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Spintronic reservoir computing 
without driving current or magnetic 
field
Tomohiro Taniguchi1*, Amon Ogihara2, Yasuhiro Utsumi2 & Sumito Tsunegi1,3

Recent studies have shown that nonlinear magnetization dynamics excited in nanostructured 
ferromagnets are applicable to brain-inspired computing such as physical reservoir computing. The 
previous works have utilized the magnetization dynamics driven by electric current and/or magnetic 
field. This work proposes a method to apply the magnetization dynamics driven by voltage control 
of magnetic anisotropy to physical reservoir computing, which will be preferable from the viewpoint 
of low-power consumption. The computational capabilities of benchmark tasks in single MTJ are 
evaluated by numerical simulation of the magnetization dynamics and found to be comparable to 
those of echo-state networks with more than 10 nodes.

Recent development of neuromorphic computing with spintronics  devices1–4, such as pattern recognition and 
associative memory, has provided a bridge between condensed matter physics, nonlinear science, and information 
science, and become of great interest from both fundamental and practical viewpoints. In particular, an applica-
tion of nonlinear magnetization dynamics in ferromagnets to physical reservoir  computing5–19 is an exciting 
 topic1,20–30. Physical reservoir computing is a kind of recurrent neural network, which has recurrent interaction 
among large number of neurons in artificial neural network and, for example, recognizes a time sequence of 
the input data, such as human voice and movie, from the dynamical response in nonlinear physical  systems19. 
In reservoir computing, only the weights between neurons and output are trained, whereas the weights among 
neurons are randomly given and fixed, and therefore, low calculation cost of training is expected. It has been 
shown that several kinds of physical systems, such as optical  circuit10, soft  matter12, quantum  matter15,  fluid18, 
and spintronics devices, can be used as reservoir for information  processing19.

In physical reservoir computing with spintronics devices, nonlinear magnetization dynamics has been excited 
in nanostructured ferromagnets by applying electric current and/or magnetic field. For example, spin-transfer 
 effect31,32 has been frequently used to excite an auto-oscillation of the magnetization in magnetic tunnel junctions 
(MTJs)1,20–22,24–26,28–30, where the spin angular momentum from conducting electrons carrying electric current is 
transferred to ferromagnet and excites magnetization dynamics. It is, however, preferable to excite magnetiza-
tion dynamics without driving current and magnetic field from the viewpoints of low-power consumption and 
simple implementation.

In this work, we propose that physical reservoir computing can be performed by magnetization dynamics 
induced by voltage control of magnetic anisotropy in solid  devices33–50. The voltage control of magnetic anisotropy 
is a fascinating technology as the low-power information writing scheme in magnetoresistive random access 
memory, instead of using spin-transfer torque effect. An application of electric voltage to a metallic ferromag-
net/insulator interface modifies electron states near the  interface34,36,37 and/or induces magnetic  moment46, and 
changes magnetic anisotropy. The magnetization in the ferromagnetic metal changes its direction to minimize 
the magnetic anisotropy energy. Therefore, the voltage application can cause the relaxation dynamics of the 
magnetization in the ferromagnet. In the practical application of nonvolatile random access memory, an external 
magnetic field is necessary to achieve a deterministic magnetization switching guaranteeing reliable  writing40–43. 
On the other hand, we notice that the magnetization switching, as well as magnetic field, is not a necessary con-
dition in physical reservoir computing. Accordingly, the voltage control of magnetic anisotropy can be used to 
realize physical reservoir computing by spintronics devices without driving current or magnetic field. Here, we 
perform numerical simulation of the Landau-Lifshitz-Gilbert (LLG) equation and find that the computational 
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capabilities of benchmark tasks in single spintronics device are comparable to those of echo-state networks with 
more than 10 nodes.

Model

LLG equation. The system under investigation is a cylinder-shaped MTJ schematically shown in Fig. 1a, 
where the z axis is perpendicular to the film plane. The MTJ consists of ferromagnetic free layer, MgO insula-
tor, and ferromagnetic reference layer. The ferromagnetic free layer has the perpendicular magnetic anisotropy, 
where the magnetic energy density is given by

The first term on the right-hand side in Eq. (1) represents the shape magnetic anisotropy energy density with 
the saturation magnetization M and the demagnetization coefficients Ni . Since we assume the cylinder shape, 
Nx = Ny . The unit vector pointing in the magnetization direction of the free layer is denoted as m = (mx ,my ,mz) . 
The second and third terms are the first and second order magnetic anisotropy energy densities with the coef-
ficients K1 and K2 . Note that the energy density relates to the magnetic field inside the free layer as

where HK1 = (2K1/M)− 4πM(Nz − Nx) and HK2 = 4K2/M ; see also “Methods”. The magnetization in the 
reference layer points to the z direction, and therefore, mz is experimentally measured through tunnel magne-
toresistance effect.

The first order magnetic anisotropy energy coefficient K1 consists of the bulk and interfacial contributions, Kv 
and Ki , and the voltage-controlled magnetic anisotropy effect described as K1d = Kvd + Ki − ηE . The thickness 
of the ferromagnetic free layer is d, whereas E = V/dI is the electric field with the voltage V and the thickness 
of the insulator dI . In typical MTJs consisting of CoFeB free layer and MgO insulator, Ki dominates in K1 , where 
Ki increases with the increase of the composition of  Fe51–53. It can reach on the order of 1.0 mJ/m2 at maximum, 
which in terms of magnetic field, 2Ki/(Md) , is typically on the order of 1 T. Note that the magnitude of the shape 
magnetic anisotropy field −4πM(Nz − Nx) is also on the order of 1 T, where a typical value of the saturation 
magnetization in CoFeB, i.e., M of about 1000 emu/c.c., is assumed. As a result of the competition between them, 
the ferromagnetic free layer in the absence of the voltage application can be either in-plane or perpendicular-to-
plane  magnetized51–53. The voltage control of magnetic anisotropy also modifies the magnetic anisotropy field 
HK1 through the modification of the electron occupation states near the ferromagnetic  interface34,36,37 and/or the 
generation of the magnetic dipole  moment46. The coefficient of the voltage-controlled magnetic anisotropy effect, 
η , is recently achieved in the experiment to be about 300 fJ/(Vm)45,50, whereas the thickness of the insulator is 
about 2.5 nm. A typical values of the applied voltage is about 0.5 V at  maximum48. Thus, the tunable range of the 
magnetic anisotropy by the voltage application in terms of the magnetic field, (2|η|V)/(MddI) , is about 1.0 kOe, 
where we assume that M = 1000 emu/c.c., d = 1 nm, dI = 2.5 nm, and |η| = 250 fJ/(V m). Note that the sign of 
the voltage-controlled magnetic anisotropy effect depends on that of the voltage. Summarizing these contribu-
tions, HK1 in the presence of the voltage can also be either positive or negative, depending on the materials and 
their compositions, as well as the magnitude and sign of the applied voltage. For example, Ref.38 uses an in-plane 
magnetized ferromagnet, i.e., HK1 < 0 for V = 0 . The voltage control of magnetic anisotropy in Ref.38 enhances 
the perpendicular anisotropy K1 and makes HK1 positive at nonzero V. On the other hand, perpendicularly 
magnetized free layers where HK1 > 0 for V = 0 have been used in Ref.43. Contrary to HK1 , the dependence of 
HK2 ∝ K2 on the applied voltage is still unclear, where Ref.47 reports that HK2 is approximately independent of 
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Figure 1.  (a) Schematic illustration of an MTJ. The unit vector pointing to the magnetization direction in 
the ferromagnetic free layer is m . The z axis is perpendicular to the film plane. (b) An example of the time 
evolutions of mx (red), my (blue), and mz (black). (c) Trajectory of the relaxation dynamics on a sphere. In (b,c), 
the first order magnetic anisotropy field HK1 is changed from − 0.1HK2 to − 0.9HK2 by the voltage application. 
The red circle and blue triangle in (c) represent the initial and final states of the dynamics.
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the voltage while Ref.48 observes the voltage dependence of HK2 . Throughout this paper, for simplicity, we assume 
that only HK1 depends on the voltage. As mentioned in the following, we performed numerical simulation by 
changing the value of HK1 . It means that we do not specify the size (the thickness and cross-section area) of MTJ 
explicitly because HK1 includes the information of the shape of MTJ through the demagnetization coefficients 
Ni . It is, however, useful to mention that macrospin model has been proven to work well to describe the mag-
netization dynamics for MTJ whose typical size is 1-2 nm in thickness and the diameter less than 200  nm40,42,49.

In typical experiments on voltage control of magnetic anisotropy, a relatively thick (typically 1.5-2.5 nm) 
MgO barrier is used as an  insulator42,43,49, compared with MTJ manipulated by spin-transfer torque, where the 
thickness of the barrier is about 1.0  nm54. As a result, the resistance of MTJ used for experiments of voltage 
control of magnetic anisotropy, on the order of 10-100 k � , is two or three orders of magnitude larger than that 
used for spin-transfer torque experiments. On the other hand, the maximum voltage used in both experiments 
is almost identical. Accordingly, current flowing in MTJ used for experiments of voltage control of magnetic 
anisotropy is two or three orders of magnitude smaller than that used for spin-transfer torque experiments (see 
also “Methods”). In this sense, we mention that the driving force of magnetization dynamics is voltage control 
of magnetic anisotropy effect, although current cannot be completely zero in experiments. As mentioned in 
“Methods”, typical value of current I flowing in MTJ is on the order of 1 µ A, while the current used in physical 
reservoir computing utilizing spin-transfer torque is on the order of 1  mA29. On the other hand, the magnitude 
of the voltage V applied to MTJ is nearly the same for both experiments on voltage control of magnetic anisot-
ropy and spin-transfer effects. Accordingly, using the voltage control of magnetic anisotropy effect could reduce 
energy consumption by three orders.

The magnetization in equilibrium points to the direction at which the energy density is minimized. For exam-
ple, when HK1 > (<)0 and HK2 = 0 , the energy is minimized when the magnetization is parallel (perpendicular) 
to the z axis. Another example is studied in Ref.55, where, if HK1 < 0 and |HK1| < HK2 , the energy density ε is 
minimized when mz = ±

√
1− (|HK1|/HK2) . When the voltage is applied to the MTJ and the minimum energy 

state is changed as a result, the magnetization relaxes to the state. The relaxation dynamics is described by the 
LLG equation,

where γ and α are the gyromagnetic ratio and the Gilbert damping constant, respectively. Note that the macrospin 
model works well to describe the magnetization dynamics driven by the voltage  application40,42,44. The values of 
the parameters used in the following are derived from typical  experiments35,38–44,47,48. The gyromagnetic ratio 
and the Gilbert damping constant are γ = 1.764× 107 rad/(Oe s) and α = 0.01 . The second order magnetic 
anisotropy field HK2 is 500 Oe.

Let us show an example of the magnetization dynamics driven by the voltage control of magnetic anisot-
ropy. We firstly set HK1 to be H(0)

K1 = −0.1HK2 = −50 Oe and solve the LLG equation with an arbitrary initial 
condition. The magnetization saturates to a certain point where mz saturates to mz → m

(0)
z ≃ 0.95 . We use this 

state as a new initial state and solve the LLG equation by changing HK1 to H(1)
K1 = −0.9HK2 = −450 Oe. Then, 

the magnetization starts to move to a new stable state where mz saturates to mz → m
(1)
z ≃ 0.32 . Figure 1b,c 

show time evolution of m and its spatial orbit from the initial state of m(0)
z  to the final state m(1)

z  . We con-
firm that the initial and final states are those expected from the minimum energy state mentioned above, i.e., 
m

(0)
z =

√

1− |H(0)
K1 |/HK2 =

√
1− 0.1 ≃ 0.95 and m(1)

z =
√

1− |H(1)
K1 |/HK2 =

√
1− 0.9 ≃ 0.32 . We emphasize 

that mz monotonically changes with respect to the change of HK1 . Since the value of HK1 can be manipulated 
by the voltage application, the time evolution of mz can be used to identify the value of the applied voltage. The 
estimation of the input data, which is the sequence of the applied voltage in the present case, from the dynamical 
response of physical system is the aim of physical reservoir computing. Therefore, the magnetization dynamics 
driven by the voltage control of magnetic anisotropy is applicable to physical reservoir computing. In the fol-
lowing, we evaluate its computational ability.

Results
Memory capacity. The ability in physical system for reservoir computing has been quantified by memory 
 capacity15,18,20,21,25,28,30. The memory capacity corresponds to the number of past data physical reservoir can store. 
For example, let us imagine injecting random binary input b = 0 or 1 to reservoir, as done in  experiments21,25. 
The input data are often injected as pulses with the pulse width of tp , i.e., the value of b is constant during time 
tp . Therefore, it is convenient to add a suffix k = 1, 2, . . . to b as bk to distinguish the order of the input data. We 
also introduce an integer D = 0, 1, 2, . . . , called delay, characterizing the order of the past input data. In this case,

are called target data of short-term memory (STM) task. We predict the value of the target data from the output 
of the reservoir and evaluate the reproducibility. The predicted data are called system output. The reproducibility 
is quantified by the correlation coefficient between the target data and system output. Roughly speaking, if the 
reservoir can reproduce the past data up to D, the STM capacity is defined as D. There is another kind of memory 
capacity, called parity-check (PC) capacity, where the target data are defined as

(3)
dm

dt
= −γm×H+ αm×

dm

dt
,

(4)ySTMk,D = bk−D ,
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According to their definitions, the STM and PC capacities quantify the number of the target data the reservoir can 
store, where the target data are defined as linear and nonlinear transformations of the input data, respectively. A 
large memory capacity means that reservoir can store, recognize, and/or predict large data. See also “Methods” 
for the detail of the evaluation method of these capacities.

In the present system, the random binary inputs are injected as voltage pulses, which change the first order 
magnetic anisotropy field HK1 as

Accordingly, when the input is bk = 0 (1), the value of HK1 is H(0)
K1  [ H(1)

K1  ]. In the following, we fix 
H

(0)
K1 = −50 Oe, i.e., H(0)

K1 /HK2 = −0.1 , whereas H(1)
K1  varies in the range of −450 ≤ H

(1)
K1 ≤ −100 Oe, i.e., 

−0.9 ≤ H
(1)
K1 /HK2 ≤ −0.2 . Figure 2a,b show the STM and PC capacities as a function of H(1)

K1  and the pulse 
width of the input data. The highest value of the STM capacity, 3.29, is found at the conditions of H(1)

K1 = −430 
Oe and tp = 69 ns, as shown in Fig. 2c. On the other hand, the highest value of the PC capacity, 3.40, is found at 
the conditions of H(1)

K1 = −445 Oe and tp = 43 ns, as shown in Fig. 2d.

NARMA task. Another benchmark task to quantify the computational ability of physical system to reservoir 
computing is nonlinear autoregressive moving average (NARMA)  task12,15,18,30,56. NARMA task is a function-
approximation task to reproduce a nonlinear function defined from input data by using output data in recurrent 
neural networks. The task is classified as NARMAD with D = 2, 5, 10 and so on, where D represents the delay 
included in the nonlinear function. In other words, the target data of NARMAD task consist of data defined 
until D times before from the present data. For example, in NARMA2 task, the system is aimed to reproduce 
the target data,
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Figure 2.  Dependences of (a) STM (linear) and (b) PC (nonlinear) capacities on the pulse width and the first 
order magnetic anisotropy field. Their highest values are indicated by the red triangles in (c,d).
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from output data, where zk = 0.2rk is defined from uniform random input data rk at a discrete time k; see 
“Methods”. The computational ability of NARMA task is evaluated from normalized mean-square error (NMSE) 
defined as

where vNARMA2
k  is the data reproduced from the output data (see also “Methods”). A low NMSE corresponds to 

high reproducibility of the target data. Figure 3a shows an example of the target data (red line), yNARMA2
k  , and 

the system output (blue dots). By evaluating the difference between the target data and the system output as 
such, the NMSE is obtained as shown in Fig. 3b. The NMSE is on the order of 10−6 − 10−5 and is minimized to 
be 8.43× 10−6 at tp = 16 ns and H(1)

K1 = −325 Oe; see Fig. 3c.

Discussion
We have developed theoretical analysis of the magnetization dynamics in nanostructured ferromagnetic multilay-
ers driven by the voltage control of magnetic anisotropy, and showed that the dynamics is applicable to physical 
reservoir computing through the evaluations of the memory capacity and the NMSE of NARMA task. Neither 
electric current nor external magnetic field is introduced in the computation, contrary to the previous works 
focusing on the application to nonvolatile memory, because magnetization switching is unnecessary. This fact 
will be preferable for reducing power consumption in reservoir computing.

Figure 2a,b show that the memory capacity increases with the difference between H(0)
K1  and H(1)

K1  increasing. 
This is because when the difference between H(0)

K1  and H(1)
K1  is large, the range of the dynamical response of mz 

also becomes large, which makes it easy to identify the input data from the change of mz . Due to a similar reason, 
the memory capacity increases with the increase of the pulse width. When the pulse width is relatively long, 
the change of mz during a pulse injection becomes large, which again makes it easy to identify the input data. 
However, when the pulse width is sufficiently long, mz finally saturates to a stable state, and becomes approxi-
mately constant, as implied from Fig. 1b. When mz becomes constant, it becomes impossible to estimate the past 
input from the present output. Therefore, the memory capacity does not increase monotonically with the pulse 
width increasing. As written above, the STM and PC capacities are maximized at the pulse width of 69 and 43 
ns, respectively. A similar trend is found in NARMA2 task, where low NMSEs are achieved in a relatively large 
H

(1)
K1  region. Note that the memory capacity at the maximum was found to be about 3, which is comparable to 

the computational ability of echo-state network with approximately 10  nodes20,28. The value is also comparable 
or larger than that obtained by the other single spintronics reservoirs without additional  circuits20,21,29, driven 
by electric current and/or magnetic field. This might be due to a matching between the relaxation time of the 
output signal and the pulse width. Another possible reason is a large change in the dynamical amplitude, com-
pared with an oscillator  system29. The NMSE of NARMA2 task, minimized to be on the order of 10−6 , is also 
comparable or lower than that found in soft  robot12 and echo-state network with nodes more than  1018. These 
results indicate the potential applicability of an MTJ driven by the voltage-controlled magnetic anisotropy effect 
to physical reservoir computing.

An empirical rule shared among the research community is that the computational ability of physical reservoir 
computing is maximized at the edge of  chaos13,30,57. Simultaneously, an existence of chaos might lose the repro-
ducibility of the computation due to the sensitivity to initial states. Note that chaos is prohibited in the present 
system when random inputs are absent. This is because the magnetization dynamics are described by two vari-
ables, θ = cos−1 mz and ϕ = tan−1(my/mx) , whereas the Poincaré-Bendixson theorem argues that chaos does 
not appear in a two dimensional system. When the random input are injected to the MTJ, the system becomes 
nonautonomous due to the presence of time-dependent torque. In this case, the number of the dimension in 
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Figure 3.  (a) Examples of the target data (red line) and the system output (blue dots) of NARMA2 task, where 
tp = 16 ns and H(1)

K1 = −325 Oe. (b) Dependence of the NMSE of NARMA2 task on the pulse width and the 
first order magnetic anisotropy field. The lowest value of the NMSE is indicated by the red triangle in (c).
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the phase space becomes three, and the possibility to induce chaos becomes finite. For example, Ref.30 reported 
the appearance of chaos in a spin-torque oscillator due to the injection of random input current. However, we 
should notice that the presence of time-dependent input does not necessarily guarantee the presence of chaos. 
The identification of chaos is done by, for example, evaluating the Lyapunov exponent. The Lyapunov exponent 
quantifies the time evolution of an infinitesimal difference given at the initial state. The positive Lyapunov expo-
nent implies the presence of chaos. On the other hand, when the Lyapunov exponent is negative, the dynamics 
saturate to fixed points. When the Lyapunov exponent is zero, the dynamics is periodic. The dynamics with 
negative or zero Lyapunov exponent are classified as ordered dynamics. Since the LLG equation describes the 
relaxation dynamics to stable states, one might consider that the largest Lyapunov exponent of an MTJ in the 
absence of random inputs is negative. However, notice that the axial symmetry of the present system enables us 
to move the magnetization rotating around the z axis without energy injection. In fact, the energy density, as well 
as the equation of motion for mz depends on mz only, as explained in “Methods”; in other words, the equation 
of motion for θ is independent of ϕ . As a result, an infinitesimal difference given to the phase ϕ is not shortened 
by the LLG equation. Therefore, the largest Lyapunov exponent in the absence of the random input is zero. The 
fact that the equation of motion for θ depends on θ only also implies the absence of homoclinic bifurcations, as 
well as chaos, even when the pulse data, independent of θ and ϕ , are injected; in fact, the numerically evaluated 
Lyapunov exponent was zero, as explained in “Methods”. The absence of chaos indicates the reproducibility of 
the computation in the present reservoir.

In summary, we perform numerical experiments of the magnetization dynamics in an MTJ driven by the 
voltage control of magnetic anisotropy. Injecting the voltage pulse to the MTJ, the magnetization changes its 
direction to minimize the magnetic anisotropy energy. The time evolution of the relaxation dynamics reflects 
the value of the input voltage, and therefore, can be used to reproduce the time sequence of the input data. We 
evaluate the computing abilities, such as the memory capacity and the error in the reproducibility, of common 
benchmark task, and show that even a single MTJ can show high computing performance comparable to echo-
state network consisting of multiple nodes more than 10. Since neither electric current nor external magnetic 
field is necessary, the proposal here will be of interest for energy-saving computing technologies.

Methods
Definition of magnetic field and relaxation time. The magnetic field H relates to the energy density ε 
as H = −∂ε/∂(Mm) , and therefore, is obtained from Eq. (1) as

We should note that the magnetization dynamics described by the LLG equation is unchanged by adding a term 
proportional to m to H because the LLG equation conserves the magnitude of m . Adding a term as such corre-
sponds to shifting the origin of the energy density ε by a constant. In the present case, we added a term 4πMNxm 
to H and obtained Eq. (2), where we should remind that Nx = Ny because we assume a cylinder shaped MTJ. 
The added term to H shifts the origin of the energy density ε by the constant −2πM2Nxm

2 = −2πM2Nx and 
makes it depend on mz only.

The LLG equation in the present system can be integrated as

where θi and θf  are the initial and final values of θ = cos−1 mz . Equation (10) provides the relaxation time from 
θ = θi to θ = θf . Note that the relaxation time is scaled by αγHK1/(1+ α2) and HK2/HK1 , which can be manipu-
lated by the voltage control of magnetic anisotropy. We also note that Eq. (10) has logarithmic divergence due 
to asymptotic behavior in the relaxation dynamics.

Role of spin-transfer torque. We neglected spin-trasnfer torque in the main text because the current 
magnitude in typical MTJ used for voltage control of magnetic anisotropy effect is usually small. For example, 
when using typical  values47,49 for the voltage (0.4 V), resistance (60 k � ), and cross-section being π × 602 nm2 , 
the value of the current density is about 0.06 MA/cm2 (6.7 µ A in terms of current). Such a value is sufficiently 
small compared with that used in spin-transfer torque switching  experiments54. To verify the argument, we 
perform numerical simulations, where spin-transfer torque, −Hsm× (p×m) , is added to the right-hand side 
of Eq. (3). We fix the values of HK2 = 500 Oe and HK1 = −0.1HK2 = −50 Oe. The unit vector p along the 
direction of the magnetization in the reference layer points to the positive z direction. Spin polarization P in the 
spin-transfer torque strength, Hs = �Pj/(2eMd) , is assumed to be 0.5. Figure 4a shows time evolution of m for 
the current density j of 0.06 MA/cm2 . Although the magnetization slightly moves from the initial (stable) state 
due to spin-transfer torque, the change of the magnetization direction is small compared with that shown in 
Fig. 1b. Therefore, we do not consider that spin-transfer torque plays a major role in physical reservoir comput-
ing, although current cannot be completely zero in experiments.

For comprehensiveness, however, we also show the magnetization dynamics when the current density j is 
increased by one order Figure 4b shows the dynamics for j = 0.6 MA/cm2 , where the magnetization switching 
by spin-transfer torque is observed. We note that the current density is sufficiently small compared with that used 
in typical MTJs in nonvolatile  memory54. Nevertheless, the switching is observed because of a small value of the 

(9)H =





−4πMNxmx

−4πMNymy

[(2K1/M)− 4πMNz]mz + (4K2/M)
�

1−m2
z

�

mz



 .
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magnetic anisotropy field in the present system. We assume that HK2 is finite and |HK1| < HK2 to make a tilted 
state of the magnetization [ mz = ±

√
1− (|HK1|/HK2) ] stable due to the following reason. Remind that there 

are other stable states, such as mz = ±1 for HK1 > 0 and mz = 0 for HK1 < 0 , when HK2 = 0 . Note that these 
states ( mz = ±1 or mz = 0 ) are always local extrema of energy landscape. Accordingly, once the magnetization 
saturates to these states, it cannot change the direction even if another input is injected. This conclusion can 
be understood in a different way, where the relaxation time given by Eq. (10) shows a divergence when θi = 0 
( mz = +1 ), π ( mz = −1 ), or π/2 ( mz = 0 ) is substituted. On the other hand, for a finite HK2 , the magnetization 
can move from the state mz = ±

√
1− (|HK1|/HK2) when an input signal changes the value of HK1 and makes the 

state no longer an extremum. We note that the assumption |HK1| < HK2 restricts the magnitude of the magnetic 
field. In fact, the magnitude of H is small due to a small value of HK2 = 500 Oe found in  experiments47,48 and 
the restriction of |HK1| < HK2 . Since a critical current density destabilizing the magnetization by spin-transfer 
effect is proportional to the magnitude of the magnetic field, a small H implies that a small current mentioned 
above might induce a large-amplitude magnetization dynamics.

In summary, the magnitude of the current density is sufficiently small, and the magnetization dynamics are 
mainly driven by voltage control of magnetic anisotropy effect. The condition to stabilize a tilted state, however, 
might make the magnitude of the magnetic field, as well as the critical current density of spin-transfer torque 
switching, small. Thus, even a small current may cause nonnegligible dynamics. Simultaneously, however, it 
is practically difficult to increase the current magnitude by one order, and therefore, in the present study, we 
still consider that voltage control of magnetic anisotropy effect is the main driving force of the magnetization 
dynamics.

Evaluation method of memory capacity. The memory capacity corresponds to the number of data 
which can be reproduced from the output data, as mentioned in the main text. The evaluation of the memory 
capacity consists of two processes. During the first process called training (or learning), weights are determined 
to reproduce the target data from the output data. In the second process, the reproducibility of the target data 
defined from other input data is evaluated.

Let us first describe the training process. We inject the random binary input bk = 0 or 1 into MTJ as voltage 
pulse. The number of the random input is N. The input bk is converted to the first order magnetic anisotropy 
field through the voltage control of magnetic anisotropy, which is described by Eq. (6). We choose mz as output 
data, which can be measured experimentally through magnetoresistance effect. Figure 5a shows an example of 
the time evolution of mz in the presence of several random binary inputs, where the values of the parameters are 
those at the maximum STM capacity conditions, i.e., the pulse width and the first order magnetic anisotropy field 
are tp = 69 ns and H(1)

K1 = −430 Oe. As can be seen, the injection of the random input drives the dynamics of mz.
The dynamical response mz(t) , during the presence of the kth input bk , is divided into nodes, where 

the number of nodes is Nnode . We denote the i(= 1, 2, . . . ,Nnode) th output with respect to the kth input as 
uk,i = mz(t0 + (k − 1)tp + i(tp/Nnode)) , where t0 is time for washout. The output uk,i is regarded as the status 
of the ith neuron at a discrete time k. Figure 5b shows an example of the time evolution of mz with respect to an 
input pulse, whereas the dots in the inset of the figure are the nodes uk,i defined from mz . The method to define 
such virtual neurons is called time-multiplexing  method15,20,21. We also introduce bias term uk,Nnode+1 = 1 . In 
the training process, we introduce weight wD,i and evaluate its value to minimize the error,

(11)
N
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Figure 4.  Examples of the time evolutions of mx (red), my (blue), and mz (black) in the presence of spin-transfer 
torque, where the current density is (a) 0.06 MA/cm2 and (b) 0.6 MA/cm2.
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where, yk,D are the target data defined by Eqs. (4) and (5). For simplicity, we omit the superscripts such as “STM” 
and “PC” in the target data because the difference in the evaluation method of the STM and PC capacities is 
merely due to the definition of the target data. In the following, we add superscripts or subscripts, such as “STM” 
and “PC”, when distinguishing quantities related to their capacities are necessary. The weight should be intro-
duced for each target data. According to the above statement, we denote the weight to evaluate the STM (PC) 
capacity as wSTM(PC)

D,i  , when necessary. Also, we note that the weights are different for each delay D.
Once the weights are determined, we inject other random binary inputs b′k to the reservoir, where the number 

of the input data is N ′ . Note that N ′ is not necessarily the same with N. Here, we use the prime symbol to distin-
guish the input data from those used in training. Similarly, we denote the output and target data with respect to 
b′k as u′n,i and y′n,D , respectively, where n = 1, 2, . . . ,N ′ . From the output data u′n,i and the weight wD,i , we define 
the system output v′n,D as

Figure 5c shows an example of the comparison between the target data y′n,D (red line) and the system output v′n,D 
(blue dots) of STM task with D = 1 . It is shown that the system output well reproduces the target data. The repro-
ducibility of the target data is quantified from the correlation coefficient Cor(D) between y′n,D and v′n,D defined as

where �· · · � represents the averaged value. Note that the correlation coefficients are defined for each delay D. 
We also note that the correlation coefficients are defined for each kind of capacity, as in the case of the weights 
and target data. In general, [Cor(D)]2 ≤ 1 , where [Cor(D)]2 = 1 holds only when the system output completely 
reproduces the target data. Figure 5d shows an example of the dependence of [Cor(D)]2 for STM task on the delay 

(12)v′n,D =
Nnode+1
∑

i=1

wD,iu
′
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Figure 5.  (a) An example of the time evolution of mz (black) in the presence of several binary pulses (red). 
The dotted lines distinguish the input pulse. The pulse width and the first order magnetic anisotropy field are 
69 ns and − 430 Oe, respectively, where the STM capacity is maximized. (b) An example of mz in the presence 
of a random input. The dots in the inset shows the definition of the nodes uk,i from mz during a part of an input 
pulse. The node number is Nnode = 250 . (c) Examples of the target data y′n,D (red line) and the system output 
v′n,D (blue dots) of STM task with D = 1 . (d) Dependence of [Cor(D)]2 on the delay D for STM task. The node 
number is Nnode = 250 . The inset shows the dependence of the STM capacity on the node number.
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D. The results implies that the reservoir well reproduces the target data until D = 3 , whereas the reproducibility 
drastically decreases with the delay D increasing. The STM and PC capacities, CSTM and CPC , are defined as

Note that the definition of the memory capacity obeys, for example, Refs.18,20,21,25, where the memory capacity in 
Eq. (14) is defined by the correlation coefficients starting from D = 1 . In some papers such as Refs.15,30, however, 
the square of the correlation coefficient at D = 0 is added to the right-hand side of Eq. (14).

In the present study, we introduce Nnode = 250 nodes and use N = 1000 and N ′ = 1000 random binary pulses 
for training of the weight and evaluation of the memory capacity, respectively. The number of nodes is chosen so 
that the value of the capacity saturates with the number of nodes increasing; see the inset of Fig. 5d. We also use 
300 random binary pulses before the training and between training and evaluation for washout. The maximum 
delay Dmax is 20. Note that the value of each node should be sampled within a few hundred picosecond: specifi-
cally, in the case of an example shown in Fig. 2c, it is necessary to sample data within tp/Nnode = 69ns/250 ≃ 276 
ps. We emphasize that it is experimentally possible to sample data within such a short time. For example, in 
Ref.21, tp = 20 ns and Nnode = 200 were used, where the sampling step is 100 ps.

NARMA task. The evaluation procedure of the NMSE in NARMA task is similar to that of the memory 
capacity. The binary input data, bk = 0 or 1, in the evaluation of the memory capacity are replaced by uniform 
random number rk in (0, 1). The variable zk in Eq. (7) is generally defined as zk = µ+ σ rk

30, where the param-
eters µ and σ are determined to make zk be in (0, 0.2)15. As in the case of the evaluation of the memory capacity, 
the evaluation of the NMSE consists of two procedures. The first procedure is the training, where the weight 
is determined to reproduce the target data from the output data uk,i . Secondly, we evaluate the reproducibility 
of another set of the target data from the system output vNARMA2

n  defined from the weight and the output data. 
Then, the NMSE can be evaluated. Note that some  papers13,27,30 define the NMSE in a slightly different way, 
where 

∑N ′

n=1

(

yNARMA2
n

)2 in the denominator of Eq. (8) is replaced by 
∑N ′

n=1

(

yNARMA2
n − yNARMA2

)2 , where 
yNARMA2 is the average of the target data yNARMA2

n  . In this work, we use the definition given by Eq. (8), which is 
used, for example, in Refs.12,15,18.

Evaluation of Lyapunov exponent. We evaluated the conditional Lyapunov exponent as  follows58. The 
LLG equation was solved by the fourth-order Runge-Kutta method with time increment of �t = 1 ps. We added 
perturbations δθ and δφ with ε =

√

δθ2 + δϕ2 = 10−5 to θ(t) and ϕ(t) at time t. Let us denote the perturbed θ(t) 
and ϕ(t) as θ ′(t) and ϕ′(t) , respectively. Solving the LLG equation from time t to t +�t , the time evolution of 
the perturbation is obtained as ε′(t) =

√

[θ ′(t +�t)− θ(t +�t)]2 + [ϕ′(t +�t)− ϕ(t +�t)]2 . A temporal 
Lyapunov exponent is obtained as �(t) = (1/�t) log[ε′(t)/ε] . Repeating the procedure, the temporal Lyapunov 
exponent is averaged as �(N ) = (1/N )

∑N
i=1 �(ti) = [1/(N�t)]

∑N
i=1 log{ε′[t0 + (i − 1)�t]/ε} , where t0 is 

time at which the first random input is injected, whereas N  is the number of averaging. The Lyapunov exponent 
is given by � = limN→∞ �(N ) . In the present study, we used the time range same as that used in the evaluations 
of the memory capacity and the NMSE and added uniform random input. Hence, notice that N = Mtp/�t 
depends on the pulse width, where M is the total number of the random inputs including washout, training, 
and evaluation. We confirmed that �(N ) monotonically saturates to zero; at least, |�(N )| is one or two orders 
of magnitudes smaller than 1/tp . Thus, the expansion rate of the perturbation, 1/�(N ) , is much slower than the 
injection rate of the input signal. Considering these facts, we concluded that the largest Lyapunov exponent can 
be regarded as zero, and therefore, chaos is absent. Note that the absence of chaos in the present system relates 
to the facts that the free layer is axially symmetric and the applied voltage modifies the perpendicular anisotropy 
only. When there are factors breaking the symmetry, such as spin-transfer torque with an in-plane spin polariza-
tion, chaos will  appear30.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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