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J‑Matrix time propagation 
of atomic hydrogen in attosecond 
fields
Rolf Gersbacher* & John T. Broad

The J‑Matrix approach for scattering is extended to the time‑dependent Schrödinger equation 
(TDSE) for one electron atoms in external few cycle attosecond fields. To this purpose, the wave 
function is expanded in square integrable ( L2 ) Sturmian functions and an equation system for the 
transition amplitudes is established. Outside the interaction zone, boundary conditions are imposed 
at the border in the L2 function space. These boundary conditions correspond to outgoing waves 
(Siegert states) and minimize reflections at the L2 boundary grid. Outgoing wave behaviour in the 
asymptotic region is achieved by employing Pollaczek functions. The method enables the treatment 
of light ‑ atom interactions within arbitrary external fields. Using a partial wave decomposition, the 
coupled differential equation system is solved by a Runge‑Kutta method. As a proof of the method 
ionization processes of atomic hydrogen in half and few cycle attosecond fields are examined. The 
electron energy spectrum is calculated and the numerical implementation will be presented. Different 
forms of the interaction operator are considered and the convergence behaviour is discussed. Results 
are compared to other studies which use independent approaches like finite difference methods. 
Remarkable agreement is achieved even with strong field strengths of the electromagnetic field. It 
is demonstrated that expanding in L2 functions and imposing boundary conditions at the limit in the 
L
2 function space can be an advantageous alternative to conventional propagation methods using 

complex absorbing potentials or complex scaling.

The availability of tailored electromagnetic fields in the attosecond  range1–3 allows examining time-depend-
ent phenomena that don’t appear in the long time limit. Carrier-envelope phase effects in  ionization4–6 and 
 recombination7,8 processes and the control of wave  packets9,10 with combined UV and IR  pulses11,12 can both be 
named as examples and even half cycle pulses in the attosecond range seem to be  realizable13. On the theoretical 
side, describing ionization processes is a challanging task, because the wave function propagates without limit 
in space. The situation worsens with longer interaction times where the ejected particle can escape to infinity. In 
almost all cases, a partial wave expansion of the Schrödinger equation is used. The angular part is represented by 
spherical harmonics and the radial part is discretised; techniques like B-Splines14, finite difference  methods6,15 or 
the discrete variable  representation16,17 are employed. Strong fields and long interaction times lead to occupation 
of high partial waves. Hence, the radial position space above a given limit is disregarded or, alternatively, a limit 
is chosen which is so big that, throughout the whole time of propagation, it is not exceeded. Other approaches 
use Dirichlet to Neumann or Neumann to Dirichlet boundary conditions at some specified radial distance r = R 
in the spatial domain to solve the TDSE or formulate boundary conditions via a convolution integral with the 
Feynman Propagator of the interaction free Schrödinger  equation18–21. A further method to deal with limited 
radial distances is complex scaling. There, the wave function is rotated into the complex plane, which dampens 
the radial part and thereby reduces the radial  extension22. Another possibility, which can find application with 
finite propagation radii or with a finite dimensional function space, is the introduction of a complex potential 
term localized at the boundary area of the position space or the function domain. This absorbs impinging waves 
to prevent interfering unphysical reflections that return into the interior  zone23. For both methods, complex 
scaling as well as complex absorbing potential, no knowledge of the asymptotic structure of the wave function 
is required. They can be formulated independent from any boundary conditions. This is advantageous in those 
cases, where asymptotic behaviour at large interparticle distance is unknown or only known approximately, e.g. 
in scattering processes involving multi-particle continua.
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In time-independent scattering e.g. electron impact ionization or in perturbative treatment of laser atom 
interactions, L2 functions are commonly used. A prominent example are hydrogen-like Sturmian functions, 
which are used in the convergent close-coupling- and J-Matrix  method24–28.

A Sturmian function approach to solve the TDSE was also employed by Hamido et al.29 and Frapiccini et al.30. 
The focus of their work is to identify time integration methods to avoid the problems associated with the stiffness 
of large equation systems. They present the total wave function as superpositions of Sturmian functions with 
time-dependent expansion coefficients and calculate multiphoton ionization of atomic H in laser fields. In these 
works, asymptotic boundary conditions are not imposed explicitly: The function space is chosen to be so big that 
numerical effects on the boundary of the L2 function space play no role and the boundary is not overstepped.

Boundary conditions employed in the spatial domain can not be applied directly to the function domain, 
they differ substantially: In the L2 approach the function space is divided into an inner part, spanned by {φl

n}Nn=0 , 
and an outer part, spanned by {φl

n}∞n=N+1 . Herein l is an integer and associated with the l-th partial wave. In the 
outer part, short range interactions are neglected and asymptotic solutions in the space {φl

n}∞n=N+1 are known 
analytically. Boundary conditions are imposed on the complex valued expansion coefficient a l

N of the function 
φ l
N at the border of the function space. The function φ l

N is delocalized in the radial domain and is not associated 
with a well defined radial value r = R in the radial space. In the following part we use the term boundary condi-
tion in the L2 function sense: An algebraic condition for the expansion coefficient at the border n = N in the L2 
space to connect the inner part of the L2 solution to the asymptotic part.

In the case of photoionization with emission of one electron or electron scattering with excitation, the asymp-
totic behaviour at large distances is governed by a central Coulomb force and solutions are known analytically, 
both in the position space and the function space. There outgoing waves eikr with particle impulse k and position 
variable r are present. Then it is advantageous, to make use of the asymptotic L2 solutions and to incorporate these 
directly in the boundary conditions. Because of the norm conserving character of the TDSE, in time propagation 
within a finite dimensional function space - and of course in position space with finite radii - there are always 
reflections at the numerical boundary, which result in unphysical values of the complex expansion coefficients. 
Then it would be desirable to make the boundary for these outgoing parts permeable and to absorb the reflected 
parts with the behaviour of e−ikr . Such an approach is pursued in this work: Using a time step propagation 
scheme, the L2 boundary is made permeable for at least one k-value of the impinging wave at each time step. 
 Hadley31 applied such an approach in the spatial domain in the context of classical electrodynamics to calculate 
the dispersal of electromagnetic waves in beam propagation. In the spatial domain the concept of permeability 
is also employed by Givoli and  Neta32, who introduce a multiplicative form of Sommerfeld’s differential equa-
tion for outgoing waves, which has to be fulfilled by the solution at the boundary. This ensures permeability for 
a theoretically randomly large number of discrete k-values. In practical calculations the maximum number of 
k-values has been limited by 3 and to the one-dimensional case.

In this article, we will adopt the concept of permeability for incident waves at the numerical boundary. In 
contrast to the works mentioned above, we formulate appropriate outgoing wave boundary conditions not in 
the position space but at the border of the L2 function space. These time-dependent L2 boundary conditions are 
based on the analytically known asymptotic solutions of the J-Matrix scattering theory and ensure permeability 
for a specified k-value for each time step and each partial wave. This way, at each time step the boundary can 
be made permeable for several different k-values. The flexibility of the method is further enhanced by adjusting 
the variable k in every time step. As such, the method is similar to the time-independent J-Matrix approach, 
whereby an expansion of the wave function in Sturmian functions is adjusted at the border of the L2 function 
space to fit the expansion coefficients of the inner domain to those of the outer domain. The objectives of this 
article is three fold:

• Establishing an equation system for the one electron TDSE based on the mathematical foundations of the 
J- Matrix scattering theory and incorporating time-dependent asymptotic boundary conditions.

• Application to the photoionization of H in attosecond fields. This includes the numerical implementation 
and as a proof of the method comparing the results with values of other independent approaches. For this 
the H atom is exposed to few and half cycle laser fields.

• To assess how well Sturmian functions can describe the ionization dynamics in exterior fields whose strength 
is comparable with that of interior atomic fields.

To this purpose, we will first recapitulate the connection between Sturmian functions and Coulomb functions and 
then set up an equation system for the expansion coefficients. Subsequently, we derive the boundary conditions 
in the L2 function space. Then we explicate the numerical realization and present the results. We first examine 
the interaction of H with a weak few cycle attosecond pulse and then the strong field half cycle case. Next the 
ionization dynamics in half cycle pulses is discussed and then the interaction of H with two delayed attosecond 
pulses is illustrated. Finally we mention possible applications for future work.

In this article the atomic units used are ( e = ℏ = me = 1).

Theoretical methods
In time-independent collision theory, it was demonstrated in a series of  papers33–36 how Sturmian functions can 
be efficiently used not only to describe the bound state part but also the continuum part of the collision system. 
It is therefore opportune, to transfer the concept of Sturmian functions so successfully used in time-independent 
scattering methods to time-dependent processes involving ionization. For example in the J-Matrix theory the L2 
function space is divided in an interior and exterior asymptotic part. Coulomb-Sturmians are used to present 
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both parts on an equal footing, while at the boundary between the two parts the wave function is adjusted by 
the L2 analogon of the R-Matrix28.

To begin with, Sturmian functions - which are the basis of the J-Matrix method - will be presented in short 
and then the algebraic description of the Schrödinger equation will be developed. This results in a system of 
differential equations of first order in time, which will serve as the basis for specifying boundary conditions and 
the numerical implementation.

System of equations for the time propagation. The three-dimensional TDSE for an atom with core 
charge z is:

Herein V(�r, t) is an exterior electric field in dipole approximation, either given in length, velocity or acceleration 
representation. 

 Herein �E symbolizes the electric field strength, �A the vector potential and the polarization �ǫ of the electric pulse 
is given through �ǫ = �E/ E ,   �α is the excursion amplitude of the electron experienced by the field �E.

For (1) a partial wave decomposition is carried out and the wave function is expanded in the radial part in 
Coulomb-Sturmian functions φl

n(ξ r) and spherical harmonics Ylm in the angular part:

The expansion is cutoff at an upper value N which characterizes the L2 boundary. The time dependence is con-
tained in the expansion coefficients almn (t) ; the Sturmian functions are defined as follows:34–36

These are regular at the origin and consist of Laguerre polynomials L2l+1
n  , powers in r and decaying exponentials. 

ξ - within certain limits - is a freely selectable scaling parameter in radial direction. The function’s maximum is 
found to be roughly at 2n

ξ
 . As a result, by varying ξ , various areas in position space can be sampled.

The functions φl
n form a complete set, are not orthogonal, but tridiagonal, whereby Tl

n n′=
∫

dr φl
n φ

l
n′ only dif-

fers from 0 when n′ = n−1, n, n+1 . The integrals can be analytically evaluated: Tl
n n+1 = Tl

n+1 n = −(n+ 1)2l+2/ξ 
and Tl

n n = 2(n+ l + 1)(n+ 1)2l+1/ξ , with the Pochhammer symbol (a)b = Ŵ(a+ b)/Ŵ(a) . The tridiagonality 
of the matrix elements also applies to the radial Hamilton operator with angular momentum l:36 

 The expansion coefficients almn  will be determined using the Galerkin method on the one electron basis 
〈

Ylmφ
l
n

∣

∣ , 
whereby n lies in the interval [0, N]. Projection on this basis leads to a coupled system of differential equations 
of first order in almn  , thereby minimizing the deviation in the weighted mean for the expansion-coefficients:

Special attention has to be paid for the boundary N, which should be high enough to enclose the major part of 
the interaction term V(�r, t) . For n ≥ N it is assumed, that the net photon absorption tends to ∼ 0 , meaning that 
the electric field can be neglected. In addition there the time derivative of almN+1 is disregarded, leading to the 
following approximation at the boundary n = N:

(1)H �(�r, t) = (H0 + V) �(�r, t) = (−1

2
�∇2
r − z

r
+ V(�r, t) ) �(�r, t) = i

∂

∂t
�(�r, t)

(2a)VL (�r, t) = �E(t) · �r

(2b)VV (�r, t) = −i �A(t) · �∇

(2c)VA(�r, t) = z α(t) �ǫ · �r
r3

, �α(t) =
∫ t

0

�A(t′) dt′ , �A(t) = −
∫ t

0

�E(t′) dt′

(3)ψ (�r, t) =
N
∑

n=0

∑

l m

almn (t) Ylm(r̂)
φl
n(ξr)

r

(4)φl
n(ξ r) = e−ξ r/2 (ξ r)l+1 L2l+1

n (ξ r)

(5a)
∫ ∞

0

φl
n

(

−1

2

d2

dr2
+ l(l + 1)

2r2
− z

r

)

φl
n′ = hlnn′

(5b)hln n+1 = hln+1 n = ξ

8
(n+ 1)2l+2 and hln n =

(

ξ

4
(n+ l + 1)− z

)

(n+ 1)2l+1

(6)

〈

Ylm
φl
n

r

∣

∣H0 + V
∣

∣�(�r, t)
〉

=
〈

Ylm
φl
n

r

∣

∣H0 + V
∣

∣

∑

l′m′

N
∑

n′=0

al
′m′
n′ Yl′m′

φl′
n′

r

〉

= i
∂

∂t

(

Tl
n n−1 a

lm
n−1 + Tl

n n a
lm
n + Tl

n n+1 a
lm
n+1

)

(7)

〈

Ylm
φl
N

r

∣

∣H0 + V
∣

∣�(�r, t)
〉

= i
∂

∂t

(

Tl
N N−1 a

lm
N−1 + Tl

N N almN

)



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11155  | https://doi.org/10.1038/s41598-022-14706-9

www.nature.com/scientificreports/

Solving this equation according to i ∂
∂ t a

lm
N  gives:

Insertion into (6) with index N − 1 leads to:

The matrix elements Tl
n n′ are time-independent, equation (6) with radial indices n ∈ [0,N − 2] together with (9) 

with n = N − 1 defines N equations for the N + 1 unknown coefficients almn  for each partial wave. The Galerkin 
method is independent of boundary conditions, up to now, no boundary conditions had entered into equations 
(6) and (9). A single degree of freedom remains, which can be shaped so as to create outgoing wave conditions 
at the boundary limit n = N . This condition and the calculation of almN  will be derived below.

Boundary conditions. If the potential term V in (1) is ignored, the solutions are given by Coulomb func-
tions with energy E = k2/2 . These exhibit the asymptotic behaviour e+i(kr+ 1

k ln 2kr+ l π
2
) and e−i(kr+ 1

k ln 2kr+ l π
2
) 

and form a fundamental system of H0.
The corresponding Coulomb solutions �+

l  and �−
l  can be expanded in the infinite dimensional Sturmian 

basis φl
n and form the foundation of the J-Matrix method:28,34–36 

The expansion coefficients Q+l
n  consist of the Coulomb spectral-function �+l

0  and the Pollaczek functions q+l
n  , 

defined by

 and γ , χ and x are defined by

The second solution of the fundamental system (�+
l ,�

−
l ) arises via substitution k → −k . It needs to be men-

tioned that functions �+
l  and �−

l  only merge with corresponding Coulomb functions in the asymptotic limit 
r → ∞ when n-values are large, because with the L2 basis φl

n the irregular behaviour ∼ 1/rl+1 at the origin 
cannot be reconstructed.

The various forms of the dipole operator show different behaviours for r → ∞ . The acceleration operator 
scales like 1/r2 for r → ∞ , whereas the length and velocity form grow unhindered. In order to nevertheless 
formulate boundary conditions in the asymptotic function space for these cases, it is hypothesized that for large 
n-values the effect of the dipole operator can be neglected - this is equivalent that absorption and emission of 
photons occurs only in a restricted area around the nucleus. This approximation is strictly true only for the 
acceleration form, where only a restricted domain around r = 0 contributes in the interaction, but is also adopted 
here for length and velocity representation. With this approximation and assuming an unlimited propagation 
space, the coefficients almn  in (3) have to show outgoing wave behaviour for large n and each partial wave and are 
thus proportional to the Pollaczek-functions Q+l

n  appearing in (10a):

For sufficient large indices n the time evolution is entirely governed by the free field operator H0 and thus the 
quotient of the expansion coefficients almn−1/a

lm
n  in consecutive n− 1, n can be regarded as approximately equal. 

Then the following two equations at the boundary can be set up for the quotient of two consecutive coefficients: 

(8)i
∂

∂t
almN = 1

Tl
N N

〈

Ylm
φl
N

r

∣

∣H0 + V
∣

∣�(�r, t)
〉

− i
Tl
N N−1

Tl
N N

∂

∂ t
almN−1

(9)

〈

Ylm
φl
N−1

r

∣

∣H0 + V
∣

∣�

〉

− Tl
N N−1

Tl
N N

〈

Yl m
φl
N

r

∣

∣H0 + V
∣

∣�

〉

=

i
∂

∂ t

[

Tl
N−1N−2 a

lm
N−2 +

(

Tl
N−1N−1 −

(Tl
N N−1)

2

Tl
N N

)

almN−1

]

(10a)�+
l (r, k) =

∞
∑

n=0

Q+l
n (k, ξ) φl

n(ξr)

(10b)Q+l
n (k, ξ) = ξ

2π

(

E + ξ2

8

)

(n+ 1)2l+1 (2l + 1)! �+l
0

q+l
n

(10c)q+l
n (k, ξ) = −2 (n+2l+1)! (−ξ)n+1 Ŵ(l+1− iz

k )

Ŵ(n+l+2− iz
k )

2F1

(

−l− iz

k
; n+1; n+l+2− iz

k
; χ2

)

(10d)�+l
0 = eπ

z
2k Ŵ(l + 1− iz

k )√
2πk (2l + 1)!

(2 sin γ )l+1

sin γ =
√

1− x2 = kξ/2

E + ξ 2/8
, χ = ξ + 2ik

ξ − 2ik
= eiγ , x = E − ξ 2/8

E + ξ 2/8
= − cos γ

(11)almn (t) ∼ Q+l
n for n → ∞
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 At each time point ti in the time propagation the values of almn  for n ∈ [0,N − 1] are known, especially the values 
of almN−2 and almN−1 . It is then possible to solve equation (12a) for a complex k:

Herein, for pure outgoing behaviour, k is real and > 0 . Due to reflections at the numerical boundary, k can take 
on complex values: The case Re(k) < 0 corresponds to the unphysical event where the impinging wave is scattered 
back. So the procedure to avoid reflections and guaranteeing outgoing waves consists of setting Re(k) = 0 when 
Re(k) < 0 in each time step and each partial wave. With the k-value thus determined and adjusted if Re(k) < 0 , 
the expansion coefficient almN  can then be computed via the equation (12b):

In the high energy limit k → ∞ the Pollaczek-function can be analytically evaluated. This yields the limit 
condition:

Equations (13) and (14) are solved at each time step and for each partial wave. Thus k can vary and can be 
adjusted in each time step for each l. Using this procedure the probability of the electron to be in the interior 
zone n < N of the L2 function space decreases. This is also evident in the numerical simulations, where the test 
cases show a decreasing probability, dependent on the basis size and the scaling parameter involved.

Role of gauge. All three forms of the transitional operator (2) are equivalent given an infinite dimensional 
function space ( N→∞ ) and are connected via a gauge transformation. Because the operators are vectors, they 
only connect angular momenta differing by ±1 and states of different parity. Differences occur in their action 
in configuration and function space: The acceleration form corresponds to the Kramer-Henneberger’s reference 
system and results when a Taylor expansion of 1

|�r+�α| for a small quiver amplitude α is taken. Thereby regions close 
to the core are sampled and for r → ∞ the asymptotic behaviour is characterized by 1

r2
 . In contrast, the length 

and velocity forms grow without limit for r → ∞.
Like the matrix elements for H0 , the elements for the length and velocity form of the dipole operator show a 

narrow banded structure, while those for the acceleration form are not banded. The operators VL and VV connect 
only adjacent indices n, while VA leads to transitions to all Sturmians with n′ ≥ n : 

 With the length form, only orbitals with n′ ∈ [−3,+3] can be reached. Per time step the wave function spreads 
outward by three φl

n units. With the velocity form, the wave function propagates in time by two functions in the 
L2 function space.

Despite the fact that in position space the acceleration form is well localized at the origin, it spreads much more 
rapidly in the Sturmian function space. The behaviour is determined via the matrix element 

∫∞
0

drφl
n

1
r2

φl+1
n′  . 

This is  = 0 for all n′ ≥ n , i.e. in time propagation the whole φl
n space will already be occupied in the first time 

step, although it will decrease as n′-values rise. The acceleration form is nonlocal in the indices n, n′ and there-
fore less suited for time propagation. Evidence for this is also supported by numerical tests: In order to achieve 

(12a)
almN−2(t)

almN−1(t)
= Q+l

N−2 (k, ξ)

Q+l
N−1 (k, ξ)

(12b)
almN−1(t)

almN (t)
= Q+l

N−1 (k, ξ)

Q+l
N (k, ξ)

(13)
almN−2(t)

almN−1(t)
− N + 2l

N − 1

q+l
N−2 (k, ξ)

q+l
N−1 (k, ξ)

= 0

(14)almN (t) = N

N + 2l + 1

q+l
N (k, ξ)

q+l
N−1 (k, ξ)

almN−1(t)

(15)almN (t) = N

N + 2l + 1
almN−1 k −→ ∞

(16a)

〈

Ylm
φl
n

r

∣

∣ VL

∣

∣Yl′m′
φl′
n′

r

〉

�= 0 for l′ = l+1, n′ ∈ [n−3 , n+1]

or l′ = l−1, n′ ∈ [n−1 , n+3]

(16b)

〈

Ylm
φl
n

r

∣

∣ VV

∣

∣Yl′m′
φl′
n′

r

〉

�= 0 for l′ = l+1, n′ = n−2 or n′ = n

or l′ = l−1, n′ = n+ 2 or n′ = n

(16c)

〈

Ylm
φl
n

r

∣

∣ VA

∣

∣Yl′m′
φl′
n′

r

〉

�= 0 for l′ = l+1, n′ ≥ n

or l′ = l−1, n′ ≤ n
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convergence for the acceleration form, N has to be chosen much larger than in the length or velocity case with 
enormous costs on computer ressources.

Summing up: The length form and the velocity form are suitable for time propagation and provide comparable 
results to circa three digits. The acceleration form, however, is less suitable for the numerical time propagation 
within a Sturmian function approach.

Observables. After turning off the external field, relaxation occurs and the system can be described as a 
superposition of Coulomb waves. All information about ionization processes is contained in the expansion 
coefficients almn (t) . Physical observables like energy spectra are obtained by projecting �(r,Tf ) on Coulomb 
functions �−

k
 . These are normalized to incoming wave boundary conditions and correspond to an ionization 

experiment in which the energy of the photoelectron is measured after the ionization process.

The Coulomb wave �−
�k  can be expanded in spherical harmonics in the impulse and position directions and an 

energy-dependent radial function �L
E.

Herein σl(k) is the Coulomb scattering phase, given as arg [Ŵ(l + 1− i z
k )] , and � l

E corresponds up to a phase 
factor to the regular Coulomb function, normalized to an energy delta function.37

� l
E can, as is shown in the J-Matrix theory, be expanded according to the L2 functions φl

n :36

with �+l
0  and x given by (10) and pln is a Pollaczek-polynomial36. The function b�k is a measure how much a 

Coulomb wave with energy E and impuls �k contributes to the solution �(�r,Tf ) . The impulse distribution of the 
photoionized electrons can be further separated into an energy part clmE  with E = k2/2 and an angle part. The 
angle part of the electron impulse is characterized by spherical harmonics and expanded as following:

Insertion in (17) results in the following representation:

Integration over the angle part d�k and projection with �Ylm � l
E| gives:

The angle integrated cross section dP/dE, differential in energy, is defined as:

The coefficients clmE  can be determined analytically using the tridiagonal structure of the matrix elements of φl
n . 

The result is

Numerical realization
The equation system (6) and (9), together with the boundary condition (13) and (14), represents a differential 
equation system of first order for the expansion coefficients almn  , which is to be solved numerically by a Runge-
Kutta procedure. Written in vectorial notation: 

(17)�(�r,Tf ) =
∫

k2 dk d�k b�k �
−
�k

(18)�−
�k = 1

kr

∑

lm

il Y∗
lm(k̂) Ylm(r̂) e

−iσl � l
E

(19)� l
E = eπ

z
2k

|Ŵ(l+1−i zk )|√
2πk (2l + 1)!

(2kr)l+1 eikr �(l+1−i
z

k
, 2l+2, −2ikr)

(20)� l
E(k, r) =

∣

∣

∣
�+l

0

∣

∣

∣

∞
∑

n=0

n! (2l + 1)!
(n+ 2l + 1)! p

l
n(x, ξ) φl

n(ξr)

(21)b�k =
∑

l m

clmE Ylm(k̂)

(22)�(�r,Tf ) =
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′
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(23)clmE = (−i)l eiσl
〈

Ylm(r̂) �
l
E(r) | �(�r,Tf )

〉

(24)
dP

dE
=

∑

lm

clmE clm ∗
E

(25)clmE = (−i)l eiσl
∣

∣

∣
�+l

0

∣

∣

∣

ξ

2

1

E + ξ2

8

N
∑

n=0

(

n+ l + 1− 2z

ξ

)

almn (Tf ) pln(E, ξ)

(26a)H(t) a(t) = i
d

dt
T a(t)
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The matrix T is tridiagonal, time-independent and consists of the coefficients from the right side of (6) and (7). 
A transformation y(t) = Ta(t) leads to the standard form:

 The Hamilton matrix H in the basis of φl
n is block diagonal in l, the Hamilton matrix without laser interaction 

is tridiagonal and the dipole operator is pentadiagonal (depending on whether the length or velocity form is 
used). The time propagation is implemented with a Runge-Kutta method of 8th order with constant step width, 
depending on the dimension of the equation system. At each time step a matrix vector multiplication T−1y has 
to be carried out, and the resulting vector is then multiplied with the Hamilton Matrix. Due to the sparse occu-
pation of H, only a few calculation steps are involved. In order to achieve outgoing waves at the limit of the L2 
function space it is necessary, at every time step, to determine the value almN  pursuant to (14). To this purpose, the 
complex value of k is determined in accordance with (13). The Pollaczek functions q+l

n  are complex-valued and 
are calculated by means of the Gauss continued fraction. Due to the partial wave expansion, the corresponding 
k-values satisfying (12a) can be adjusted specifically for each l. So at each time step, the boundary can be made 
permeable for several k-values, thus enhancing the flexibilty of the boundary approach (11). The k-values are 
determined by a Newton procedure to determine a zero of (13). Because the k-values only change slowly from 
one time step to the next, the k-values of the previous step are used as a starting point for the Newton procedure, 
resulting in fast convergence after 3 - 4 steps. As can be seen in (12a) for determining the k-values, there is no 
coupling between different l. This makes it possible in the computer code to do the calculation in parallel on a 
multiprocessor system using a multithreading library.

The differential system (6) is stiff, resulting in decreasing time steps with increasing basis size. This is because 
the positive energy spectrum is not bounded. Increasing the basis size results in approximating more and more 
higher energy states, which oscillate strongly dependent on the energy. Thus for longer interaction times and 
huge basis sizes , a Runge-Kutta method is not the favourite method, in this case Lanczos procedures or a method 
proposed by  Fatunla30,38 can be considered as alternatives. A further approch to overcome stiffness and to extend 
the method into the femtosecond range would be to transform to a spectral representation by diagonalizing a 
large Hamilton matrix and to disregard the high energy eigenvectors. In the simulations presented in the follow-
ing part the time steps are adjusted properly and differ in the specific calculations dependent on the maximum 
number of functions used in the expansion (3).

All the calculations were carried out either in with the velocity or the length form of the dipole operator. 
The results using length or velocity form differ only minimally from one another and agree within the first 2 - 3 
digits. This is shown in Table 1 where the angle-integrated ionization probabilities at different energy values 
of the continuum electron are presented; length form shown in 2nd column, velocity form in 3rd column. The 
calculation is based on an interaction with E(t) = E0 sin(ωt) with E0 = 1, ω = 2 and a duration T = 2π

ω
= π ; 

it was calculated with 16 partial waves, each with 75 radial functions. For the results presented below a software 
package (Apfloat) was used for the numerical implementation. It permits calculations of arbitrary precision. 
Typically, 16- 25 digits were used. In order to achieve reliable, i.e. convergent results, the maximal number of 
partial waves, the number of radial functions N and also the scaling parameter ξ were varied. The results shown 
in the following section can be considered to be convergent with respect to these parameters.

Results and discussion
Apart from the stability of the computed values with regard to variation of the parameters like basis size, numeri-
cally predicted physical observables also have to be consistent with those of other work. This is pursued in this 
section where the quality of the L2 expansion is demonstrated. First, two cases are examined: 

1. In the weak field perturbative regime, the method is applied to a single attosecond pulse and results are 
compared with those of Della  Picca39 et al. who use a differencing scheme on a spatial grid.

(26b)H(t) T−1 y(t) = i
d

dt
y(t)

Table 1.  Angle integrated ionization probabilities dP/dE for specific energies, either calculated with length 
or velocity form of the dipole operator. Column 1: energy of the emitted electron, column 2: dP/dE calculated 
in length form, column 3: in velocity form.   The elctrical pulse is specified through E(t) = E0 sin(ωt) , 
E0 = 1, ω = 2 and a duration T =

2π
ω

= π.

Energy dP/dE Length form dP/dE Velocity form

1.0 E-7 6.812795733 E-1 6.814726531 E-1

1.0 4.991422878 E-2 4.991538581 E-2

2.0 1.120858896 E-2 1.121393579 E-2

3.0 2.706846038 E-3 2.705325366 E-3

4.0 5.470143966 E-4 5.458633989 E-4

5.0 9.416780915 E-5 9.510984557 E-5

6.0 1.650235575 E-5 1.606840606 E-5

7.0 3.542347196 E-6 3.577486619 E-6

8.0 9.787512464 E-7 8.938820317 E-7
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2. In the strong field case, the ionization of H in a half cycle pulse is investigated and compared with results of 
Duchateau et. al.40 who apply a B-Spline approach. The study is continued examining the dynamics of H in 
half cycle pulses and in a 12 cycle pulse. The results are compared with the First Magnus Approximation of 
Dimitrovski et al.41.

As a further application of the method, interference phenomena in two delayed attosecond pulses are analyzed.

Comparison with B‑spline and finite difference methods. To test the quality of the expansion in the 
perturbative regime, the same laser parameters used by Della Picca et. al.39 are chosen:

Herein ω = 1.71 , the number of cycles = 7, the total duration Tf = 25.72 , field strength E0 = 0.05 with linear 
polarization in z-direction. Fig. 1 shows the ionization spectrum of H with the ground state as the initial state. 
For the calculation, the velocity form was used and the convergence with respect to variation of the scaling 
parameter ξ and the basis size was tested. The electric field amplitude is considerably smaller than the inner 
atomic field strength. Thus, the one photon absorption dominates in the ionization spectrum, which can be 
clearly seen around E = 1.21 , where a maximum appears. At 2.9 a.u., the second peak turns out considerably 
smaller and corresponds to a two photon absorption. Due to the duration of 25.72 a.u., the laser pulse is of course 
not monochromatic, but spectrally distributed across the interval 

�
ω = 4π

Tf
≈ 0.5 . This also explains why the 

peaks at 1.21 and 2.91 are relatively wide. The significant structures in the area of the maximum at E= 1.2 are 
reproduced very well even with a basis size of 4 partial waves and 60 radial functions. In contrast, the structures 
in the area above 3.3 are smaller than at the maximum at E = 1.2 by a factor ∼ 10−7 . In order to resolve this area, 
it was necessary to adopt equations with eight partial waves and 240 radial functions in the L2 expansion. To give 
an impression about the convergence behaviour, calculations with different basis sizes for the cutoff parameter 
N in the expansion (3) are included. In all calculations 8 partial waves were employed. For N = 60 - thin green 
curve - the approximation is poor and only at the maximum at E ∼ 1.3 the result is reliable. For higher 
N (N = 120, 180, 240) the convergence behaviour improves, especially in the higher energy part above 1.8.

For comparison, results from [39] were integrated and shown by the red dotted solid curve . The minor 
differences above 3.5 a.u. can eventually be explained by the limited basis size and correspond to the high 
energy part of the wave packet which propagates outside in radial direction very quickly and thus reaches larger 
radial distances. The agreement - aside from the very weakly pronounced structure above 3.5 a.u - is remark-
able and shows that a hydrogen like Sturmian basis can very well approximate the ionization dynamics - at 
least in the perturbative regime. It is, of course, of particular interest just how accurate the processes can be 
described when the strength of the exterior field is of the same magnitude as the inner atomic field strength. 
To this purpose, calculations were carried out with the H atom exposed for a half cycle to an intense field 
with amplitude E0 = 1 . To ensure comparability, the same field parameters as in Duchateau et.al.40 were taken: 

(27)E(t) = E0 sin[ω(t − t0)] sin2
π t

Tf
, t0 =

Tf − π

2
, 0 ≤ t ≤ Tf

Figure 1.  Ionization spektrum of H after irradiation with a linear polarized few cycle pulse. The electric field of 
the pulse is depicted in the inlay, the pulse parameters are E(t) = E0 sin[ω(t − t0)] sin2 π tTf  , ω = 1.71 , 
Tf = 25.72 , E0 = 0.05 . Thick black solid curve (N=240): this work; red dotted curve: results from [39]. The thin 
curves in blue ( N = 60 ), green ( N = 120 ) and black ( N = 180 ) correspond to different values of the cutoff 
parameter N in (3).



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11155  | https://doi.org/10.1038/s41598-022-14706-9

www.nature.com/scientificreports/

E(t) = E0 sin(ωt − ωTf /2+ π/2) sin2(π t/Tf ), E0 = 1, ω = 0.05 with total duration Tf = 5 . The time depend-
ence of the electric field is illustrated in the inlet of Fig. 2; in contrast to Fig. 1 the ionization spectrum is depicted 
on a linear scale. Owing to the short pulse time, the spectral band width is significantly larger than in the previous 
example. The energy spread in the ionization spectrum is correspondingly wider. The values of Duchateau et. 
al.40 are added as red dots for purposes of comparison and display an excellent agreement. Duchateau et. al. used 
a B-spline basis for the expansion of the wave function and extracted the ionization spectrum via projection on 
Coulomb functions. The calculations in this work were carried out with 15 partial waves, each with 100 radial 
functions; the results are converged according to the basis size.

To sum up: From the time-independent J-Matrix method it is to be expected that an expansion in L2 Stur-
mians, normally used for bound states, should be well suited to describe ionization processes in weak external 
fields - this is confirmed in Fig. 1. Furthermore, Fig. 2 gives convincing results that the L2 expansion can also 
be applied to strong field processes in which the division of the system into ‘atom’ and ‘outer field’ no longer 
seems appropriate.

Building on these results, the following section examines the ionization dynamics of H in 0.5, 1, 1.5 and 12 
cycle fields.

Dynamics of H ionization in half and few cycle pulses. In this part, the effects of a half cycle pulse 
(HCP) on photoelectron spectra are considered. HCPs are a field of actual research, theoretically as well as 
 experimentally13,42–45. A HCP is an idealization and does not exist in reality; the time integral over the electro-
magnetic signal has to be zero. A HCP can be approximated by an unipolar one cycle pulse where the electric 
field in the first half cycle ist strongly peaked while the second half cycle is strongly prolonged with a much lower 
amplitude.

To begin with, the H atom, initially in its ground state, is exposed to one HCP with linear polarization of 
the form:

Fig. 3 shows the ionization spectrum after passage of a HCP with duration Tf = 0.5 2π
ω

 for different values of the 
electric field amplitude: E0 = 0.1, 0.5, 1.0, 1.5, 2.0 . These values comprise intensities which can be treated via 
perturbation theory, and values, which are comparable to, or larger than the inner atomic field strength. From 
Fig. 3 it becomes evident that for larger values of the field amplitude E0 a significantly pronounced maximum 
appears that begins for E0 > 1.

This behaviour stands in excellent congruence with the short time approximation, i.e. First Magnus Approxi-
mation, developed by Dimitrovski et al.41. In this approach, the transition probability for short interaction times 
(compared to the atomic orbital time of electrons) is expressed through:

The transition probability is independent of the exact form of the electric pulse and only dependent on the time 
integral over the elctric field �q =

∫ t
0
dt′ �E(t′) , which describes a momentum transfer averaged over time. The 

same matrix element also appears in atomic scattering processes in the first Born approximation. In this case, q 
designates the momentum transfer of the incident particle on the target atom. The final state wave function can 

(28)E(t) = E0 sin(ωt), ω = 2, t ∈ [0,Tf ]

(29)Pfi =
∣

∣

∣

〈

φf | e−i�q�r |φi
〉∣

∣

∣

2

Figure 2.  Ionization spektrum of H after irradiation with a half cycle pulse. The 
electric field of the half cycle pulse is depicted in the inlay, the pulse parameters 
areE(t) = E0 sin(ωt−ωTf /2+π/2) sin2(π t/Tf ), E0 = 1, ω = 0.05 with total duration Tf = 5.Black solid 
curve: this work; red dotted curve: results from [40].
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be approximated for larger kinetic energies and, therefore, for large momentum transfers q, by plain waves. For 
the matrix element this results  in41:

It is this very behaviour that Fig. 3 illustrates, although here it is calculated by solving the three-dimen-
sional Schrödinger equation with an L2 approach. According to (30), the maximum ionization probability is 
E = q2

2
− |Ei| , where Ei denotes the ground state energy of the H atom. For q < 1 this maximum is in the nega-

tive energy range, which doesn’t contribute to the ionization spectrum. For q > 1 the maximum shifts further 
outward into the positive, and therefore measurable, energy range. The correspondence of the ‘exact’ solution 
of the TDSE, and the results as predicted by the First Magnus Approximation, is excellent. In Fig. 3, the black 
curve with field amplitude E0 =1 corresponds to the q = 1 case of the short time Magnus approximation, these 
are shown as red dots and are nearly congruent.

Figure 4 shows the electron density along the z-axis after passage of one HCP and two HCPs, each with linear 
polarization pointing along the z-direction and again with the H atom initially in its ground state. In the one 
HCP case the density is strongly located at negative z-values with a maximum at z ∼ 3.0 . When one observes a 
pulse consisting of a full oscillation cycle, the electric field in the second half cycle reverses its sign: the electron is 
slowed down and electrons with low energies are accelerated back toward the nucleus; there they can eventually 
recombine to bound states. This behaviour is clearly evident in the full cycle case shown by the dashed curve in 
Fig. 4. The electron density is shifted to smaller negative z-values. To sum up, the electron density shows, that, 

(30)Pfi = (2z)5

4π2

1

(|�q+ �k|2 + z2)4

Figure 3.  Ionization spektrum of H after irradiation with a half cycle pulse. The electric field of the half cycle 
pulse is depicted in the inlay: E(t) = E0 sin(ωt), ω = 2 . The full curves correspond to different amplitudes of 
the half cycle pulse, the red dots are taken from Dimitrovski et al.41 and correspond to q=1 of the First Magnus 
Approximation.

Figure 4.  Electron density along the z-axis. Full curve: after passage of a half cycle pulse, dashed curve: after 
one full cycle Field parameters: E(t) = E0 sin(ωt), ω = 2, E0 = 1.0
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even after a symmetrical pulse (here, after a whole cycle) and a spatial isotropic initial state (here 1s ground state), 
the system is asymmetrically localized along the electric field direction.

In Fig. 5, the energy spectrum after interaction with one, two and three HCPs is presented, each for different 
field amplitudes E0 . In the E0 = 0.1 case ( upper panel) and after passage of one HCP, electrons are mainly emitted 
with energies ∼ 0 and the probabilty drops down during the second cycle, while for electron energies > 0.3 the 
probabilty increases slightly - see the black curve. The case E0 = 0.1 corresponds to the perturbative regime, the 
electric field in the second half cycle is so weak, that it can only accelerate back the low energy electrons freed in 
the first half cycle. The situation changes with increasing field strength, as can be seen from the mid and bottom 
panel of Fig. 5. Here the field strength is ‘high enough’ in the second half cycle to effect also the higher energy 

Figure 5.  Ionization spectra of H for different numbers of half cycles Nc and different field amplitudes E0 . (a): 
E0 = 0.1 , (b): E0 = 1.0 , (c): E0 = 1.5 . Please note, the diagrams contain different scalings of dP/dE.
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electrons, emitted in the first half cycle. In the very strong field case with E0 = 1.5 ( bottom panel) during the 
second half cycle the electron density increases around threshold and decreases for higher energies. High energy 
electrons freed in the first half cycle are decelerated and return back to the nucleus, but a considerable fraction 
has still positive energy, even after deceleration.

If the number of cycles is increased, the ionization spectrum shows the characteristic peak structure of above-
threshold ionization corresponding to the long time limit: In Fig. 6, the ionization spectrum for an interaction 
time of 12 whole oscillation cycles with ω = 2 and E0 = 1 is presented, this time on a logarithmic scale. The 
spectral width is reduced in comparison to one and two HCPs; the pulse is significantly more monochromatic. 
This effects the spectral energy distribution: Above the threshold peaks appear; their magnitudes decline with 
increasing order. They correspond to absorption of photons of frequency ω = 2 : The first at ∼ 1.5 and the other 
at energies E = nω − Ei , where Ei is the ground state energy and n specifies the number of photons absorbed.

Summarizing the results from Fig. 3, 4, 5 and 6:

• The ionization spectrum in the one half cycle case shows excellent agreement with the First Magnus Approxi-
mation calculation of Dimitrovski et. al.41.

• In the case of one whole interaction cycle, recombination occurs in the second half wave, which leads to 
reduced ionization, but the ionization outweighs the recombination.

• Increasing the number of field cycles, the charcteristic above-threshold ionization structure - with peaks for 
integral multiples of the oscillation frequency - are successfully reproduced.

The methods developed in this work can be extended to more complex tailored fields, for example delayed 
attosecond pulses. An example of this will be examined below.

Delayed attosecond trains. In the case of several time-delayed attosecond pulses, interference patterns 
in the ionization spectrum occur, which scale with the time delay between the individual pulses. In this part, the 
ionization spectrum for interaction of two delayed pulses of the form

is investigated. Here TD describes the time delay, T1=N1
2π
ω

 , T2=N2
2π
ω

 , ϕ1=π(N1 − 1
2
) , ϕ2=π(N2 − 1

2
)) and N1,N2 

characterize the number of cycles for pulse 1 and 2. The individual pulse durations are sufficiently short, so that 
electrons are emitted in a wider energy range. Assuming that the electrons are released independently in each 
pulse - implying that the first wave packet is not affected by the second pulse- and that they overlap in energy, 
the interference pattern can be understood by modelling the electron wave packets by plane waves. During the 
first pulse, a wave packet with energy E is created at time t ′ which develops to time t according to a1(E)e−iE(t−t′) 
with amplitude a1 . At creation time t ′ the system - initially in its ground state with energy Ei - contributes a phase 
factor e−iEit

′ to the wave packet. Adding this phase results in: 

The time delay is sufficiently short, so that the phase accumulation due to the Coulomb force in [T1,T1 + TD] can 
be disregarded. In the second pulse, the electron is released at t2 = T1 + TD + t ′ , and the phase of the ground 
state develops according e−iEi(T1+TD+t′) , giving :

(31)E(t) =







E0 sin[ωt − ϕ1] sin2[π t
T1
] , t ∈ [0, T1]

0 , t ∈ [T1,T1 + TD]
E0 sin[ω(t − T1 − TD − ϕ2)] sin2[π (t−T1−TD)

T2
] , t ∈ [T1 + TD , T2]

(32a)A1 = a1(E) e
−iE(t−t′)−iEit

′

Figure 6.  Ionization spectrum after passage of a 12 cycle pulse with field parameters: 
E(t) = E0 sin(ωt), ω = 2, E0 = 1.0.
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 The two wave packets overlap in energy. Superposing A1 and A2 and evaluating the squared modulus gives for 
the ionization spectrum:

The maxima and minima are determined through the argument of the cosine function

and are independent of the electric field strength. Figure 7 shows the ionization spectrum after interaction with 
two delayed attosecond pulses for two different field amplitudes. The electric field has the form of (31) with 
ω = 2 and E0 = 1 (black curve) and E0 = 2 (red curve). Each pulse consists of two cycles and the time delay is a 
whole oscillation period, TD = π = 2π

ω
 . By way of illustration, pursuant to (34), the maxima are incorporated and 

represented by dashed vertical lines. The gap is given by 2π/(T1 + TD) and provides an excellent correspondence 
of the modulation pattern with the predictions from equation (34). When E0 = 2 , the ionization probability is 
greatly enhanced. For both field strengths, maxima and minima are shown at the same position and fit surpris-
ingly well with (34). The agreement of the interference structure with this plane wave approximation suggests 
the follwoing picture - at least in the strong field limit:

• The Coulomb interaction plays only a minor role; the interference structure can be described by plane waves.
• The wave packet produced by the first pulse is hardly affected by the second pulse (single photon regime). The 

oscillations in the energy spectrum can be seen as amplitudes and phase dependent overlays of the individual 
wave packets.

• Vice versa, the time delay of the pulses can be reconstructed from the interference patterns, while the height 
of the peaks scale with the field strength of the pulse.

Conclusion
The aim of this article was to realize a TDSE solution with asymptotic boundary conditions based on L2 functions 
which minimize reflections. These boundary conditions were formulated as outgoing waves based on analytical 
functions of the J-Matrix scattering theory. The method presented herein is competitive with other techniques 
like B-Spline or finite difference procedures and gives consistent results.

• The L2 approach makes explicit use of the known analytic asymptotic solutions, which are fitted to the coupled 
differential equation system of the TDSE. The numerical implementation is significantly more efficient: at 
every time step the Hamilton matrix is only sparsely occupied. The affected matrix elements can be calculated 
a priori and standard procedures can be implemented for the time propagation.

• The determination of an optimal value for minimizing reflections can be realized adaptively in every time 
step, but does require a higher effort to calculate the Pollaczek functions.

• Physically relevant observables can be extracted by projecting the time dependent wave function onto ana-
lytically known Coulomb functions of the J-Matrix scattering theory.

(32b)A2 = a2(E) e
−iE(t−T1−TD−t′)−iEi(T1+TD+t′)

(33)
dP

dE
∼ [A1 + A2][A1 + A2]

∗ = |a1|2 + |a2|2 + 2|a1a2| cos[(E − Ei)(T1 + TD)]

(34)Emin = Ei +
π

T1 + TD
(2n+ 1), Emax = Ei +

π

T1 + TD
(2n), n = 0, 1, 2 . . .

Figure 7.  Ionization spektrum of H after irradiation with two delayed pulses according to (31). The electric 
field of the pulse is depicted in the inlay with N1 = N2 = 2, ω = 2, TD = 2π/ω . The curves correspond to 
different field amplitudes: black curve: E0 = 1 ; red curve: E0 = 2 . The vertical lines illustrate the positions of the 
maxima predicted by (34).
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A priori, it is to be expected that, with an expansion according to L2 functions, this basis will describe the underly-
ing phenomena well such as multiphoton ionization or above-treshold ionization in the weak field area which is 
also accessable via perturbation theory. A further aim of this article is to explicate the quality of L2 expansion in 
areas in which a perturbation theoretical treatment no longer applies, i.e. in areas, where the strength of exter-
nal fields become similar to or stronger than the inner atomic fields. The results can be summed up as follows:

• The method presented in this article allows one to describe ionization phenomena which are no longer acces-
sible according to perturbation theory. The findings compare well with other independent methods.

• For short times, there is an excellent congruence with other independent approaches such as the B-spline 
and short time Magnus approximation.

• Interference structures in the ionization spectrum, based on delayed attosecond pulses, are successfully 
reproduced.

Only a small proportion of processes in attosecond fields were examined in this article. The method discussed 
here is well suited to describing other interesting phenomena:

• Description of the energy spectra, when phase effects of the external few cycle field are considered (Carrier 
Envelope Phase).

• Description of atomic systems within the single active electron approach. There the action with the core is 
incorporated through an effective potential, which in many cases contains a screened Coulomb potential and 
sums of exponentials combined with powers in the radial coordinate. Such potentials can be represented by 
Sturmian functions and can be implemented in the method presented herein.

• Description of recombination and generation of higher harmonics (HHG). This can be achieved through 
Fourier transformation of the time-dependent wave function.

• The modelling of the ionization dynamics when bound resonant intermediate states are involved.
• The method presented here can principially used for more exotic tailored external fields, e.g. vortex laser 

fields.
• The simulation of scattering effects in a diatomic molecule ion in the Born Oppenheimer approximation. 

This can be considered by making allowance for a further potential term in the TDSE.

Data availability
The numerical datasets generated during the current study are available from the corresponding author upon 
reasonable request.
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