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Biophysical evaluation of treating 
adipose tissue‑derived stem cells 
using non‑thermal atmospheric 
pressure plasma
Elham shojaei1, Sona Zare2,3, Afshan Shirkavand4, Esmaeil Eslami5, Sara Fathollah6 & 
Parvin Mansouri4*

Non‑thermal atmospheric pressure plasma (NTAPP) is a partially ionized gas containing fast electrons 
and relatively slow ions. This study aims to investigate the influences of NTAPP on human adipose 
tissue‑derived stem cells (ADSCs) and examine the feasibility of using optical spectroscopy as a non‑
destructive method for cell analysis. A plasma jet is used as the source of low‑temperature plasma in 
which pure helium gas is ionized by a high voltage (8 kV) and frequency (6 kHz). ADSCs were exposed 
to the NTAPP for 30 s, 60 s, 90 s, and 120 s. The efficiency of the plasma treatment was investigated 
using flow cytometry and optical spectroscopy methods. This study compared surface markers of 
NTAPP treated and untreated ADSCs using CD90 and CD105 as positive markers. The result proved 
that NTAPP‑exposed ADSCs maintain their stemming. Measuring ADSCS apoptosis by labeling 
Annexin V‑Propidium Iodide showed that the plasma at short exposure time is relatively non‑toxic. 
However, a longer exposure time can lead to apoptosis and necrosis. Moreover, Cell cycle analysis 
revealed that NTAPP accelerates the cell cycle in very low doses and can cause proliferation. In this 
experiment, flow cytometry measurements have been used to determine oxidative stress. The results 
showed that with increasing plasma dose, intracellular ROS levels reduced. This data also suggests 
that intracellular ROS are not responsible for the cells’ viability. Furthermore, we used reflectance 
spectroscopy as a non‑destructive method for evaluating treatment response and comparing this 
method with cell analysis techniques. The results indicate spectroscopy’s efficiency as a method of 
cell analysis. This study suggests that NTAPP would be an efficient tool to improve ADSCs culture’s 
efficiency in vitro; thus, we support the potential applications of NTAPP in the field of stem cell 
therapy and regenerative medicine.

Non-thermal atmospheric pressure plasma (NTAPP) is a partially ionized gas at atmospheric  pressure1,2. Sev-
eral studies have tried to take advantage of NTAPP for biomedical applications due to the controllability of 
the chemistry and kinetics of  plasma3–8. Plasma generates controllable amounts of short-lived reactive oxygen 
and nitrogen species (ROS and RNS, respectively). This Reactive species can be altered by adjusting frequency, 
voltage, and feeding gases. RNS and ROS act as primary cell signaling molecules to regulate cellular and physi-
ological functions inside the human body. External administration of RNS or ROS by NTAPP can boost the 
natural physiological  processes9–14.

In these experiments, we have used human adipose tissue-derived stem cells (ADSCs). ADSCs can be isolated 
from adipose tissues by liposuction, and they can be used in stem cell therapy and regenerative medicine. How-
ever, in general, the cultivation of ADSCs is difficult. Only a minimal number of ADSCs can be obtained from 
the tissues of a patient, and they have inefficient proliferation. Also, stem cells’ characteristics are challenging to 
maintain during culture in vitro, and they easily undergo rapid  senescence15–17. ADSCs are mesenchymal stem 
cells with the capacity for self-renewal and the ability to differentiate into various lineages. Multipotency allows 

OPEN

1School of Physics, Iran University of Science and Technology, Tehran, Iran. 2Skin and Stem Cell Research Center, 
Tehran University of Medical Sciences, Tehran, Iran. 3Laser Application in Medical Sciences Research Center, 
Shahid Beheshti University of Medical Sciences, Tehran, Iran. 4Medical Lasers Research Group, Medical Laser 
Research Center (MLRC), Yara Institute, ACECR, Tehran, Iran. 5Département Des Sciences Appliquées, Université 
du Québec À Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada. 6Faculty of Physics and Energy Engineering, 
Amirkabir University of Technology, P. O. Box, Tehran 15875-4413, Iran. *email: mansouripr@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14763-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11127  | https://doi.org/10.1038/s41598-022-14763-0

www.nature.com/scientificreports/

these cells to differentiate into specific cell types such as osteoblasts, adipocytes, neurons, and  chondrocytes15,18. 
These properties make MSCs an appropriate resource for cell-based therapy for treating diabetes mellitus, car-
diovascular disease, leukemia, neurodegenerative diseases, and cartilage  disorders19, as well as applications in 
reconstructive or tissue engineering  medicine20. MSCs exist in almost all tissues, including bone marrow, blood 
vessels, skin, brain, and  muscle21. However, Adult tissues have few stem cells, and ex vivo isolation and mainte-
nance of stem cells is difficult. On the other hand, Adipose tissue provides for a large volume of tissue extraction 
with minimal morbidity. Furthermore, ADSCs can tolerate freezing and thawing procedures without losing their 
multipotential characteristics. They also exhibit a normal diploid karyotype and, as we said, can differentiate 
into a variety of MSCs, including adipocytes, even after extensive expansion at the single-cell  level22. Therefore, 
ADSCs can be used in stem cell therapy and regenerative medicine as an accessible adult stem cell  source18,23. 
ADSCs, interestingly, respond to atrial natriuretic peptides (ANP)22. Moreover, compared to other cell lines 
of preadipocytes, differentiated ADSCs can secrete adiponectin and leptin at levels similar to those found in 
isolated human  adipocytes24. This means ADSCs can become a new and beneficial tool in pharmacological 
research. After transplantation into animal models, ADSCs can participate in muscle  regeneration25 and promote 
 neovascularization26,27. This can highlight the idea that adipose tissue can be used as a new source of stem cells 
and has therapeutic potential.

This study aimed to investigate plasma interaction with ADSCs to find other potential applications, includ-
ing wound healing improvement or the extreme precision removal of pathological tissues or cells while causing 
minimal injury to the body. We have also evaluated the possibility of using optical spectroscopy as a non-
destructive method for cell analysis. ADSCs proliferation and death following plasma treatment were measured 
by flow cytometry method and optical spectroscopy approach. The effect of NTAPP on the ADSCs cell cycle and 
intracellular ROS was investigated, and finally, mechanisms of NTAPP effects were explored. We showed that 
while high dose NTAPP induces ADSCs death, lower doses enhance proliferation without affecting their stem 
cell characteristics. Our findings also showed that reflectance spectroscopy could provide quantitative data for 
evaluating treatment response that corresponds with cell biology techniques. Taken together, we support the 
potential application of NTAPP in regenerative medicine and stem cell therapy. The findings and conclusions 
that have been taken from this study reinforce our knowledge of NTAPP interactions with stem cells and will be 
beneficial in the future development of NTAPP technology.

Material and methods
Cell preparation, culturing, and isolation of human ADSCs. Adipose tissue was obtained from 
patients referred to the Skin and Stem Cell Research Center (SSRC), Tehran University of Medical Sciences, for 
liposuction. Written informed consent was obtained from patients to use their discarded tissue to isolate mes-
enchymal stem cells. All methods were carried out following relevant guidelines and regulations, and also SSRC 
approved all experimental protocols. The research was approved by the ethics committee of Shahid Beheshti 
University of Medical Sciences, IR.SBMU.RETECH.REC.1400.936.

ADSCs were isolated from the tissue and then repeatedly washed with Phosphate-buffered saline (PBS). Next, 
0.0075 percent collagenase (Sigma-Aldrich, MO, USA) was added to the tissue sample at 37 °C, and then the 
samples were shaken for an hour. In order to remove the top layer of fat, oil, and The Collagenase solution layer, 
the sample was centrifuged at 1000 rpm for ten minutes, and the stromal vADSCsular fraction (SVF) pellet was 
obtained. The pelleted SVF was suspended for 10 min at room temperature in 155 mM NH4Cl for lysing of red 
blood cells. Then using centrifugation at 1000 rpm for 10 min, ADSCs were collected.

ADSCs were holding in Dulbecco’s modified Eagle’s medium (DMEM), Ham’s F-12 supplemented with 10% 
(v/v) fetal bovine serum (FBS; Sigma-Aldrich, MO, USA), and 10 ml/l penicillin–streptomycin (GIBCO, NY, 
USA). ADSCs were maintained and grown in DMEM containing 10% FBS and 10 ml/l penicillin–streptomycin. 
All cells were maintained at 37 °C in an atmosphere containing 5% CO2.

For Cells Passaging, ADSCs were trypsinized and refreshed weekly, and only cells from 4 or fewer passages 
were used in the experiments.

Plasma generation and experimental setup. The plasma source used in this study was the plasma jet 
previously used in wound healing in diabetic  rats28 and treating diabetic foot  ulcers29. The plasma jet used in 
this study consists of an insulating Pyrex tube (ID: 2 mm and OD: 4 mm) as a tube to control the discharge of 
working gas. A copper wire with 10 mm width was wrapped around the tube to work as a power electrode. The 
distance between the powered electrode and the nozzle tip was 10 mm. The virtual ground electrode of the space 
has been used in this configuration. Plasma was generated by applying a pulsed DC high voltage between the 
power electrode and the sample using a high voltage power supply. The repetition frequency, applied voltage, 
and duty ratio were 6 kHz, 8 kV, and 15%, respectively. A gas flow of 2 lit/min for 99.999% pure helium (He) was 
used. The distance between the nozzle tip and cells was 2 cm. The schematic of the experimental setup is shown 
in Fig. 1.

Plasma treatment. Human ADSCs were isolated from adipose tissue and characterized as plastic adherent 
cells with fibroblastic morphology. After four successive passages, we obtained a homogeneous ADSCs popula-
tion. Before treatment, 3 × 104 cells seeded in multiple well plates (6 well plates) were incubated for 24 h at 37 °C 
in a humidified atmosphere with 5% CO2. Cells were exposed to the NTAPP for the 30 s, 60 s, 90 s, and 120 s. 0 s 
treatment cells were considered as the control group. The cells were incubated for 48 h after treatment. The dis-
tance between the cells and the device was fixed to 2 cm, and 1.5 ml of medium was used. Flow cytometry Analy-
sis (Evaluation of ADSCs surface markers and Immunophenotype, Analysis of apoptosis, cell cycle analysis, and 
Detection of intracellular ROS) and Optical reflectance spectroscopy have been done 48 h after treatment.
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Evaluation of cell morphology after treatment. We examined and imaged morphological changes 
of the cells after plasma treatment using an IX70 inverted phase-contrast light microscope (Olympus, Japan).

Evaluation of ADSCs surface markers and Immunophenotype. To detect specific stem cells’ sur-
face markers, at 48 h after exposure to NTAPP, ADSCs were trypsinized with 0.25% trypsin–EDTA (GIBCO, 
NY, USA), washed, and centrifuged for 5 min at 1500 rpm. Cells were incubated with anti-CD45-fluorescein iso-
thiocyanate (FITC; eBioscience, CA, USA), anti-CD105-phycoerythrin (PE; eBioscience, CA, USA), conjugated 
anti-CD90 (eBioscience, CA, USA), and appropriate isotype-matched antibodies for 30 min in the dark. 10,000 
cells per assay were counted using a FACSCalibur flow cytometer (BD Bioscience, CA, USA).

Analysis of apoptosis. ADSCS apoptosis was measured through the labeling of Annexin V-Propidium 
Iodide. This test is based on the protein Annexin V’s ability to bind to phosphatidylserine (PS), which is trans-
located from the Interior cell membrane leaflet of viable cells to the outer in apoptotic cells (PS appears on the 
surface of necrotic cells as well). Propidium Iodide (PI) is a DNA-binding fluorescent reagent that penetrates 
damaged cell membranes. Adding PI allowed the distinguishing of viable cells (AnnVneg/PIneg), early apoptotic 
cells (AnnVpoz/PIneg), late apoptotic cells (AnnVpoz/PIpoz), and necrotic cells (AnnVneg/ PIpoz)30,31.

The apoptosis assay was performed using Annexin V/ Pi method, following the manufacturer’s instructions 
(Annexin V-FITC kit, Bender MedSystems, Austria). After treatment, the harvested cells were washed in PBS, 
resuspended in 100 μl of binding buffer, and stained with 5 μl FITC-conjugated Annexin-V for 15 min in the 
dark at room temperature. The samples were washed and resuspended in 250 μl binding buffer and then incu-
bated with 5 μl Propidium Iodide (PI; Sigma-Aldrich, MO, USA) for 10 min. The results were analyzed on the 
BD FACSCalibur cytometer.

Cell cycle analysis. After treatment, the harvested cells were detached for the cell cycle analysis with 0.25% 
trypsin- EDTA (GIBCO, NY, USA), washed with PBS and then fixed with ice-cold 70% ethanol for 2 h. Cells 
were rewashed with PBS and treated with 50 μg/ml RNase A (Bio Basic Inc., ON, Canada) for 30 min. After 
that, cells were incubated with Propidium Iodide (PI; Sigma-Aldrich, MO, USA). Flow cytometry analysis was 
performed using the BD FACSCalibur cytometer.

Detection of intracellular ROS. 2, 7 -Dichlorofluorescin diacetate (DCFH-DA, Sigma), a stable non-
fluorescent compound, was produced from dissolving 0.02 mmol of DCFH-DA in 1 mL of DMSO. DCFHDA 
underwent deacetylation by intracellular esterases when crossing the membrane and converted to DCFH. In 
the presence of active radicals within the cell, the non-fluorescent DCFH can oxidize and produce the highly 

Figure 1.  Helium-based plasma jet device used for NTAPP generation, Schematic of Inner components of the 
device. 
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fluorescent form DCF22. The cells were harvested and washed within PBS and incubated with 50 μmol/L 2, 7 
-Dichlorofluorescin diacetate (DCFH-DA, Sigma) at 37 °C for 2 h. Then the cells were washed and placed on ice 
in the dark. Before reading, 5 μl of Propidium Iodide (PI; Sigma-Aldrich, MO, USA) was added to the samples. 
The analysis was performed with the FACS Calibur FCM. The labeled cells were excited at 488 nm, and the emis-
sions were detected at 520 nm and 630 nm.

Optical reflectance spectroscopy. We have used an optical reflectance spectroscopy system, a diffusion 
reflected one, as a non-destructive method for some physical analysis. Illumination for the spectra measure-
ments was 400–1000 nm wavelength range. A miniature CCD-based fiber optic spectrometer (USB 2000; Ocean 
Optics) was applied (Fig. 7a). The spectroscopy experiments for recording reflectance spectra were conducted 
on the cell samples between the control group and the cell samples between 30, 60, 90, and 120 s of plasma 
treatment. To ensure more reliable cell spectroscopic signals and minimize bias in recording spectra, we first 
performed background subtraction of the plate and media (with or without soluble drug) as we had the option 
in the spectroscopy  system32–34.

Statistical and data analysis. Statistical analysis of data was performed using SPSS Statistics 21.0. One-
way analysis of variance (ANOVA) followed by Tukey’s post-hoc test was performed to determine statistical 
significance. Data were considered statistically significant for P < 0.05 (marked as a single star), P < 0.01 (dou-
ble star) and, P < 0.001 (triple star) were considered as extremely significant compared with the control. Flow 
cytometry data were acquired and analyzed using a FACSCalibur flow cytometer (BD Bioscience, CA, USA) as 
a prepaid service in out lab.

Results
Observation of morphological changes by microscopy. Normal ACSCs have a polyhedral shape and 
are adherent. However, dying cells shrunk, rounded and detached themselves from the plate. Our first observa-
tions indicate that with increasing plasma dose, the number of dying cells went up (Fig. 2). Our result shows 
that more and more cells shrunk, rounded, detached themselves from the plate, and finally died with increasing 
plasma dose.

NTAPP‑exposed ADSCs keep their stemming. To use NTAPP to enhance the proliferation of ADSCs 
for various applications, after exposure to NTAPP, the stem cell properties of ADSCs should be maintained. 
Characteristics of stemness of NTAPP treated and untreated ADSCs were compared using CD90 and CD105 
as positive markers. The result demonstrated that both treated and untreated ADSCs showed high CD90 and 
CD105 expression (Fig. 3). These findings confirm that NTAPP treatment does not alter the characteristics of 
stemness of ADSCs.

Adipose tissue‑derived stem cell death in response to non‑thermal plasma. Staining of Annexin 
V / Propidium Iodide (AnnV / PI) is an assay based on the protein Annexin V being able to attach to the PS and 
PI ability to bind to DNA  directly35. We can divide the data obtained from this test into four categories.

Quadrant 4 (Live cells): Double negative as neither Annexin V nor PI staining could have been detected.
Quadrant 3 (Early apoptotic cells): Annexin is positive, and PI is negative as the membrane stays intact.
Quadrant 2 (Secondary necrotic and late apoptotic): Double-positive (membrane damage leads to pi stain-

ing penetration).
Quadrant 1 (Nuclei without plasma membrane): Necrotic cells with positive PI and negative Annexin (no 

membrane left for the Annexin to bind)30,31.
Plasma-treated ADSCs with short exposure times up to 30 s showed a few dead cells (mostly in late apoptotic 

and necrotic cell stages). However, with an increase in treatment time up to 60 s, fewer cells were destroyed 
(mostly in the apoptotic stage), verifying that the plasma at short exposures is relatively non-toxic. On the other 
hand, many dead cells were evident in the 90 s (Majorly in the necrotic cell stage) and 120 s (almost all in the 
double-positive stage) (Fig. 4A,C,D). We used the assay of the viability of cells with Propidium Iodide to confirm 
AnnV/PI results (Fig. 4B). Plasma-treated ADSCs with short exposure times showed a few dead cells; however, 
longer exposure times induce apoptosis and necrosis.

Figure 2.  Morphological changes in ADSCs after treatment with NTAPP for the 30 s, 60 s, 90 s, and 120 s.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11127  | https://doi.org/10.1038/s41598-022-14763-0

www.nature.com/scientificreports/

Figure 3.  NTAPP exposed ADSCs maintain their stem cell properties. CD90 and CD105 were used as positive 
markers for the analysis of ADSCs.
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Distribution of the cell population during the cell cycle under treatment with NTAPP. Since 
the accelerated cell cycle represents an increase in proliferation, we examined how NTAPP treatment influenced 
cell cycle progression in ADSCs. The cell cycle consists of phase G1, phase S, phase G2, and phase M. During step 
S, DNA is duplicated, and cell growth occurs in phases G1 and  G236,37.

In the control group, the largest proportion of cells belonged to phase G1 at around 63%. The figure for phase 
S stood at 22.46%, while that of phase G2 was lower at nearly 5% in the 0 s treatment group. In the 30 s and 60 s 

Figure 4.  Quadrant 4 (live cells), Quadrant 3 (Early apoptotic cells), Quadrant 2 (Secondary necrotic and late 
apoptotic), and Quadrant 1 (Necrotic cells). (A,C,D) Cell viability was measured by Annexin V / Propidium 
Iodide assay. Data were considered statistically significant for P < 0.05 (marked as a single star), P < 0.01 (double 
star) and, P < 0.001 (triple star) were considered as extremely significant compared with the control. (B) 
Propidium Iodide assay was used to confirm AnnV/PI results.
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treatment, more cells belonged to phase S and G2 of the cell cycle than the control group. Nevertheless, fewer 
cells were in phase G1 in the 30 s and 60 s treatment than in the control group. Since proliferation increase would 
only be possible when the cell cycle is accelerated, these results suggest that NTAPP, in very low doses, caused a 
dose-dependent increase in the number of cells.

In the 90 s and 60 s treatment, we observed no significant difference in the proportion of cells in the phase S of 
the cell cycle compared to the control group (around 22%). More cells belonged to the G2 phase in these groups, 
whereas fewer cells existed in the G1 phase than in the control group. These results indicate a decrease in cell 
viability in a very high dose of plasma treatment. One of the main characteristics of apoptosis is the Fragmenta-
tion of the internucleosomal DNA. In the DNA frequency histograms, apoptotic cells can be categorized as cells 
with a fractional DNA content (sub-G1)38. In this experiment, increased cell death was observed with increasing 
plasma dose, and increased cell death was associated with a rise in the percentage of cells in the sub-G1 phase 
(Fig. 5a,b). NTAPP affects all cell cycle stages (Fig. 5c); however, the cell response is different depending on the 
cell cycle phase in which a cell exists.

Determination of intracellular ROS level after NTAPP treatment. Suggesting that ROS contrib-
utes to regulating cellular functions of ADSCs, after NTAPP exposure, we evaluated the level of intracellular 
ROS in ADSCs. ROS continuously produced in normal cells at a restricted level. ROS level could be significantly 
increased in response to a wide range of pathophysiological. Extremely high ROS level will lead to biologi-
cal macromolecules oxidization and cellular pathology, which finally leads to cell  death39,40. Due to their short 
lifetimes, measuring ROS is highly challenging. In our study, flow cytometry measurements have been used to 
determine oxidative stress. The basis for this cellular assay is evaluating the fluorescence  intensity39–41.

The flow cytometry measurements indicate the increase in ROS levels as a shift in the histograms showing 
the frequency distribution of DCF fluorescence values versus the number of events or cells. In this experiment, 
intracellular ROS levels were reduced with increasing plasma dose. The ROS level was lower in the 30 s and 60 s 
treatment than in cells in the untreated controls. Although the figure for the 30 s was approximately equal to 
that of the 60 s treatment, fewer cells were destroyed in the 60 s treatment than in the 30 s treatment (Fig. 6).

Optical reflectance spectroscopy. We used reflectance spectroscopy as a non-destructive method for 
evaluating treatment response and comparing this method with cell analysis techniques. There was a similarity 
in the refractive index of cell samples between 30 s and the control group. It is worth checking that there is a 
similarity in the stemness characteristics of ADSCs between the 30 s and 0 s treatment. Based on the reflectance 
spectra, in the 60 s treatment, the reflectance of samples decreased, and there was a peak around 800 nm, while 
in the control group and 60 s group, a similar trend was seen. There was a considerable decrease in the refractive 
index of cells in the 90 s treatment. In the group of 120 s irradiation, a very polished and reflected trend seems 
to be shown like a mirror, and it seems that the cellular characteristic is changing. Flow cytometry data seems to 
agree with the spectroscopic data, which evaluates the behavior of optical properties for control groups of 30 s, 
60 s, and 90 s, showing the spectroscopy’s efficiency as a method of cell analysis (Fig. 7). Reflectance spectros-

Figure 4.  (continued)
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Figure 5.  (a) Representative of the cell cycle of ADSCs obtained from flow cytometer. (b) Data were considered 
statistically significant for P < 0.05 (marked as a single star), P < 0.01 (double star) and, P < 0.001 (triple star) were 
considered as extremely significant compared with the control. (c) Circular statistics.
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Figure 6.  ROS are not responsible for NTAPP-induced apoptosis of ADSCs. The increase in ROS levels is 
indicated in the flow cytometry measurements as a shift in the histograms showing the frequency distribution of 
DCF fluorescence values versus the number of events or cells. In this experiment, intracellular ROS levels were 
reduced with increasing plasma dose.
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copy was used as a non-destructive method for evaluating treatment response and comparing this method with 
cell analysis techniques. Our spectroscopic data shows the spectroscopy’s efficiency as a cell analysis method.

Discussion
Up to now, NTAPP has been researched for its clinical  application42–45; however, several unanswered questions 
remain about the role of NTAPP in proliferation activation. It is worth mentioning that it is difficult to compare 
plasma sources thoroughly. The NTAPP working parameters are nearly impossible to standardize, and they are 
separately defined for every single source. This leads to a hinder in the interpretation of the plasma-induced 
effects. Therefore, similar experiments in many different laboratories using the same standardized source will 
be very useful to perform.

The ADSCs isolated for this research shared the characteristics of other postnatal MSCs derived from vari-
ous  sources46, including typical fibroblastic morphology, adherence to plastic, and MSC specific surface markers 
expression. This study used a helium-based plasma jet as an NTAPP device generating multiple intracellular ROS/
RNS. To determine whether the NTAPP affected the viability of the ADSCs, primary cells isolated from adipose 
tissue were cultured and treated by plasma jet during four exposure times (30, 60, 90, and 120 s).

We demonstrated that NTAPP at short exposures is relatively non-toxic, although the number of dead cells 
rose as the exposure time increased. Cell cycle analysis suggests that NTAPP, in very low doses, promotes 
the proliferation of ADSCs while maintaining their stem cell surface markers. We also showed that, although 
there is a direct relationship between decreasing ROS and increasing cell death, increasing ROS level is not the 
only factor influencing cell death. Collectively, we strongly suggest that NTAPP can improve ADSCS culture’s 
efficiency in vitro; thus, we support the potential applications of NTAPP in the field of stem cell therapy and 
regenerative medicine.

We may be able to destroy ADSCs without Considerable necrosis and subsequent inflammation by controlling 
plasma dose. We showed that prolonged exposure time to plasma could lead to cell death. In this study, the best 
time for cell proliferation was 60 s and the optimal time for cell death was 120 s, which did not cause necrosis. 
Our cell cycle data show that NTAPP affects all cell cycle stages; however, the cell response is different depending 
on the cell cycle phase in which a cell exists. Our results show that cells in the untreated group were mainly in 
phase G1. The short plasma exposure time led to an increase in the cell number in phase S and G2 and a decrease 
in cell number in phase G1 compared to the control group (No changes were observed in the phase sub G1). This 
suggests that NTAPP, in low doses, caused a dose-dependent increase in the number of cells and cell proliferation.

On the other hand, the long exposure time of plasma contributes to increased cell number in the G2 / M frac-
tion and sub-G1 and decreases in cell number in phase G1. In phase S of the cell cycle, there was no significant 
difference in the number of cells in the 90 s and 120 s treatment compared to the control group. These results 
indicate increased cell death in a high dose of plasma treatment. Generally, plasma decreased the number of 
cells in phase G1, although the plasma effect on this phase is not dose-dependent. As we said, the control group 
cells were mostly in phase G1. With short-term plasma exposure, more cells were in phase S, and with a further 
increase in exposure time, most cells were in phase sub G1 compared to 0 s treatment.

Worth mentioning that although fewer dead cells were observed in the 60 s group than in the 30 s, the number 
of cells in phase S in the 30 s was higher. Generally, differentiation and proliferation are poorly compatible, and 
the process of differentiation is identified as a sequential event following weakened cell proliferation. In other 
words, when stem cells differentiate into specialized cells, intracellular signals and the growth factors responsible 
for cell growth are  inhibited47,48. Therefore, we can suggest that the decrease in the number of cells in phase S in 
the 60 s treatment was possibly a prerequisite for their subsequent induction of differentiation. More research is 
required to describe these growth inhibitor properties and induce differentiation by NTAPP.

Figure 7.  Optical reflectance spectroscopy (a) setup (b) resulted spectra. Samples 1, 2, 3, 4, and 5 are 30 s, 60 s, 
90 s, 120 s, and 0 s treatment, respectively.
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As previously noted, it is not easy to fully describe plasma itself. Besides, its biologically active components 
are much more complicated, so it is hard to examine their effects, and the mechanisms involved are even more 
challenging to explain. Our initial step is that plasma generates a rich mixture of ROS and RNS, which are most 
likely to play a crucial role in the phenomena mentioned to  date13,49,50. Historically, ROS and RNS have been 
considered ’bad’ and strongly related to free-radical aging. However, nowadays, prevailing thought focuses on 
the role of ROS and RNS in a wide range of biological processes involved in the repair and protection of organ-
isms and  cells51. Although large doses of ROS and RNS are harmful to any cell and organism, the delivery of low 
dosage may help treat a wide variety of  indications12,13,49–52.

ROS could be in charge of the various biomedical effects of  NTAPP53–55. At low concentrations, ROS can 
operate as a signaling molecule to modify cell processes and promote cell proliferation, differentiation, and 
 migration56–58. ROS also helps stem cells maintain their  stemness59. In contrast, higher ROS levels induce cell 
senescence and apoptosis, and too high concentrations of ROS cause non-specific cell death, which is prob-
ably  necrosis60–62. Laurent et al. have indicated that low exogenous hydrogen peroxide level increased NIH 3T3 
fibroblast proliferation while high concentrations of hydrogen peroxide have contributed to cell  death57. In a 
study conducted by Dehui Xu (2015), it was shown that H2O2 and O2- are the main reactive species that trigger 
cell death. However, since each species alone was inadequate to obtain this result and cells express various iron 
proteins, they suggested that the OH radical produced by the Haber–Weiss reaction causes cell death. Iron pro-
teins such as lactoferrin receptor, transferrin, and ferritin could catalyze H2O2 and O2–radicals into extremely 
reactive OH radicals that could seriously damage several macromolecules, such as DNA, lipids, and  proteins14.

On the other side, RNS such as Nitric oxide is associated with different physiological  functions63, such as 
the proliferation and differentiation of neural stem  cells64. Besides, NO plays an intracellular messenger role in 
biological functions, including  apoptosis65–67. A low NO level promotes cell  proliferation68, and a high NO level 
contributes to cell cycle arrest and cell  death69. In 2016, Jeongyeon Park and her team showed that helium-based 
NAPP increased the proliferation of ADSCs by activating ERK1/2, Akt, and their downstream NF-κ B via NO. 
Their result showed that the increased proliferation of ADSCs is triggered by NO rather than  ROS19,70,71. Another 
study in 2015 showed that nitrogen species alone, such as electronically excited N2 and N ions, do not lead to cell 
death, and the production of RNS, such as NO or peroxynitrite (ONOO–) which can cause cell death, requires the 
presence of oxygen to be  useful12. This emphasizes the significance of the presence of oxygen for plasma-induced 
cell death. In 2020, Park J et al. studied how CAP activates stem cell proliferation through epigenetic mechanisms. 
After analyzing the entire genome expression profiles of ASCs, they discovered that CAP upregulated genes for 
chemokines, cytokines, and growth factors while downregulating genes for intrinsic apoptotic pathways. They 
showed that NO produced from CAP was mainly responsible for plasma-induced epigenetic modifications at 
the mRNA and protein  levels71.

Therefore, while some studies prove that ROS positively affects cell proliferation and some show they do not, 
all studies claim that ROS can cause cell death in higher doses. RNS, on the other hand, cannot cause cell death 
on their own, even in high doses, and the presence of oxygen is required for effective cell killing by plasma. 
However, RNS are the main component responsible for cell proliferation.

We also measured the intracellular ROS level in ADSCs after NTAPP exposure using DCFH-DA, a fluoro-
genic dye that monitored ROS activity. In our study, although cell death was different between the 30 s and 60 s 
of treatment, ROS level in 30 s treatment was the same as 60 s treatment. This data suggest that intracellular 
ROS are not responsible for the viability of cells. It is worth mentioning that intracellular ROS in a higher dose 
of plasma treatment decreased dose-dependent. This can be caused by a decrease in the total number of cells. 
Consistent with our result, other research groups have reported that the increased proliferation of ADSCs after 
NTAPP exposure is not triggered by intracellular  ROS70.

We also used reflectance spectroscopy as a non-destructive way to evaluate treatment response and compare 
this approach to cell analysis techniques. The data for the 30 s group overlap control group results, and it is 
important to point out that there is an overlap between characteristics of stemness of ADSCs in the 30 s and 0 s 
treatment. There was a dose-dependent decrease in the refractive index of samples in the 60 s and 90 s treatment 
compared to the control group. The 120 s figure shows reflective and mirror behavior, and the cellular charac-
teristic appears to be changing. These results show the spectroscopy’s efficiency as a method of cell analysis. The 
findings of this study reinforce the ability of NTAPP to control the viability of stem cells without changing their 
stemness. The effect of NTAPP on other stem cells needs to be studied to improve NTAPP as a valuable method 
for biomedical application.
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