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Modelling rate of penetration 
in drilling operations using RBF, 
MLP, LSSVM, and DT models
Mohsen Riazi1,2, Hossein Mehrjoo1, Reza Nakhaei2, Hossein Jalalifar1, 
Mohammadhadi Shateri3, Masoud Riazi2, Mehdi Ostadhassan4,5,6 & 
Abdolhossein Hemmati‑Sarapardeh1*

One of the most important problems that the drilling industry faces is drilling cost. Many factors 
affect the cost of drilling. Increasing drilling time has a significant role in increasing drilling costs. 
One of the solutions to reduce drilling time is to optimize the drilling rate. Drilling wells at the 
optimum time will reduce the time and thus reduce the cost of drilling. The drilling rate depends on 
different factors, some of which are controllable and some are uncontrollable. In this study, several 
smart models and a correlation were proposed to predict the rate of penetration (ROP) which is very 
important for planning a drilling operation. 5040 real data points from a field in the South of Iran 
have been used. The ROP was modelled using Radial Basis Function, Decision Tree (DT), Least Square 
Vector Machine (LSSVM), and Multilayer Perceptron (MLP). Bayesian Regularization Algorithm (BRA), 
Scaled Conjugate Gradient Algorithm and Levenberg–Marquardt Algorithm were employed to train 
MLP and Gradient Boosting (GB) was used for DT. To evaluate the accuracy of the developed models, 
both graphical and statistical techniques were used. The results showed that DT‑GB model with an 
 R2 of 0.977, has the best performance, followed by LSSVM and MLP‑BRA with  R2 of 0.971 and 0.969, 
respectively. Aside from that, the proposed empirical correlation has an acceptable accuracy in spite 
of simplicity. Moreover, sensitivity analysis illustrated that depth and pump pressure have the highest 
effects on ROP. In addition, the leverage approach approved that the developed DT‑GB model is valid 
statistically and about 1% of the data are suspected or out of the applicability domain of the model.

Abbreviations
RBF  Radial basis function
DT  Decision tree
MLP  Multilayer perceptron
LMA  Levenberg_Marquardet algorithm
BRA  Bayesian regularization algorithm
SCGA   Scaled conjugate gradient algorithm
GB  Gradient boosting
APRE  Average percent relative error
AAPRE  Average absolute relative error
RMSE  Root mean square error
SD  Standard deviation
ML  Machine learning
BYM  Bourgoyne and Yong model
WOB  Weight on bit
ANN  Artificial neural network
D  Depth
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PT  Pit total
PP  Pump pressure
H  Hookload
ST  Surface torque
RS  Rotary speed
Fi  Flow in
Fo  Flow out
Wp  Wellhead pressure
AID  Automatic interaction detection
AI  Artificial intelligence
RPM  Revolutions per minute
UCS  Uniaxial compressive strength
PV  Plastic viscosity
MW  Mud weight
YP  Yield point
ELM  Extreme learning machine
THAID  THeta Automatic Interaction Detection
GRG   Generalized reduced gradient
LSSVM  Least Square Support Vector Machine
PDC  Polycrystalline diamond compact
SVR  Support vector regression
CSVR-ICA  Committee support vector regression based on imperialist competitive algorithm
CIT  Computational intelligence techniques
LS-SVR  Least-square support vector regression
ANFIS  Adaptive neuro-fuzzy inference system
SVM  Support vector machine

One of the most important issues facing the oil industry, especially the drilling industry, is the costs of drilling, 
and has attracted much attention in recent decades. Many factors can affect the cost of drilling, the most impor-
tant of which is the drilling time of the well, which can increase drilling costs several times. Therefore, reducing 
drilling time is one of the most significant purposes of drilling  engineers1–3. In other words, one of the major 
aims of drilling optimization is to lessen the total  time4. For this purpose, two ways have been proposed: choosing 
optimum drilling variables (e.g. picking a suitable drilling fluid type and drill-bit) and instantaneous analysis so 
as to optimize operational parameters such as rotary speed and weight on bit while  drilling4.

The major factor affecting drilling time is the rate of penetration (ROP)5. Hence, the precision of ROP model 
is  critical6. Many parameters affect the drilling rate, including drilling mud properties, formation characteristics, 
rotary speed, and bit  characteristics2,7. The main parameters that affect ROP are presented in Fig. 1. Some of 
these parameters are uncontrollable, such as formation characteristics, and others are controllable, such as the 
properties of drilling mud. Studying the effect of different parameters individually on ROP can easily be inves-
tigated, such as rock strength, revolutions per minute (RPM), and weight on bit (WOB)8. Increasing uniaxial 
compressive strength of formation rock causes hardening and thus decreases penetration  rate8,9. The drilling 
parameters are also controllable factors for changing drilling rate. The type of bit and its  genus10, and the fit of 
bit and formation are effective in increasing drilling rate. Although increasing  RPM11 increases drilling rate in 
soft formations, it is not directly visible in hard formations and low rotational speeds can result in better drill-
ing rates. The flow rate and characteristics of drilling mud, such as plastic viscosity (PV), mud weight (MW), 
and yield point (YP) determine the ability of the mud to transfer drilling cuttings to the surface. Better cutting 
transportation to the surface prevents the accumulation of cuttings and regrinding, and increases drilling rate. 
The WOB determines the degree of contact and penetration of bit into the formation which depends upon the 
type of rock, and can increase the drilling rate, but the WOB has a direct relation to the drilling rate to a certain 
extent, and then has no great impact on drilling  rate12,13. Many models have been proposed to predict ROP, but 
they are problematic as they are obtained either in the lab or by using incomplete field  data2,14. In other word, 
effects of the drilling variables on the ROP has not yet been understood  completely15. So far, different methods 
have been proposed to optimize the drilling rate, but due to the fact that a large number of parameters influence 
the drilling rate, development of an efficient and comprehensive model is very difficult. On the other hand, the 
complex relationship between these parameters has led to a lack of a comprehensive  model2,14.

Normally, two main approaches are used to predict ROP, including traditional models and machine learning 
(ML) models.

Some famous traditional correlations are as follows:
Maurer16 developed Eq. (1) for rolling cutter bits:

In the above equation, S and K are the compressive rock strength and constant of proportionality, respectively. 
 Wo and W are the threshold bit weight and bit weight, respectively.  db shows diameter of drill-bit and N denotes 
the rotary speed.

Another traditional model for ROP was introduced by  Bingham17:

(1)ROP =
K
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W
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where R, W, dbit , and N refer to ROP (ft/hr), weight on bit (klbs), bit diameter (in), and rotary speed (rot/min), 
respectively. K and a5 . are Bingham coefficients, and have different values for various  formations18.

One of the most important ROP models was developed by Bourgoyne and  Young19. This model is extensively 
employed in the  industry20. Equation (3) was proposed by Bourgoyne and  Young19. Eight parameters were 
involved in Bourgoyne and Young  model19 (BYM).

where D shows the well depth, the coefficient  a1to  a8 are associated with the formation strength parameter, for-
mation compaction, pore pressure, differential pressure, weight on bit exponent, rotary drilling, drill-bit tooth 
wear, and bit hydraulic jet impact, respectively, and t denotes the time. Afterwards, Bourgoyne et al.18 suggested 
an adaptation to their original ROP model:

In the above equation, the functions  f1 to  f8 involves the empirical coefficients  a1–a8. As stated by Soares and 
 Gray6, the main difference between Eqs. (3) and (4) is in the last function. Equation (3) uses Eckel’s hydraulics 
Reynolds number, however in Eq. (4) a power law function of the hydraulic jet impact force was used. Although 
the BYM equations denote all important features of drilling, some parameters which are necessary in the model 
are not simply measured in real-time (e.g. drill bit wear, differential pressure)6.

A general drag bit model was introduced by Hareland and  Rampersad21:

where,  Nc and  Av show the number of cutters and the area of rock compressed ahead of a cutter, which supposes 
a different formulation based on the drill-bit type, respectively. More details can be found in Soares et al.  work22.

Finding the definite connection among the drilling parameters is not well realized and is very  difficult15. 
Hence, some  researches23–25 have been made to better comprehend the connection among the drilling param-
eters and how they affect the ROP. For instance, Motahhari et al.23 suggested an ROP model for polycrystalline 
diamond compact (PDC) bit:

In this equation, S shows confined rock strength. α and y represent the coefficient of ROP model and  Wf 
denotes wear. G presents coefficient related to bit geometry and bit-rock interactions. Deng et al.24 suggested a 
theoretical model for ROP. This model was developed for roller cone bit and it was validated with results that 
were achieved from experimental data. In this model, the rock dynamic compressive strength was used in reverse 
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Figure 1.  The main factors affecting ROP.
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static compressive strength, which improved the accuracy of the theoretical model. Eq. (7) developed by Al-
AbdulJabbar et al.25 and it is based on regression analysis:

where 16.96 is used to converted units, ρ shows the mud density, T denotes the torque, SSP represents the stand-
pipe pressure, Q shows the flow rate, PV presents the plastic viscosity, UCS denotes the uniaxial compressive 
strength. Nonlinear regression was used to calculate the coefficients (a and b).

Equation (8) proposed by Warren:

where S shows rock strength, and a and c denote  constant8.
Effects of other factors, such as hold down of  chip26,27, bit  wear28, and cutting geometry 29,30 was considered 

by many researchers.  Eckel31 expressed that mud properties have no direct effect on ROP, while Paiaman et al.32 
showed that growing the plastic viscosity and mud weight can decrease the rate of penetration. Moraveji et al.33 
developed a model and illustrated that the gel strength, WOB and YP/PV ratio have remarkable effect on ROP.

Soares et al.22 showed limitations of traditional ROP mods such as model introduced by Bourgoyne et al.19. 
ML methods are interesting methods to predict ROP. Priority of machine learning techniques than traditional 
model was proved by several  researchers8,34–36. The first work about prediction of ROP by ML was conducted 
by Bilgesu et al.37. The ability of the neural networks to find a complex relationship between data has led to this 
approach being taken to predict drilling rates. Nowadays, artificial neural networks (ANNs) are widely used in 
oil industry. We briefly mention few of them in the following part. Alarfaj et al.38 predicted ROP using ANNs and 
compared several models. They concluded that the extreme learning machine (ELM) gives the accurate results. 
They did not consider the effect of flow rate, RPM, MW and bit diameter in their models. Ansari et al.39 used 
error analysis of multivariate regression to select the best parameters to predict ROP and then used support vector 
regression (SVR) techniques to model ROP. Finally, committee support vector regression (CSVR) based on impe-
rialist competitive algorithm (ICA) was employed to predict ROP. Their results showed that CSVR-ICA model 
can improve the result of  SVR39. Hegde et al.36 conducted evaluation of two different approaches, physics-based 
and data-driven modeling approaches, for prediction of ROP. Their results showed that the data-driven model 
had better prediction than traditional  models36. Soares and  Gray6 studied real-time predictive capabilities of ML 
and analytical ROP models. Their results showed than ML models decrease the error much better than analytical 
ones. In addition, among analytical models, the best performance belonged to  BYM6. Ashrafi et al.40 employed 
hybrid artificial intelligence models to predict ROP. Based on their results, particle swarm optimization-multi-
layer perception (PSO-MLP) gained the best  performance40. Usage of ANN for ROP prediction during drilling 
operation was also evaluated by Diaz et al.41. Gan et al.42 suggested a new hybrid modeling model to estimate 
ROP. Excellent prediction performance of their proposed model was shown in this  study42. Mehrad et al.43 used 
mud logging and geomechanical parameters to predict ROP by hybrid algorithm. Least-square support-vector 
machines-cuckoo optimization algorithm (LSSVM-COA) had the best performance among used models. The 
difference of errors in training and testing data of the developed model by LSSVM-COA was  small43.

This study is conducted to develop an empirical correlation and some smart models including least square 
vector machine (LSSVM), multilayer perceptron (MLP), Decision Tree (DT), and Radial Basis Function (RBF), 
for ROP based on a large data bank (more than 5000 data points) obtained from drilling in South fields of Iran. 
Gradient boosting (GB) is used for DT optimization and Bayesian Regularization Algorithm (BRA), Scaled 
Conjugate Gradient Algorithm (SCGA) and Levenberg-Marquardet Algorithm (LMA) are used to train MLP 
modes. What distinguishes this study is to consider more effective parameters in developing the models. These 
parameters include depth (D), weight on bit (WOB), pit total (PT), pump pressure (PP), hookload (H), surface 
torque (ST), rotary speed (RS), flow in (Fi), flow out (Fo), and wellhead pressure (Wp). The accuracy and validity 
of the proposed models are evaluated by statistical and graphical techniques. In addition, the Leverage approach 
is employed to check the validity of the experimental data and applicability domain of the proposed models.

Modelling
Generalized reduced gradient (GRG). For developing an empirical correlation for ROP, we proposed a 
structure for the correlation and used Generalized reduced gradient (GRG) to optimize the coefficient of the cor-
relation. The optimum structure was obtained by a trial-and-error procedure. GRG is known as one of the tech-
niques for solving multivariable problems. This method is used to solve both nonlinear and linear  problems44. 
In this method, variables are regulated to continue the active restrictions being satisfied once the process shifts 
from one point to another. Linear guess to the gradient at a specific point y is developed by GRG. Both the objec-
tive gradient and restriction are solved alongside. The objective gradient function can be denoted in the form of 
the gradients of restrictions. Later, the search can move in a realistic way and the search area’s size is reduced. For 
an objective function f(y) subjected to h(y)45:

(7)ROP = 16.96
Wa ∗ N ∗ T ∗ SSP ∗ Q

PV ∗ ρ ∗ d2b ∗ UCS
b

(8)ROP =

(

aS2d3b
NW2

+
c

Ndb

)−1

(9)Minimize : f
(

y
)

= y

(10)Subjected to : hk
(

y
)

= 0
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GRG can be stated as  follows45:

One of the vital conditions for f(y) to be minimized is that df(y) = 0. Interested readers can achieve more 
details in the  literature46–49.

Decision Tree (DT). DT is known as a non-parametric supervised learning method that can be applied for 
both classification and regression problems. Morgan and  Sonquist50 introduced Automatic Interaction Detec-
tion (AID), known as the first decision tree. Messenger and  Mandell51 introduced THeta Automatic Interac-
tion Detection (THAID), the first classification tree algorithm. THAID is a hierarchical flow chart involving 
branches, root nodes, internal nodes, and leaf nodes. A top node that does not have any income branch is called 
root node. The root node presents the entire sample space. Nodes contain one incoming branch and more outgo-
ing edges are the internal or test nodes. Leaves or terminal nodes are nodes that show the final results. Pruning, 
stopping, and splitting are three main procedures for making a decision  tree52. Separating the data into a number 
of subsets, based on testing the most noted attribute that is valid also for the training instances is accomplished 
in the splitting step. Various criteria such as Gini index, information gain, gain ratio, information gain, classifica-
tion error, and towing could be considered for standard deviation reduction, variance reduction, and classifica-
tion  tree53. Figure 2 shows an instance of a decision tree that is used for both regression and classification. Data 
splitting is started from the root node and develops to the internal node until reaching the stopping criteria or 
satisfaction of the predefined homogeneity. Representing the stopping criteria can result in a lessening of the 
problem complexity. This approach results in avoiding overfitting. Splitting would cause a complex tree once 
stopping criteria are not applied. Although the training data would be fitted well, it does not occur for the test 
data. Usage of represented stopping criteria would be restricted to tuning the model for the best value. In order to 
avoid overfitting, if stopping methods do not work properly, pruning technique is applied. In pruning technique, 
a complete tree is made. Afterward, it is pruned to small trees which are generated by the removal of some nodes 
that contain less information gain or validation data.

Radial basis function (RBF) neural network. RBF and MLP are the most widely used artificial neural 
network (ANN) models. With these differences that the RBF model has a simpler design and its structure is fixed 
and consists of only three layers. It should also be noted that the categorization methods are unalike between the 
MLP and RBF. The data values in this method are gained based on the space of the points from the points called 
the center. Centers are chosen in three different ways: (a) supervised, (b) unsupervised (c) fixed. In each neuron, 
a transport function acts, thus, we have for f(zi) = output:

where terms ∅(zi) , wt and b refer to transport function, transposed matrix of weights, and bias vector, respectively.
Equation (13) shows Gaussian function and generally it is the transport function in RBF models:

Other common radial functions are:

(11)
df

dyk
= ∇ytkf −∇yti f

(

∂h

∂yi

)−1(
∂h

∂yk

)

(12)f (zi) = ∅(zi)× wt + b

(13)∅(r) = exp

(

0.5×
( r

σ

)2
)

for σ > 0

Figure 2.  The schematic diagram of DT.
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The distance of point zi . from center ck . is shown as, �zk − ci� , thus, we have:

The number of inputs and kernels, centers, and Gaussian transport function is symbolized by, N, M, ck . and 
ϕik(z) , respectively.

According to the above statements, outputs are obtained  by54–57:

The schematic of RBF model and flowchart for the proposed RBF model illustrated in Figs. 3 and 4, respec-
tively. The spread coefficient and the maximum number of neurons in RBF are 2 and 100, respectively. In addition, 
Gaussian function was used as a transfer function in the present study for RBF model.

Multilayer perceptron (MLP). MLP is a feed-forward ANN that can have several layers. A simple MLP 
model consists of at least three layers. In this case, a hidden layer connects input and output layer. The layers are 
composed of neurons, except for the input layer, the neurons of the other layers contain a nonlinear activation 
function. The number of layers and neurons in each layer could be determined by considering the number of 
input data and complexity of the problem. Learning this network is performed using a supervised back-propaga-
tion algorithm. Weights and bias are the parameters of each neuron. Several functions can be used as a transfer 
function in hidden and output neurons. Some of these functions are presented below:

(14)∅(r) =

√

1+
( r

σ

)2

(15)∅(r) =
1

√

1+
(

r
σ

)2

(16)∅(r) = 1+
( r

σ

)2

(17)∅(r) = r2 ln (r)

(18)ϕki(z) = exp

(

0.5×
�zk − ci�

σ 2

)

, i = 1, . . . ,N and k = 1, . . . ,M

(19)output = fk(zi) = w0 +

N
∑

i=1

ϕki × wi × (�zk − ci�), i = 1, . . . ,N and k = 1, . . . ,M

(20)Binary step : f (z) =

{

z for z < 0
−z for z ≥ 0

(21)Tansig : f (z) =
ez − e−z

ez + e−z
=

2

1+ e−2z
− 1

(22)Logsig : f (z) =
1

1+ e−z

(23)ArcTan : f (z) = tan−1(z)

Figure 3.  The schematic diagram of RBF.
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In the present study, Purelin, Tansig, and Logsig are three-transfer function used for MLP model. As men-
tioned above, the first layer has a linear function and the others have nonlinear. For example, output of an MLP 
model with two hidden layers is calculated as follows:

where b1 , b2 , and b3 refer to the first and second hidden layer bias vector and output layer bias, respectively. 
Matrixes of the first and second hidden layer and output layer are also denoted by w1 , w2 , and w3

54,55,57,58. Sche-
matic of a single hidden layer MLP model illustrated in Fig. 5.

Least square support vector machine (LSSVM). LSSVM was firstly suggested by Suykens and 
 Vandewalle59. In LSSVM, a set of linear equations is solved; therefore, we have simplification in the learning 
process. Eq. (27) shows the cost function of Support Vector Machine (SVM):

Here superscript T represents the transport matrix of a variable and We shows regression weight. A variable 
error of the LSSVM algorithm is shown by Ve2j  and Tu shows the tuning parameter.

Subjected to the following restriction:

(24)inusid : f (z) = sin(z)

(25)Purelin : f (z) = z

(26)output = purelin
(

w3 ×
(

tan sig
(

w2 ×
(

log sig(w1z)+ b1
))

+ b2
)

+ b3
)

(27)Cost function =
1

2
WeTWe +

1

2
Tu

Num
∑

j=1

Ve2j

(28)Zj = WeTϕ
(

yj
)

+ c + Vej

Start

Random division of data into training and test
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Training Algorithm

Setting parameters in
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Parameters
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Avoid overfitting

Meet stopping criteria?

Obtain the optimal model

End

Testing Set

Create RBF network

Artificial Neural Network
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Figure 4.  Flowchart for the suggested RBF  model72.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11650  | https://doi.org/10.1038/s41598-022-14710-z

www.nature.com/scientificreports/

By equating the Lagrange function of the LSSVM to zero and then using the following formula, model’s 
parameter could be achieved:

By using Eq. (31), the parameters of LSSVM can be achieved. Unknown parameters in Eq. (31), are We, c, 
Vej , and αj .

Vej and σ 2 control the reliability of LSSVM. In this study, the amount of Tu and σ 2 are 24.7959, and 2.2514, 
respectively.

Optimization algorithms
Levenberg–Marquardt algorithm. In order to train data in MLP model, training algorithms are used to 
optimize weights and bias values. Levenberg–Marquardt is one of these algorithms which is used to solve non-
linear problems. In this method, even if there is an inappropriate initial guess for weights and bias, the algorithm 
will be able to get the final answer. Due to having sum square form for performance function, the gradient and 
Hessian matrixes are determined as follows:

Here, the Jacobian matrix and network errors vector are denoted by J and e.
By updating the equations, the weight values in each step are obtained as:

It should be noted that η is a constant, and due to the condition of performance function in each step, it 
increases or  decreases60.

Bayesian regularization algorithm (BRA). Like Levenberg–Marquardt, Bayesian regularization algo-
rithm is also used to optimize weights and bias and minimize squares of errors. Weights are determined as 
follows:

in which, α , β , ED , Ew , and F(ω) are objective function parameters, sum of network errors, sum of squared 
network weights, and objective function, respectively. Bayes’ theorem was used to determine α and β Moreover 
Gaussian distribution was employed to develop both network weight and training sets. These parameters are 
updated and repeated procedure until convergence  achieved61.

(29)
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Figure 5.  The schematic diagram of MLP.
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Boosting method. Schapire62 introduced boosting method which is a type of ensemble methods. In this 
method, some weak predictors/learners are combined to create a stronger learner. In order to correct previous 
learners, each weak learner is trained. One of the most popular types of Boosting is Gradient Boosting which is 
used in this paper.

Gradient boosting (GB). Gradient boosting is known as one type of Boosting methods. In this type, new learn-
ers are applied to residual errors which are made by the previous  learners63. The GB could be considered as a 
form of functional gradient decent (FGD), in which a specific loss is lessened by adding a learner at each step of 
gradient  descent64. The algorithm of GB is as follows:

1. Initialize g0
(

y
)

= argminγ
Nu
∑

q=1
O
(

xq, γ
)

2. Iteration for c = 1: C (C is number if tree learners

a. Compute the negative gradient aq =
[

∂O(xq ,g(yq)
∂g(yq)

]

g=gc−1

, q = 1, 2, . . . ,NU

b. Set a regression free Fc
(

y
)

 to the target 
{

aq, q = 1, 2, . . . ,NU
}

c. Compute the gradient descent step size by following equation:

d. Update the model as gc
(

y
)

= gc−1

(

y
)

+ tFc
(

y
)

3. For data test (y,?) output is gC
(

y
)

The parameters of GB used in this study are presented in Table 1.

Results and discussion
In this research, 5040 data points from South Azadgan field in Iran have been used. Table 2 shows the preprocess-
ing of this dataset. In all the developed models, depth (D), weight on bit (WOB), pit total (PT), pump pressure 
(PP), hook load (H), surface torque (ST), rotary speed (RS), flow in (Fi), flow out (Fo), and wellhead pressure 
(Wp) were considered as inputs and ROP is regarded as output. Histogram of inputs and output are presented 
in Fig. 6. As shown in Fig. 6 most of data of surface torque are between 75 and 175 psi. Figure 6 showed that 
data of flow out and flow in are altered between 50–100% and 600–800 gal/min, respectively (Fig. 6). Hook load 
data varied from 75–125 k-lbs and most of them are 50 k-lbs (Fig. 6). Data of pump pressure and wellhead pres-
sure are varied from 1000 to 2000 psi and from 0 to 10 psi, respectively (Fig. 6). Pit total data lie between 200 
and 280 bbls (Fig. 6). Most of Weight on bit data are around 35 k-lbs (Fig. 6). Most of the rotary speed data in 
our study were from 25 to100 rpm. Maximum ROP in our data is around 25 ft/hr (Fig. 6). Figure 7 shows box 

t = argminγ

Nu
∑

q=1

O
(

xq, gc−1

(

yq
)

+ γ Fc
(

yq
))

Table 1.  The parameters used in Gradient Boosting trees.

Number of features to consider when looking for the best split 10

Fraction of samples to be used for fitting the individual base learners 0.8

Minimum number of samples required to split an internal node 2

Maximum depth of the individual regression estimators 6

Minimum number of samples required to be at a leaf node 3

Number of boosting stages to perform 140

Table 2.  Statistical parameters of the inputs and output data.

Depth (ft) WOB (k-lbs) PT (bbls) PP (psi) H (k-lbs) ST (psi) RS (rpm) Fi (gal/min) Fo (%) Wp (psi) ROP (ft/hr)

Mean 3797.92 23.29 237.52 1274.14 80.18 137.92 57.77 720.48 79.59 6.38 37.36

Median 3617.93 23.65 238.07 1441.28 79.16 0.54 51.94 702.07 81.03 6.51 19

Mode 1130.84 24.52 247.17 505.28 51.71 141.57 50.38 727.37 73.83 8.26 120.4

SD 2118.30 8.23 17.07 482.25 26.59 38.93 21.39 104.45 11.95 2.97 37.74

Kurtosis −1.24 −0.45 −0.29 −1.14 −1.34 3.55 −0.2 74.76 −0.65 −0.53 2.49

Skewness 0.12 −0.34 −0.18 −0.61 0.27 −0.99 0.7 3.35 −0.36 −0.016 1.63

Minimum 346.63 0.40 170.91 220.48 39.42 3.56 1.69 280.87 45.67 0.03 1.11

Maximum 7533.96 37.89 277.64 2200.43 148.93 257.09 207.23 3317.51 111.21 17.41 190.78
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Figure 6.  Histogram of inputs and output data.
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plot of inputs and output data. As shown in Fig. 7, range of WOB data are lower than 50, while pit total data 
are higher than 200. The data of hook load varied between 50 and 100 (Fig. 7). The range of surface torque and 
rotary speed are less than 150 and 100, respectively. In addition, the range of flow out and wellhead pressure are 
less than 100 and 25, respectively (Fig. 7). As shown in Fig. 7, 25% to 75% of ROP’s data are less than 50. Figure 7 
shows that pump pressure is varied from 750 to more than 1500. As stated in Fig. 7, all of the flow in data are 
less than 1000. Figure 8 shows the relation of ROP vs. depth for our data. As shown in Fig. 8, by increasing the 
depth, ROP will decrease.

In first step, in order to estimate ROP based on input parameters, the following correlation was developed 
based and its coefficients were optimized by GRG:

Figure 7.  Box plot of inputs and output data.
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where  a1–a31 are constants which are presented in Table 3. As shown in Eq. (34), all involved parameters are 
available and recorded during drilling operation. Therefore, this correlation can be used to estimate ROP roughly. 
Although the developed correlation can give us a good sense of ROP, if we want to have a good estimation of 
ROP, it is recommended to use artificial intelligence (AI) which are more flexible and could solve complicated 
problems. In this study, AI methods namely, LSSVM, MLP, RBF, and DT were used. In order to develop AI 
models, first, the databank was randomly separated into two subgroups known as the training set, in which the 
model learns and tries to find best and optimum predictive model, and the test set, which is used to investigate 
the prediction capability of the developed model. Classification of data points for intelligent models and the 
developed correlation are as follow:

1. 80 percent of the data were used for training
2. 20 percent of the data were used for testing

LMA, BR, and SCG are the three algorithms developed for MLP model and GB is the optimization technique 
used for DT model.

Statistical evaluation. In order to evaluate and compare the developed models in this study, statistical 
analysis of errors is performed. For this purpose, the values of standard deviation (SD), average absolute percent 
relative error (AAPRE), coefficient of determination  (R2), root mean square error (RMSE), and the average 
percent relative error (APRE) are computed and the results are summarized in Table 4. Equations  (35)–(39) 
presented the formulation employed to calculate the aforementioned  parameters58,65.

(34)

ROP = a1 + (a2 ∗ D)+
(

a3 ∗Wp
)

+ (a4 ∗ Fo)+ (a5 ∗ Fi)+ (a6 ∗ RS)

+ (a7 ∗ ST)+ (a8 ∗H)+ (a9 ∗ PP)+ (a10 ∗ PT)+ (a11 ∗WOB)+
(a12

D

)

+

( a13

WOB

)

+

(a14

PT

)

+

(a15

PP

)

+

(a16

H

)

+

(a17

ST

)

+

(a18

RS

)

+

(a19

Fi

)

+

(a20

Fo

)

+

(

a21

Wp

)

+
(

a22 ∗ ln
(

Wp
))

+ (a23 ∗ ln (Fo))+ (a24 ∗ ln (Fi))

+ (a25 ∗ ln (RS))+ (a26 ∗ ln (ST))+ (a27 ∗ ln (H))+ (a28 ∗ ln (PP))

+ (a29 ∗ ln (PT))+ (a30 ∗ ln (WOB))+ (a31 ∗ ln (D))

(35)SD =

√

√

√

√

1

Num

Num
∑

l=1

(

ROPexp,l − ROPpred,l

ROPexp,l

)2

(36)R2 = 1−

∑Num
l=1

(

ROPexp,l − ROPpred,l
)2
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l=1

(

ROPpred,l − ROP
)2

Figure 8.  The relation between ROP and depth.
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Two suitable statistical errors to compare the developed models are AAPRE and  R2. As presented in Table 4, 
 R2 of the developed correlation is 0.807. Then, among different MLP models, the best performance was for 
BRA, followed by LMA and SCGA.  R2 of MLP-SCGA, MLP-LMA, and MLP-BRA were 0.944, 0.965, and 0.969, 
respectively. AAPRE of these models is in good agreement with the  R2 results, 13.88% for MLP-BRA, 14.05% 
for MLP-LMA, and 18.49% for MLP-SCGA. As shown in Table 4, RBF had the worst performance among the 
developed models. AAPRE and  R2 of this model are 21.409% and 0.937, respectively.  R2 and AAPRE for LSSVM 
are 0.971 and 10.497%, respectively. As stated in Table 4, DT-GB had the best performance among the developed 
models. AAPRE for this model is 9.013% and its  R2 is 0.977. Therefore, DT-GB has the best performance among 
the developed models, followed by LSSVM, MLP-BR, MLP-LM, MLP-SCG, and RBF.

Graphical analysis of models. Figure 9 shows the crossplots for the developed models. In these plots, 
the values of modeled ROP are plotted versus experimental data. The more data around the line Y = X is, the 
more accurate the model will be. In other words, line Y = X is a visual criterion for quick examination of model 

(37)AAPRE =
100

Num

Num
∑

l=1

∣

∣ROPexp,l − ROPpred,l
∣

∣

ROPexp,l

(38)RMSE =

√

√

√

√

1

Num

Num
∑

l=1

(

ROPexp,l − ROPpred,l
)2

(39)APRE =
100

Num

Num
∑

l=1

ROPexp,l − ROPpred,l

ROPexp,l

Table 3.  The constants of developed correlation.

Constants Value

a1 0.0746091

a2 0.0192657

a3 0.3659792

a4 0.6389874

a5 −0.043096

a6 −0.157758

a7 0.0211645

a8 −0.044939

a9 −0.027585

a10 −0.066651

a11 0.1685122

a12 8740.1755

a13 33.571705

a14 1.0766685

a15 0.3168871

a16 352.91161

a17 −98.26846

a18 60.965293

a19 −0.009591

a20 8398.8922

a21 −0.021988

a22 −1.244715

a23 59.887972

a24 0.0048745

a25 13.832765

a26 −2.767219

a27 1.7682843

a28 52.402178

a29 5.6629656

a30 1.101E−05

a31 −103.9342
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accuracy. Parameter  R2 specifies how much data sets conform to the line of Y = X. In other words, as far as  R2 is 
closer to 1, the degree of conformance of the model with the experimental data is more remarkable. Subplot (a) 
of Fig. 9 presents crossplots of the developed models. As shown in subplot (a), until ROP of 50, the developed 
correlation obtains an acceptable prediction. However, at high ROP values, scattering of data around  45o line is 
obvious. As shown in subplot (b) of Fig. 9, except at high ROP values, concentration of the data around the unit 
slope line is well for MLP-LMA. Concentration of training set around the unit slope line is better than testing 
set in MLP-LMA model. The same results were achieved for MLP-BRA; however, a better concentration of the 
data is noticed in MLP-BRA than MLP-LMA (subplot (c) of Fig. 9). However, scattering of data is obvious for 
MLP-SCGA (subplot (d) of Fig. 9). Scattering of the testing set is obvious and much more than the training data. 
In subplot (e) of Fig. 9, it can be seen that the estimations of RBF model are scattered around the Y = X line. 
Scattering of the testing data both at high and low ROP values is obvious. Although scattering of the test data is 
obvious, concentration of the training data around the Y = X line is acceptable for LSSVM (subplot (f) of Fig. 9. 
Subplot (g) of Fig. 9 shows that the best performance among AI models belongs to DT-GB. As shown in subplot 
(g) of Fig. 9, concentration of the data around 45° straight line is good.

Error distribution of the proposed correlation and developed models is presented in Fig. 10. In each subplot, 
the percent relative error is plotted against rate of penetration. Subplot (a) of Fig. 10 shows that the developed 
correlation has reasonable prediction at low ROP values and concentration of the data points around the zero-
error line is good. As shown in subplot (b) of Fig. 10, concentration of the data sets around the zero-error line is 
suitable. In addition, subplot (c) of Fig. 10 shows a much better concentration of the data for MLP-BRA around 
the zero-error line than MLP-LMA. However, concentration of the data points, which are estimated by model 
MLP-SCGA, around zero-error line is not as good as that of the two other MLP models (subplot (d) of Fig. 10). 
Statistical analysis showed that the performance of RBF is not well. Both cross plot and error distribution of 
RBF confirmed this finding (subplot (e) of Fig. 10). As illustrated in subplot (f) of Fig. 10, concertation of the 
training data around the zero-error line is satisfactory for LSSVM model, although concentration of the testing 
data was not well at some points. As displayed in subplot (e) of Fig. 10, the predictions of DT-GB display very 
appropriate concentration around the zero-error line at both high and low ROP values. The subplot (e) of Fig. 10 
supports the superiority of DT-GB.

Figure 11 shows comparison between experimental ROP and ROP predicted values by DT-GB model for 
the first 100 testing data points. As shown in Fig. 11, the best developed model in this study, DT-GB, has good 
predictions. Except in some data points, the predictions of DT-GB match well with the experimental ROP.

Table 4.  Statistical error analysis of   the developed models for the rate of penetration.

Developed models R2 APRE % RMSE AAPRE % SD

The developed correlation

Train 0.814 3.963 15.904 22.791 0.299

Test 0.837 3.701 15.170 22.475 0.291

Total 0.807 4.000 16.559 23.556 0.365

MLP-LMA

Train 0.971 −1.838 6.21 13.762 0.191

Test 0.941 −2.539 9.056 15.247 0.235

Total 0.965 −1.978 6.873 14.059 0.201

MLP-BRA

Train 0.973 −0.665 5.943 13.661 0.186

Test 0.953 −1.316 8.135 14.772 0.227

Total 0.969 −0.795 6.441 13.883 0.195

MLP-SCGA 

Train 0.944 −5.205 8.664 18.551 0.355

Test 0.945 −6.08 8.919 18.263 0.27

Total 0.944 −5.38 8.716 18.493 0.34

RBF

Train 0.94 −3.733 9.09 21.261 0.347

Test 0.928 −3.379 9.731 22.003 0.321

Total 0.937 −3.663 9.221 21.409 0.342

LSSVM

Train 0.975 −1.971 5.821 10.023 0.14

Test 0.956 −2.535 7.656 12.394 0.168

Total 0.971 −2.084 6.231 10.497 0.146

DT-GB

Train 0.978 −1.083 5.413 8.343 0.139

Test 0.97 −1.727 6.346 11.707 0.168

Total 0.977 −1.211 5.611 9.013 0.145
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Figure 9.  Cross plots of the implemented intelligent models.
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Figure 10.  Error distribution plots of the proposed models.
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Figure 12 shows the comparison of statistical errors for developed models using bar chart. Each subplot of 
Fig. 12 confirms that the best and worst performance belong to DT-GB and RBF, respectively.

3D plot of absolute relative error of DT-GB model versus different parameters including, hook load, depth, 
ROP, and WOB, are shown in Fig. 13. As shown in subplot (a) of Fig. 13, maximum absolute relative error is 
seen when WOB is around 18 k-lbs and depth is 4000 ft. In subplot (b) of Fig. 13, once ROP is 14 ft/hr, and 
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Figure 11.  Comparison of experimental data and output of DT-GB model for the first 100 testing data points.
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Figure 13.  Absolute relative error contour versus different parameters (a) WOB and depth (b) ROP and depth 
(c) hook load and depth.



19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11650  | https://doi.org/10.1038/s41598-022-14710-z

www.nature.com/scientificreports/

depth is 4000 ft, maximum absolute relative error is reported. Also, at Hook load 90 k-lbs and depth of 4000 ft, 
the model has high error.

Figure 14 shows cumulative frequency vs. absolute relative error. Above 50% of the predicted ROP values 
by DT-GB models have an absolute relative error of less than 10%. 50% of the predicted ROP by LSSVM have 
an error less than 10%. About 50% of the predicted values by MLP-LMA and MLP-BR models have an absolute 
relative error of less than 10%. For MLP-SCG and RBF, about 40% and around 30% of the predicted ROP values, 
respectively, have an absolute relative error of less than 10%.

Sensitivity analysis. A sensitivity analysis was investigated to study the quantitative effects of all input 
parameters on the ROP of the developed model. Relevancy factor with directionality (r) was chosen for this pur-
pose. The value of r and its sign show the level of effect of input on the output of model and the impact direction, 
 respectively66. The following formula shows the definition of r:

In the above equation, Ink and OU  show the nth input of the model and the predicted ROP, respectively. The 
relative effect of input variables on the ROP estimated by the proposed DT-GB model is shown in Fig. 15. As 
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Figure 14.  Cumulative frequency vs. absolute relative error of different models proposed in this study.

Figure 15.  The relative effect of input variables on the ROP based on DT-GB model.
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shown in Fig. 15, pit total, rotary speed, and flow in, have a positive effect on the ROP, while depth, weight on 
bit, pump pressure, hook load, surface torque, and wellhead pressure have negative impacts on the ROP. The 
highest absolute value of r belongs to depth; therefore, depth has the most important effect among the inputs 
on the predicted ROP value.

Applicability area of the developed model and outlier analysis. Outliers are the data that may vary 
from the bulk of the data. Frequently, these types of data are expected to appear in large sets of experimental 
data. The presence of such data can affect the accuracy and reliability of models. Hence, finding these data is 
necessary in the development of  models67–71. In this study, leverage approach has been employed for determin-
ing  outliers67,69–71. In this method, deviation of predicted valued from corresponding experimental data, was 
calculated. More details about this method can be found in  literature67–70.

Figure 16 shows the William’s plot for the predicted ROP obtained by the DT-GB model. Data of out of 
leverage and suspected data, presented in Fig. 16, can be found in Table 5. As shown in Fig. 16, majority of the 
data points are positioned in the applicability domain (− 3 ≤ R ≤ 3 and 0 ≤ hat ≤ 0.0057). Therefore, the developed 
model, DT-GB, has statistical validity and high reliability. A small amount of data is out of the applicability 
domain, which is negligible. In this plot, we have two important definitions, Good High Leverage and Bad High 
Leverage. Good High Leverage data are known as data that their R is located between 3 and -3 and their hat* ≤ hat. 
These data points are different from the bulk of data and they are out of feasibility domain of the developed model, 
however, they may be predicted well by developed model. If R of data are less than -3 or are more than 3, these 
data are known as Bad High Leverage. These data are experimentally doubtful data or  outliers67–70.

Conclusions
In this study, new methods were used to predict drilling rates. Since the parameters affecting the drilling rates 
are different, as well as the conditions vary from field to field, it is always difficult to develop a comprehensive, 
efficient, and precise model. The model that can accommodate more parameters, could better predict the drilling 
rate. Therefore, we tried to develop a correlation and smart models including MLP, RBF, LSSVM, and DT, with 
ten input parameters. The main findings of this study are as follows:

1. The developed correlation and smart models need parameters that are accessible in field and can give fast 
prediction of ROP.

2. All four smart models have a good prediction of drilling rates, which would increase the tendency to use 
smart methods to predict drilling rates.

3. The best predictions belong to DT-GB model with  R2 of 0.977. In addition, the LSSVM model has acceptable 
performance.  R2 of this model was 0.969. In addition, MLP models have good performance and finally the 
worst performance among the developed models belongs to RBF.

4. Sensitivity analysis showed that flow in, rotary speed, and pit total have positive effects on ROP, while other 
parameters have negative effects. Among input parameters, depth has the greatest effect on ROP.

5. The leverage approach indicated that the developed DT-GB model is statistically valid and only few data 
points are located out of the applicability domain of the model.
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Figure 16.  William’s plot for discovering the probable outliers and the feasibility domain of the developed 
model, DT-GB, in this study.
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No Depth (ft) WOB (k-lbs) PT (bbls) PP (psi) H (k-lbs) ST (psi) RS (rpm) Fi (gal/min) Fo (%) Wp (psi) ROP(ft/hr)

Suspected data

1 1196.45 15.52 257.84 553.69 48.78 139.36 84.15 682.15 61.36 2.16 89.31

2 5944.05 34.7 237.21 1335.59 104.04 194.95 36.81 601.07 70.67 3.08 10.35

3 6059.11 35.89 236.42 1430.29 99.02 170.01 39.02 595.03 74.39 9.94 12.08

4 2749.46 18.92 266.26 1504.55 59.48 154.65 52.33 693.87 97.16 2.54 40.03

5 741.772 4.86 258.13 536.54 54.64 113.62 71.25 912.48 63.53 7.88 122.11

6 5916.79 35.29 245.31 1400.74 100.8 151.44 39.72 586.02 71.05 7.65 8.94

7 6062.13 35.68 236.31 1409.07 99.23 177.83 32.85 585.76 73.87 9.94 10.32

8 5440.73 35.51 250.17 1729.19 105.83 70.24 35.49 657.32 82.77 5.56 7

9 6133.83 34.96 232.53 1461.35 104.17 214.35 40.92 594.17 73.97 1.17 12.28

10 2421.76 21.64 231.55 1094.08 53.17 163.45 56.73 692.66 102.28 10.55 46.78

11 2925.46 23.4 249.75 1604.92 55 146.41 52.64 692.66 93.54 5.97 37.18

12 670.957 5.79 259.83 532.73 55.51 64.4 97.27 902.01 61.33 7.88 120.41

13 4644.25 10.55 228.27 2015.57 105.74 152.13 52.7 714.44 88.61 0.61 10.42

14 7181.33 30.32 220.82 1574.99 120.37 133.34 37.79 626.5 74.06 5.74 13.66

15 5332.56 31.12 248.61 1688.28 104.12 104.93 26.22 673.49 79.85 5.56 11.92

16 1663.03 23.39 231.47 624.99 49.29 149.81 79.24 847.14 80.95 8.64 38.92

17 5505.55 24.14 234.91 1220.82 110.51 193.15 75.84 640.29 71.8 4.6 9.59

18 1710.88 23.57 240.49 606.31 51.13 196.2 86.32 836.69 78.62 5.59 44.11

19 380.874 6.34 275.2 327.61 78.66 4.74 79.27 864.4 59.02 3.69 100

20 1102.67 10.41 259.15 530.44 53.89 152.74 111.16 659.34 55.18 3.31 89.35

21 941.294 14.8 247.16 514.04 45.6 229.98 76.04 824.25 61.63 7.88 60.11

22 500.889 10.04 250.87 414.54 49.36 4.82 101.3 803.94 58.14 5.59 215.04

Out of leverage

23 853.358 11.37 253.11 505.28 49.03 145.08 79.3 858.05 60.83 8.64 120.4

24 1860.91 20.49 240.43 641.38 54.21 90.71 99.07 871.04 90.59 0.64 32.83

25 3263.37 24.91 243.82 1586.06 78.29 158.76 37.72 688.55 89.74 7.5 41.43

26 3049.09 28.11 240.88 1566.41 54.29 146.41 71.13 694.09 97.8 10.93 21.86

27 2082.37 26 236.94 720.3 50.26 127.96 103.41 848.3 89.84 6.36 17.21

28 1160.66 12.47 265.87 565.13 51.83 143.51 77.72 858.25 55.59 3.31 115.24

29 837.909 5.21 243.45 549.5 55.09 75.5 95.44 895.53 62.53 8.26 122.11

30 6926.93 23.5 213.23 1496.2 127.24 142.94 34.88 607.58 77.55 0.41 12.11

31 3294.01 21.61 223.57 1668.94 78.79 110.61 29.54 695.51 79.74 5.21 30.33

32 7429.92 35.7 230.53 1712.88 120.19 145.92 34.17 613.58 75.38 11.08 18.92

33 2502.31 16.94 246.82 1421.91 58.11 149.46 54.56 697.76 98.46 10.93 40.26

34 660.69 3.42 259.87 542.26 57.88 64.75 90.44 903.14 61.92 7.88 122.11

35 5316.36 29.46 245.99 1401.14 104.98 103.22 29.82 620.25 73.83 7.09 8.13

36 681.256 6.23 258.86 560.56 55.07 70.16 78.42 927.25 61.48 7.88 124.41

37 6561.84 30.2 215.77 1798.49 113.84 145.5 48.36 726.73 85.69 6.51 8.3

38 1760.77 23.86 245.23 625.75 50.84 145.27 87.54 828.01 87.47 3.69 41.43

39 3559.03 28.3 223.52 1784.94 72.1 136.31 37.63 718.1 85.59 9.79 18.6

40 3597.18 28.63 226.84 1751.07 71.77 150.07 60.54 726.1 89.74 9.41 19.84

41 2835.4 20 261.94 1491.74 58.4 152.63 54.16 693.27 90.42 2.54 39.64

42 4691.78 17.5 246.46 1797.37 94.29 180.19 43.48 712.22 80.09 4.42 11.8

43 2671.79 22.49 257.61 1472.35 55.91 145 52.55 688.14 99.65 4.83 35.66

44 544.086 7.73 258.59 475.92 52.04 4.7 85.92 906.97 56.47 5.59 122.13

45 3032.75 28.07 237.82 1575.3 54.33 160.21 64.05 691.22 94.84 8.64 42.45

46 3275.41 26.82 244.62 1575.61 76.38 164.45 52.91 691.41 93.4 7.12 24.72

47 7199.53 19.38 204.93 1706.06 137.39 144.62 42 614.03 66.86 5.74 13.14

48 6226.19 35.39 217.17 1320.43 97.13 154.42 44.54 609.71 77.31 10.7 16.04

49 6363.59 35.24 227.72 1284.07 109.27 123.73 47.46 602.17 73.64 9.18 13.37

50 5621.3 29.87 237.62 1347.35 104.85 153.5 87.14 653.44 71.94 7.65 10.3

51 3914.84 27.1 243.66 1826.82 80.19 127.01 45.44 726.87 88.19 6.74 19.39

52 373.002 27.31 275.21 327.23 57.69 4.74 84.25 862.77 59.99 3.31 98.48

53 3770.06 2.95 223.82 1802.58 101.34 98.76 119.45 732.04 95.85 5.59 21.54

Continued
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