement of the logical qubits onto the hardware register. For example, a non-
planar problem graph cannot be mapped onto any of the planar registers in Fig. 1. It is therefore necessary to 
use SWAP gates to shuttle logical qubits around the register during execution of the circuit, to realize connec-
tions that are not available to the initial qubit placement. There are many potential circuits that can be created 
and these can result in different total numbers of SWAP gates, with up to 

(n
2

)

 SWAP gates in n circuit layers in 
the worst  case56,57. An ideal circuit will minimize the number of gates or circuit depth to minimize the negative 
impacts of noise in the circuit.

We compute circuits that minimize CNOT gate counts for each register architecture in Fig. 1 using an opti-
mization routine. We optimize single layers of the QAOA algorithm as additional layers have the same circuit 
structure apart from differences in the qubit locations due to SWAP gates. These differences can be accounted 
for by mirroring the circuit implementation of exp(−iγlC) in subsequent layers, so that qubits move back and 
forth between locations from layer to layer. For an n-qubit problem instance, we use register grids of sizes just 
larger than 

√
n×

√
n , as we found that further increasing the grid size tended to result in larger optimized 

circuits. Our optimization procedure uses two nested loops. The inner loop is called in the circuit mapping 
algorithm  SABRE47, which generates a set of random placements of the logical qubits onto the hardware register 
then optimizes each placement, ultimately returning the final optimized circuit with the smallest depth. For our 
circuits, we have found that SABRE sometimes yields sub-optimal placements, as it does not recognize the com-
mutativity of the terms exp(−iγl Ji,jZiZj) in Eq. (2), but instead tries to implement these in the order it is given. 
We therefore define an outer loop that randomly shuffles these commuting terms, to optimize over varying term 
orderings. This outer loop decreases the number of gates in our optimized circuits compared to a more basic 
implementation with SABRE only. For each problem graph, we take our final result from these nested loops as 

(3)NH = 2np+ n,

(4)NR = p

(

η +
n(dG + 2)

2

)

,

(5)N fc
CNOT = pndG − N0,

(a) (b)

(c) (d)

Figure 1.  Hardware connectivity graphs for (a) heavy-hexagon, dH = 2.5 (b) hexagon, dH = 3 , (c) square, 
dH = 4 , and (d) triangle, dH = 6.
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the circuit with the fewest CNOT gates. The total number of CNOT gates on hardware with limited connectivity 
with NSWAP SWAP gates is

where σ quantifies the average increase in CNOT gates per SWAP gate, beyond the N fc
CNOT gates that are needed 

on fully connected hardware. Each SWAP gate is defined as a product of three CNOT gates, so σ = 3 in the worst 
case. In better cases, a SWAPij gate is placed adjacent to a CNOTij gate in the circuit and CNOTijCNOTij = 1 is 
used to remove a pair of gates. This gives 1 ≤ σ ≤ 3 in our accounting. Further details of the implementation, 
convergence behavior, and performance can be found in Supplemental Information.

Scaling with problem size and degree. We next mapped circuits for each of the 853 non-isomorphic 
problem graphs at n = 758. The results in Fig. 2 show how the number of SWAP gates NSWAP scales with the aver-
age problem graph degree dG at this n across our hardwares with varying dH . As dG increases so does the number 
of edges in the graph, and hence the number of two-qubit gates in each layer of the QAOA algorithm. Greater 
numbers of SWAP gates are needed on average to accommodate these two-qubit gates; in other words, problem 
graphs that are highly connected (with large dG ) are likely to have edges that cannot be realized by the initial 
placement of qubits onto the limited-connectivity registers, thereby requiring SWAP gates. A complementary 
analysis is given in Supplemental Information in terms of the problem graph diameter, which is the maximum 
of all minimum distances between qubits in the graph, and is also related to the connectivity of the graph. As 
the hardware degree dH increases a greater number of two-qubit gates are available natively on the hardware, 
so fewer SWAP gates are needed. The mean numbers of SWAP gates at each dG and dH are fit by an empirical 
linear relation NSWAP(dG , dH ) ∼ dG/dH with fit parameters in the figure caption and a root-mean-square-error 
(RMSE) of 0.58 SWAP gates. The small error indicates the empirical relation is successful in providing a unified 
account of the NSWAP scaling across problem graphs and hardware architectures at this n.

Next we consider how the number of SWAP gates scales with the size of the problem n. We considered sets of 
3-regular graphs with 108 graph instances each at n = 20, 40, and 60 qubits. The 3-regular problem graphs have 
three non-zero Ji,j terms for each qubit i in Eq. (1) and this standardizes dG = 3 as we scale to larger sizes. Three-
regular graphs have also been studied with considerable interest in the QAOA MaxCut  literature2,4,9,10,32,39,41 and 
in a previous experimental demonstration of  QAOA14. They are appealing targets for near-term hardware since 
most graphs at the same n have higher average degree dG , hence we expect them to require more noisy two-qubit 
gates, due to both the increase in the minimal number of CNOT gates in Eq. (5) and also the expected increase 
in SWAP gates following the previous analysis of Fig. 2.

We computed optimized circuit mappings for these 3-regular instances to obtain the key result pictured in 
Fig. 3, which relates the number of SWAP gates to the average hardware degree dH as the problem size n increases. 
We fit the data with an empirical curve that is based on counting the number of two-qubit terms that cannot be 
implemented by the initial qubit placement and assuming the number of SWAP gates needed to bring the qubits 

(6)NCNOT = N fc
CNOT + pσNSWAP,

Figure 2.  SWAP gate scaling with average problem degree dG and hardware degree dH for 7-vertex graphs. 
The solid line shows the non-linear least squares fit to NSWAP(dG , dH ) = adG/dH + b , with a = 5.9± 0.1 and 
b = −2.5± 0.2 , with ± indicating the asymptotic standard error of the fit parameters.
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together for these edge terms increases on average in proportion to the length and width of the hardware grid, 
see Methods for details. This leads to the empirical relation shown by the solid line in the figure

where µ = 0.73± 0.02 is a fit parameter computed through non-linear least squares and ±0.02 is the asymptotic 
standard error. Here n0 sets the zero of NSWAP and represents the maximum problem graph size at which all 
graphs can be mapped to hardware, for example, for fully connected hardware n0 = n and NSWAP(n, dH ) = 0 . 
For the triangle lattice in Fig. 1(d), all 3-vertex problem graphs can be mapped directly onto the lattice but the 
4-vertex complete graph cannot be, so n0 = 3 . For the other hardware lattices, n0 = 2.

We assess the performance of the empirical formula using the RMSE between the average NSWAP and the 
empirical NSWAP(n, dH ) . Across all results in Fig. 3, the RMSE=7.2 SWAP gates. The RMSE is strongly influenced 
by the outliers for the heavy-hexagon array at n = 40 and n = 60 , where the empirical formula is up to 16% 
smaller than the results. These deviations may be related to the bimodal degree structure of the heavy-hexagon 
array in Fig. 1a, which has a mixture of register elements of degrees two and three, unlike the other constant-
degree hardwares. Excluding the results for the heavy-hexagon at n = 40 and n = 60 decreases the RMSE to 2.7 
SWAP gates. We conclude the empirical formula is giving a good fit to the majority of data in the figure, apart 
from the heavy-hexagon at large n, where the formula gives a looser bound to the observed NSWAP.

Noisy architecture model and measurement count scaling. We use a simple noise model for our 
circuits to assess how noise influences the scalability of the QAOA, in terms of the number of measurements M 
that are needed from a noisy circuit to obtain a single result from the intended noiseless quantum state distribu-
tion. This quantifies the reliability of a noisy QAOA circuit in producing the intended output and also character-
izes the scaling in the time-to-solution T assuming T ∝ M.

An instance of a QAOA circuit is expressed in terms of a series of gates with ideal unitary evolution operators 
U0,U1, . . . , with Uα ∈ {H,R, CNOT} the unitary for the α th gate, acting on an initial state ρ0 = (|0��0|)⊗n . The 
noisy state produced by the α th gate is expressed using a quantum channel  as59

where the Kraus operators (ǫ(k)α )1/2E(k)α  give noisy deviations from the intended evolution with probabilities ǫ(k)α  . 
The final state of the circuit  is54

where ρideal = |γ ,β��γ ,β| is the density operator for the intended pure state |γ ,β� , ρnoise is a density opera-
tor composed of all terms with at least one Kraus operator, and F0 =

∏

α(1− ǫα) is a lower bound to the state 
preparation fidelity F = �γ ,β|ρ|γ ,β� ≥ F0 , with equality when Trρidealρnoise = 0 . If we assume constant error 
rates ǫCNOT , ǫH , and ǫR for each CNOT , H , and R gate respectively, then

(7)NSWAP(n, dH ) = µ(n− n0)
√
n/dH ,

(8)ρα+1 = (1− ǫα)UαραU
†
α +

K
∑

k=1

ǫ(k)α E(k)α UαραU
†
αE

(k)
α

†
,

(9)ρ = F0ρideal + (1− F0)ρnoise

(10)F0 = (1− ǫCNOT)
NCNOT(1− ǫH)

NH(1− ǫR)
NR ,

Figure 3.  Average SWAP gate scaling with number of qubits n and hardware degree dH for 3-regular graphs.
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where the N are the corresponding gate counts.
A noisy implementation of QAOA will be effective when it can produce measurement results from 

the intended state distribution ρideal . In the absence of readout errors, a measurement projects the 
total state ρ onto a computational basis state |z� that is the result of the measurement, with probability 
P(z) = �z|ρ|z� = F0Pideal(z)+ (1− F0)Pnoise(z) . This has a lower bound P(z) ≥ F0Pideal(z) independent of 
the specific noise process, apart from the values of the error rates ǫα that determine F0 . Summed over all |z� in the 
support S of ρideal , the total probability P =

∑

|z�∈S P(z) to obtain any result from the ideal state distribution is

We use this probability inequality to bound the number of measurements M = log(1− P)/ log(1− P) that are 
needed to obtain a single sample from the distribution of the intended state with probability P16,20,

It is useful to consider a few examples. In a theoretical best case of QAOA, the intended state is a single com-
putational basis state |γ ,β� = |zopt� that gives the optimal cost value C(zopt) = Copt ∈ R . If we assume that noise 
does not contribute significantly to the probability for |zopt� , then P ≈ F0 and M is close to the upper bound. In 
more generic cases of interest, the intended state has non-zero probability for a variety of approximately optimal 
states and the goal is to measure any one of these states. In this case M may be smaller than the upper bound, and 
potentially much smaller if the probability to measure approximately optimal states is significant for the ρnoise 
component. Smaller upper bounds for M might then be obtained using information about the noise process and 
its expected influence in ρnoise . However, without detailed information about a specific state and noise process 
we do not have a way to decrease M below the upper bound, which serves as a generic guide for any possible 
intended QAOA state and noisy evolution of the type in Eqs. (8)–(9).

We assessed the scalability of the number of measurement samples by computing the upper bound for M 
for 3-regular graphs at varying sizes n and at p = 20 QAOA layers, with a probability P = 0.99 to sample from 
the intended state distribution. We evaluate the analytic bound for M in (12), following from earlier analytic 
expressions in (8)–(10), along with gate counts from our optimized circuits; these calculations are not based on 
simulations of noisy hardware. We consider 3-regular problem graph instances with gate counts NH , NR , and 
NCNOT in Eqs. (3), (4), and (6) respectively, assuming all hi  = 0 in Eq. (1) so that η = n . We use NSWAP computed 
from the empirical formula of Eq. (7) for each hardware architecture in Fig. 1, σ = 3 as the number of additional 
CNOT gates per SWAP gate in Eq. (6), in accord with our results at large n from Supplemental Information, 
and we approximate N0 = 0 since N0 ≪ NCNOT when p = 20 . The F0 in M is then computed from Eq. (10) with 
assumed error rates of ǫCNOT = 5× 10−5 and ǫR = ǫH = ǫCNOT/10 . For comparison, recent advances in trans-
mon qubits have achieved two-qubit gate error rates of 6.4× 10−3 and single-qubit error rates of 3.8× 10−460.

Figure 4 shows how this M scales with problem size n. The number of measurements increases exponentially 
with n at a rate that depends on the hardware degree dH . The variations in hardware themselves give an exponen-
tial divergence in M as the reciprocal hardware degree 1/dH increases and the hardware becomes less connected 
(Fig. 4 inset), due to the empirical dependence of NSWAP ∼ 1/dH from Eq. (7). The hardware dependence is 
significant at the large n that are required for practical problems. For example, at n = 500 (vertical dotted line), 
the number of measurement samples is approximately 20 for fully connected hardware but increases by four 
orders of magnitude going to the least connected hardware (heavy-hexagon, Fig. 1a). Here n = 500 exempli-
fies a nontrivial problem size but is otherwise arbitrary—similar scaling behavior is observed for other large n. 
Curves similar to Fig. 4 can also be computed for fixed n as the error rates ǫα , number of QAOA layers p, or as 
the problem graph degree dG increase, see Supplemental Information for details.

Discussion
Prospects for obtaining a quantum computational advantage with the QAOA are expected to require hundreds 
of qubits or more to compete against conventional methods on practically relevant  problems18,32. As the QAOA 
scales to larger and more complex problems, the number of gates to implement the algorithm on fully connected 
hardware increases with the problem graph degree dG and number of qubits n. For sparsely connected hardware 
additional SWAP gates are needed. We computed optimized circuits to determine how the number of SWAP 
gates NSWAP scales with n and dG on a variety of real and hypothetical hardware architectures with varying levels 
of connectivity in terms of the hardware degree dH . The reciprocal hardware degree 1/dH , average problem graph 
degree dG , and number of qubits n were each found to be important scaling factors in the empirical behavior of 
NSWAP . Using a simple noise model with gate counts extrapolated from our circuits we computed the number 
of measurement samples M from a noisy circuit that are needed to obtain a single measurement from the dis-
tribution of an idealized noiseless version of the state with probability P . This is a measure of the reliability of a 
noisy circuit in producing the intended outcome. We argued that M increases exponentially with n, dG , 1/dH , the 
number of QAOA layers p, and the gate error rates ǫα . Assuming that M is proportional to the time to solution, 
this corresponds to an exponential time complexity in each of these factors.

We considered n = 500 as an example of a nontrivial problem size to compare the number of measurements 
across different hardwares. Our results show that the number of measurement samples is 2× 103 ≤ M ≤ 5× 105 
at this n and p = 20 for the considered error rates and hardwares. These numbers of measurements should not be 
difficult to obtain from a quantum computer. However, our parameter choices and problem sets were optimistic 
in some respects. The assumed error rates were about two orders of magnitude below current state of the art 

(11)P ≥ F0.

(12)M ≤
log(1− P)

log(1− F0)
.
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 devices60 and larger error rates exponentially increase the number of measurements. For example, doubling the 
error rates so that ǫCNOT = 10−4 gives 5× 105 ≤ M ≤ 5× 1010 for our hardwares. We also assumed 3-regular 
problem graphs, which have been studied with great interest in the QAOA literature. However, many practically 
relevant problems use denser problem graphs, for example in constrained optimization  problems18,45,46. For 
denser graphs the average degree can scale as n and changes in degree can significantly affect M. For example, 
using our approach and parameter choices for a 500 qubit problem graph with average degree dG = 25 we 
obtain M = 3× 106 on fully connected hardware. For the sparsely connected hardware we consider we do not 
have a precise scaling relation for NSWAP on dG = 25 graphs, but if we optimistically use the same relationship 
NSWAP(n, dH ) we found for 3-regular graphs we obtain 2× 108 ≤ M ≤ 5× 1010 at dG = 25 . This is ignoring 
any dependence of NSWAP on dG , which would be significant if our small n observation NSWAP ∼ dG holds also 
at large n. A final note is that if more than one measurement is needed from the state with high probability, then 
this will introduce an additional scaling beyond the M presented here. The numbers of measurements quickly 
become greater than what can realistically be expected from near-term quantum computers.

We expect the measurement scaling will significantly inhibit the ability to implement the QAOA at scales rel-
evant for quantum advantage. When the QAOA parameters are optimized using measurements from a quantum 
computer, this optimization will also be greatly inhibited. Parameter optimization has been addressed in some 
instances using theoretical  approaches9,19,20,37–44, though for generic instances it is unclear if such approaches 
can be applied. However, even with a good set of parameters the circuit must still be run to obtain the final bit-
string solution to the problem, and in our model this requires a number of measurements that quickly becomes 
prohibitive at scales relevant for quantum advantage. Straightforward attempts to scale the QAOA will face a 
significant barrier if these scaling problems are not addressed.

Our expectations for performance are based on a general upper bound that is saturated when the noisy and 
ideal components of the total circuit density operator give distinct measurement results in the computational 
basis. A vanishing overlap in measurement results is expected when the ideal QAOA circuit prepares a com-
putational basis state, while intermediate superposition states may have non-negligible overlap with the noisy 
subspace. Further analysis will require details from hardware-specific noise models to determine more precise 
estimates for how such errors influence M. In addition, there are methods to overcome the measurement count 
limitations. One approach is to significantly increase hardware connectivity, for example, through non-planar 
hardware grids. These would overcome the basic inability to directly implement non-planar problem graphs, and 
detailed accounting of SWAP behavior for such architectures is an important topic for future research. Another 
possibility is to modify the gate set, for example, using ion-trap quantum computers with globally-entangling 

Figure 4.  The number of measurement samples M to measure a result from the intended state for 3-regular 
graphs, see text for details. Inset: M diverges exponentially in 1/dH.
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Mølmer-Sørensen  gates61 or Rydberg atoms that naturally enforce constraints in some instances of  QAOA62. 
Another approach is to modify the QAOA ansatz. This includes introducing additional parameters within layers 
of  QAOA21, modifying the structure of the  ansatz22–25, modifying the cost  function27, objective  function28, and 
circuit  structure26. Such technological and algorithmic advances are likely necessary to reduce the numbers of 
layers or gates, and hence the accumulated noise, as the QAOA scales to larger sizes.

Methods
We generated circuits using the XACC quantum programming  framework63,64 to map the unitary quantum 
operators of Eq. (2) to a gate set of Hadamards H , Z-rotations R(θ) = exp(−i(θ/2)Z) , and controlled-NOT 
CNOT gates. To map these circuits to hardware with limited connectivity, we used the Enfield software  library48 
and SABRE  algorithm47 implemented within XACC. Details of the implementation, convergence behavior, and 
comparison with a lower bound for NSWAP at small n are described in the Supplemental Information.

In terms of our gate set, the unitary operators in Eq. (2) are

Empirical formula for 3‑regular graphs. We construct the empirical curve NSWAP(n, dH ) in Eq. (7) by 
considering how many two-qubit gates cannot be implemented by the initial mapping of qubits onto the register 
along with the average expected behavior for how many SWAP gates are needed to bring qubits together for each 
of these gates. We begin by separating the edge terms in a mapped problem graph instance into edges s = �s1, s2� 
that are “satisfied” by the initial placement of qubits on the register, in the sense that the two-qubit gates between 
s1 and s2 can be implemented in the initial placement, and edges u = �u1, u2� that are “unsatisfied,” in the sense 
that SWAP gates are needed to bring the qubits u1 and u2 together to implement their two-qubit gates. Our 
approach is to express the total number of SWAP gates as NSWAP =

∑

u N
(u)
SWAP , where N (u)

SWAP is the number of 
SWAP gates that are used in the circuit to bring qubits u1 and u2 together to implement the two-qubit gates for u.

Some care is needed to define the N (u)
SWAP to give a consistent total NSWAP . Each SWAP gate moves locations 

of two qubits and hence can contribute to two terms N (u)
SWAP and N (u′)

SWAP ; one approach is to allow for fractional 
values in the N (u)

SWAP , for example, values of 1/2 in N (u)
SWAP and N (u′)

SWAP when a SWAP gate moves two qubits that 
help to satisfy u and u′ . Another consideration is that a series of SWAP gates may be implemented before the 
gates for a given u, while along the way the SWAP gates that are relevant for u may also allow for implementa-
tions of two-qubit gates for a variety of other u′, u′′, ... . We could then assign fractional values to each of the 
N

(u)
SWAP,N

(u′)
SWAP,N

(u′′)
SWAP, ... based on which qubits are moved by the series of SWAP gates and which unsatisfied 

edges they contribute to, such that NSWAP =
∑

u N
(u)
SWAP . A final consideration is that sometimes the circuits will 

SWAP qubits that are in initially satisfied edges s before the two-qubit gates for those edges are implemented. 
Although additional SWAP gates are sometimes used in these cases for the satisfied edges s, these SWAP gates 
are only needed because there were initially unsatisfied edges u which began a series of SWAP gates earlier in 
the circuit, so it is reasonable to systematically assign the SWAP gates for these s to the N (u)

SWAP . Although the 
calculation of the N (u)

SWAP is somewhat complicated by these considerations, by design the total must always sum 
to NSWAP . This can be expressed as an average NSWAP = NuN

(u)
SWAP , where Nu is the total number of unsatisfied 

edges and N (u)
SWAP is the average number of SWAP gates per unsatisfied edge. The Nu is determined solely by the 

initial placement of qubits onto the register, while the average N (u)
SWAP = NSWAP/Nu . We argue for the behavior 

of these terms in determining NSWAP and the empirical fit curve of Eq. (7).
For each hardware architecture and circuit, we computed the number of two-qubit edge terms Nu that can-

not be implemented directly on the hardware with the initial qubit placement. The Nu for each hardware are 
found to scale as Nu ∼ (n− n0) , where n0 is a threshold size at which all graphs can be mapped directly to the 
hardware. The quantity n0 sets the zero of Nu and hence NSWAP , for example, on fully connected hardware n0 = n 
so Nu = 0 and no SWAP gates are needed. The rationale for the n dependence is that, on average, the number 
of unsatisfied edges increases linearly with the total number of edges, E = 3n/2 for the 3-regular graphs. The 
linear relations Nu ∼ (n− n0) for each individual hardware are shown in Supplemental Information. They can 
be related to one another with a factor d−1/2

H  that decreases the number of unsatisfied edges when more two-qubit 
connections dH are available on the register. This gives a single unified relationship Nu(n, dH ) ∼ (n− n0)/

√
dH  

for all our hardware architectures as shown in Fig. 5. This motivates and accounts for a factor (n− n0)/
√
dH  in 

the empirical formula in Eq. (7).
The remaining factor 

√
n/dH  in the empirical NSWAP(n, dH ) of Eq. (7) relates to the average numbers of SWAP 

gates per unsatisfied edge N (u)
SWAP . We can rationalize the 

√
n dependence by considering how many SWAP gates 

are needed to bring qubits together to satisfy an edge u, based on the typical distance between qubits on the 
approximately 

√
n×

√
n hardware grids with 

√
n ∈ N . We begin by considering uniform random placements 

of logical qubits along a single dimension of length 
√
n . The probability for the first qubit to be at location i is 

Pi = 1/
√
n , the probability for the second qubit to be at any other location j is Pj = 1/(

√
n− 1) , and the average 

(13)exp(−iγl Ji,jZiZj) = CNOTijRj(2γl Ji,j)CNOTij ,

(14)exp(−iγlhiZi) = Ri(2γlhi)

(15)exp(−iβlXi) = HiRi(2βl)Hi .



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12388  | https://doi.org/10.1038/s41598-022-14767-w

www.nature.com/scientificreports/

distance between the qubits is 
∑

√
n

i=1

∑

√
n

j=1 PiPj|i − j| = (n− 1)/[3(
√
n− 1)] . This scales approximately as 

√
n . If 

qubits are placed uniformly at random in two-dimensions and they move along each dimension separately, for 
example in the square hardware lattice of Fig. 1c, then the total distance is twice the distance in a single dimension 
and this again scales as 

√
n . In reality the qubit placements are optimized instead of uniformly random, but still 

the length scales as 
√
n in each dimension and this gives some justification for the appearance of 

√
n in N (u)

SWAP . 
Finally, we need to account for a factor 1/

√
dH  to obtain the desired relation N (u)

SWAP ∼
√
n/dH  . We rationalize 

this factor by considering that fewer SWAP gates are needed to move a qubit from one location to another when 
there are more connections dH on the register, for example, in the triangle lattice some diagonal movements are 
allowed on the planar grid and we expect this to decrease the number SWAP gates that are needed. We incor-

porate this through a factor ∼ 1/
√
dH  such that N (u)

SWAP ∼
√
n/dH  . Combined with the previous analysis of Nu , 

we have NSWAP(n, dH ) = NuN
(u)
SWAP ∼ (n− n0)

√
n/dH , giving the empirical formula of Eq. (7).

Data availability
Data from this study is available at https:// code. ornl. gov/ 5ci/ datas et- scali ng- qaoa- on- near- term- hardw are/.
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