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Integrating chromatin accessibility 
states in the design of targeted 
sequencing panels for liquid biopsy
Pegah Taklifi1, Fahimeh Palizban2 & Mahya Mehrmohamadi1*

Dying tumor cells shed DNA fragments into the circulation that are known as circulating tumor DNA 
(ctDNA). Liquid biopsy tests aim to detect cancer using known markers, including genetic alterations 
and epigenetic profiles of ctDNA. Despite various advantages, the major limitation remains the low 
fraction of tumor-originating DNA fragments in a high background of normal blood-cell originating 
fragments in the cell-free DNA (cfDNA) pool in plasma. Deep targeted sequencing of cfDNA allows for 
enrichment of fragments in known cancer marker-associated regions of the genome, thus increasing 
the chances of detecting the low fraction variant harboring fragments. Most targeted sequencing 
panels are designed to include known recurrent mutations or methylation markers of cancer. Here, we 
propose the integration of cancer-specific chromatin accessibility states into panel designs for liquid 
biopsy. Using machine learning approaches, we first identify accessible and inaccessible chromatin 
regions specific to each major human cancer type. We then introduce a score that quantifies local 
chromatin accessibility in tumor relative to blood cells and show that this metric can be useful for 
prioritizing marker regions with higher chances of being detected in cfDNA for inclusion in future panel 
designs.

Liquid biopsy refers to the minimally invasive detection of cancer biomarkers in bodily fluids1. Dying cells in 
the body, including those originating from tumors, shed DNA fragments into the blood and make up a pool of 
short circulating fragments known as cell-free DNA (cfDNA). Fragments of a diseased tissue of origin harbor 
genetic and epigenetic markers of the disease, e.g., somatic mutations or DNA methylation markers. Detect-
ing these markers simply from the plasma of cancer patients offers a number of advantages over classic tissue 
biopsy, including the elimination of biopsy bias, convenient and minimally invasive identification of personal-
ized markers for therapeutic decisions, monitoring of relapse, tissue of origin determination, early detection 
and screening among others1. However, the clinical power of cfDNA-based technologies is limited by the fact 
that fragments originating from a diseased tissue of interest typically contribute only a small fraction of the 
cfDNA pool, especially in early stages, given the over 80% presence of cfDNA fragments from blood cells during 
normal turnover2,3. The high background of non-marker-harboring fragments in cfDNA necessitates the use of 
very sensitive experimental methods. Next-generation sequencing can reach this sensitivity provided sufficient 
sequencing depth is reached at marker regions4. To avoid cost-prohibitive deep whole genome sequencing, tar-
geted sequencing panels are designed to enrich and sequence only small portions of the genome that are likely 
to harbor disease markers5–9.

Targeted sequencing panels for human cancers are typically designed through mining of tumor genomic data 
for identification of recurrent modifications. Most of the currently existing designs are based on pan-cancer or 
cancer-type-specific genetic lesions5–11. However, this limits the utility of liquid biopsy to diseases associated with 
somatic genetic aberrations, and even among those, only to subtypes with multiple known recurrent mutations 
or known driver genes. To improve the sensitivity of mutation detection, several diverse methods have been 
proposed, including barcoding fragments with unique molecular indices (UMI) followed by error suppression12, 
using the phasing of multiple somatic mutations in individual DNA fragments13, and machine-learning based 
scoring to prioritize driver mutations for inclusion in panel designs14.

Cancer mutations are rare across the genome, can be hard to distinguish from non-cancer mutations in 
blood cells that arise from clonal hematopoiesis, and most do not inform tissue of origin. To further broaden the 
utility of liquid biopsies and improve their performance, focus has shifted to epigenetic markers either alone or 
in combination with mutations15–17. Given the large number and wide distribution of tissue-specific epigenetic 
markers across the genome that are not normally present in cfDNA in abundance, this significantly increases 
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the sensitivity for detection. Furthermore, this strategy is generally applicable across conditions associated with 
tissue-specific cell death, regardless of the existence of mutations in diseased tissues. Previous studies have shown 
the utility of DNA methylation markers in various diseases, including cancer3,18–24. However, specific targeting 
of differentially methylated regions of interest typically involves bisulfite conversion, which causes degradation 
of DNA in already low levels of cfDNA, and also is not readily integrable with somatic mutation panels.

It has been established that open chromatin regions undergo higher degradation and fragmentation in cfDNA 
due to the function of nucleases. The differences in accessibility of chromatin across genomic regions are mani-
fested as differences in fragmentation patterns in cell free DNA and can inform tissue of origin. Features of 
this non-random fragmentation pattern include a decrease in sequencing depth and fragment lengths in open 
regions compared with regions protected by DNA-binding proteins25–27. Distinct nucleosome positioning and 
chromatin compactness at tissue-specific regulatory regions that lead to fragmentation profiles in cfDNA have 
been proposed as alternative epigenetic markers17,28–32.

To further improve sensitivity for early detection, integration of genetic markers with fragmentation infor-
mation has been proposed17,33–35. For instance, given an overall increase in fragmentation of tumor-originating 
DNA36, size selection of cfDNA fragments to enrich those between 90 and 150 bp in length helped improve 
somatic mutation detection33. Another study on pediatric cancers with low mutational burden also showed 
improved detection by integrating fragment length (ratio of short to long) as well as coverage across the genome35. 
Improved detection when combining mutations with fragmentation features was also reported for and addi-
tional 7 cancer types17. Another recent study combined fragment length features at personalized mutation sites 
in Glioma to improve detection36.

In the recent years, an unprecedented amount of data on chromatin accessibility profiles (ATAC-seq) of 
primary human tumors has become available through the cancer genome atlas (TCGA)37. This allows for the 
use of machine-learning based approaches to identify cancer-type-specific accessibility profiles. These fragmen-
tation features can be incorporated into future targeted sequencing panel designs for liquid biopsy purposes. 
Such panels would offer several advantages over the existing alternatives, including not being limited to known 
genetic lesions, being conveniently integrable with mutation regions for complementing existing panel designs, 
and offering precise regulatory region enrichment without requiring bisulfite conversion. Here, we introduce 
a novel pipeline that incorporates accessibility information toward identification of marker regions for cancer 
detection in cell-free DNA. We develop a score based on relative chromatin accessibilities of blood and tissue 
and show its utility in optimization of panel designs.

Results
Chromatin accessibility differences are reflected in fragmentation patterns of cell‑free 
DNA.  We hypothesized that since ATAC-seq profiles represent chromatin accessibility across the genome, 
they are reflected in fragmentation patterns seen in cell-free DNA. To establish this, we obtained deep whole-
genome sequencing data from healthy cfDNA from a previous study27. Since cfDNA in healthy individuals is 
known to mainly consist of blood-cell originating chromatin fragments2, we reasoned that blood cell acces-
sibility across the genome should be associated with cfDNA fragmentation patterns. We, therefore, obtained 
ATAC-seq data of healthy PBMC from EGAS0000100260538, neutrophils from GEO15352039, and endothelial 
cells from GSE14577440 (“Methods”, Figure  S1, Supplementary Data 1). Genomic regions were then divided 
into two main categories of ‘lowly accessible’ and ‘highly accessible’ according to blood ATAC-seq (Fig. 1a). 
For each region, we calculated total fragment depth as well as median fragment length in deep WGS data from 
healthy cfDNA samples (“Methods”). As expected, we observed significantly higher depth in lowly accessible 
regions compared to highly accessible regions in healthy cfDNA from two independent individuals consistently 
(Fig. 1b; Fig S2A). Similarly, when comparing median fragment length, the same pattern was seen consistent 
with higher expected fragmentation (shorter fragments) in accessible regions (Fig. 1c; Fig. S2B). Our results 
in samples from healthy individuals showed a negative correlation between a region’s total fragment depth and 
median fragment length in whole-genome sequencing cfDNA data with its corresponding accessibility in blood 
cell genomic DNA (Fig. 1d,e). Importantly, we observed consistent results in deep WGS data from cfDNA of 
healthy individuals prepared by the standard as well as single-strand library preparation methods (Fig S2C,D), in 
which short fragments in cfDNA pool are enriched27. Comparing two cfDNA samples sequenced with different 
coverages (~ 100 × in Fig. 1 and ~ 30 × in Fig. S2), our results suggest that increasing sequencing coverage leads to 
more pronounced manifestation of fragmentation features in cfDNA, further confirming the utility of targeted 
sequencing for liquid biopsy.

Having confirmed the ability of ATAC-seq profiles in determining fragmentation features in healthy cfDNA, 
we next set out to develop a pipeline in which ATAC-seq data from solid tumors as well as normal blood cells 
are integrated to calculate a score that we call the Relative Accessibility Score (RelAccS) across the genome 
(“Methods”). We take this score as a surrogate for relative contributions of tumor-originating fragments vs. blood 
originating fragments in cfDNA. As detailed in the following, we next set out to introduce two types of candidate 
liquid biopsy marker selection approaches: 1—based on cancer-specifically accessible regions; and 2—based on 
cancer-specifically inaccessible regions.

Liquid biopsy panel design based on accessible regions.  Here, our goal was to identify genomic 
regions that are specifically highly accessible in cancer types of interest but inaccessible in blood cells and other 
cancer types. We built classifiers using such regions as input features to distinguish each cancer type from other 
cancer types in the TCGA ATAC-seq dataset (Fig. 2a, “Methods”).

These classifiers were able to distinguish each cancer type of interest from the rest using ATAC-seq counts 
in cross validation with near-perfect specificity and sensitivity, confirming the high level of tissue-specificity in 
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accessibility profiles (Supplementary Data 2). By selecting top features from our workflow, cancer-specifically 
accessible regions that overlap closed chromatin in blood are selected from among the ATAC-seq peaks (Fig. S3; 
“Methods”). For most cancer types, the top peaks identified here were also originally identified by the TCGA 
as peaks called in that same cancer (Fig. S3). For instance, all peaks identified as the top 20 regions for breast 
cancer have the BRCA-prefix from the TCGA code, and the same is observed for COAD and PRAD (Fig. S3). 
Due to limited sample sizes, we combined the two subtypes for lung (LUAD and LUSC) as well as kidney (KIRP 
and KIRC) cancers, for which peak names have prefixes from one of the two subtypes in each case (Fig. S3). 
For cancers of the gastrointestinal system STAD and COAD, peaks from other similar tissues are also observed 
among the top regions, consistent with the physiological and molecular similarities of these tissues (Fig. S3).

The top regions selected for the seven cancer types in this study are shown in the heatmap in Fig. 2b. As 
expected, most samples from the same tissue type cluster together when using the ATAC-seq normalized counts 
from our selected regions (Fig. 2b; “Methods”), confirming the tissue-specificity of open chromatin regions. Some 
of the identified peaks overlap with promoter regions of genes with known tissue-specifically high expression 
levels (Fig. S4), confirming the validity of our workflow. For instance, promoter regions of Human kallikrein 
2(KLK2) in prostate, Apolipoprotein A1 (APOA1) in liver, NK6 homeobox 3 (NKX6.3) in stomach, paired box 
gene-8 (PAX-8) in kidney, and Surfactant Protein B (SFTPB) in lung cancers were among the selected markers 
from our pipeline (Fig. S4).

Next, to validate our findings, we obtained deep (> 15x) WGS data on cfDNA samples from cancer types in 
our study in which such data was publicly available27. The cancer-specifically accessible regions identified by 
our pipeline were assessed in cancer and healthy cfDNA in terms of fragmentation pattern (“Methods”). In each 
case, we observed lower median fragment length in corresponding cancer cfDNA compared with healthy cfDNA 
(Fig. 2c–f). These results confirm our expectation of higher fragmentation and degradation in accessible regions 
and suggest the potential utility of these regions as biomarkers.

Liquid biopsy panel design based on inaccessible regions.  Beside cancer-specific ATAC-seq peaks 
corresponding to tissue-specifically accessible regions, we also set out to analyze this dataset for identification 
of tissue-specifically inaccessible regions. We reasoned that this information can be incorporated in various con-
texts of panel designs for prioritizing among genomic regions. We considered the following scenarios for each of 
the 7 cancer types in the study: panels based on fragmentation patterns of inaccessible regions, and panels based 
on known mutation or differentially methylated region (DMR) markers.

Figure 1.   Chromatin accessibility differences are reflected in cfDNA fragmentation patterns (a). Workflow 
diagram showing how blood ATAC-seq data was used to define genomic regions with low and high accessibility. 
(b) Total number of fragments per region is shown in deep (~ ×104) WGS sample from cfDNA of a healthy 
individual (IH01 from27 Mean in the low group = 47,891; Mean in the high group = 8381. (c) Median fragment 
length per region is shown in deep (~ ×104) WGS sample from cfDNA of a healthy individual (IH01 from27. 
Whiskers show 10–90 percentile (Mean in the low group = 192.4; Mean in the high group = 111.3). (d,e) Pearson 
correlation analysis of accessibility with coverage depth (d) and with fragment length (e) in cfDNA sample of a 
healthy individual (IH01 sample from27) in blood cells (“Methods”).
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Designing cancer‑specific panels.  Inaccessible chromatin regions are manifested as local increases in 
sequencing depth and fragment length in cfDNA due to lower exposure to nucleases25–27. Cancer-specifically 
closed chromatin regions may serve as a class of epigenetic biomarkers if their fragmentation patterns are suffi-
ciently distinct from that of background cfDNA from blood and other cells. To identify such regions, we used the 
cancer-specific local relative accessibility scores as previously described (“Methods”) and filtered regions based 
on the difference of ATAC-seq signal in tumor vs. blood (RelAccS < − 1.5). We first obtained a list of genomic 
regions that are open in blood cells but closed in  each cancer type separately (Fig. 3a). Next, we input these 
regions into classifiers as features, to allow for the selection of top cancer-type specific inaccessible regions (Sup-
plementary Data 3). These classifiers reached high specificity across the cancer types in cross validation (Sup-
plementary Data 4) and were able to distinguish cancer types from blood and from each other in ATAC-seq data 
(Fig. 3b; Fig. S5). As expected however, closed chromatin regions are less cancer-specific compared with open 
regions and they mostly fall into distal regulatory elements in the genome. Different tissues have overlapping 
closed regions, while most open regions were specific. Thus, peak names of top features show great variation in 
terms of which TCGA cancer type they were originally called in37 (Fig. S5).

Next, we used the same deep WGS data from cfDNA samples to evaluate the cancer-specifically inacces-
sible regions identified by our pipeline (“Methods”). In each case, we observed higher median fragment length 
in corresponding cancer cfDNA compared with healthy (Fig. 3c–f). These results confirm our expectation of 
lower fragmentation and degradation in inaccessible regions of chromatin and suggest potential utility of these 
regions as biomarkers.

Prioritizing mutation and methylation marker regions for future panels.  In addition to identi-
fying novel tissue-specific liquid biopsy markers, the relative chromatin accessibility scores can help prioritize 
known cancer-specific marker-harboring regions (e.g., mutations and methylation markers). Typically, targeted 
sequencing panels for liquid biopsy are designed to cover recurrent somatic mutations4,8,9 or DMR regions18,19 
specific to one or more cancer types of interest. It has previously been established however, that even when 
ctDNA is detected with sensitive methods, only a subset of somatic mutations that are found in tumors are also 
called in the plasma5,14,41. Whether or not a tumor-associated variant is faithfully reflected in the ctDNA variant 
pool depends on multiple known and perhaps some unknown factors14,19.

Figure 2.   Tissue specifically accessible panels design and evaluation (a). Workflow diagram showing our 
pipeline for identification of cancer specifically accessible regions. (b) Heatmap of normalized ATAC-seq counts 
in top 30 regions identified as cancer-specifically accessible across seven cancer main cancer type of TCGA 
samples. (c–f) Deep whole genome sequencing cfDNA data from four cancer patients as well as that of a healthy 
individual (obtained from27) were assessed for fragmentation pattern. For each tissue specifically accessible 
region, median fragment length was compared in corresponding cancer patient cfDNA and healthy cfDNA with 
a t-test; blue: cancer patient cfDNA, red: healthy individual cfDNA (BRCA​ breast invasive carcinoma, kidney 
both subtypes of KIRC: kidney renal clear cell carcinoma and KIRP: kidney renal papillary cell carcinoma, 
lung both subtypes of LUSC: lung squamous cell carcinoma and LUAD: lung adenoma carcinoma, COAD 
colon adenocarcinoma, LIHC liver hepatocellular carcinoma, STAD stomach adenocarcinoma, PRAD prostate 
adenocarcinoma).
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One of the factors that explains part of this variation in detectability and prevalence of different tumor 
markers in the plasma is chromatin compaction state. It has previously been established that compared to open 
chromatin regions from the same cells, closed chromatin and nucleosome occupied regions are over-represented 
in cfDNA due to lower amount of degradation and fragmentation25,27,29,30. Based on this, we hypothesized that 
mutation- or DMR-harboring regions that fall into inaccessible chromatin contexts in the cancer of interest (high 
signal), but fall in accessible chromatin regions in blood cells (low noise) have a higher chance of being detected 
given the increased fraction of tumor-derived fragments in cfDNA.

Here, we first calculated the local relative accessibility scores using ATAC-seq data from tumor and blood 
across the genome for each of the cancer types in this study (Fig. 4a, “Methods”). Next, we obtained a list of 
known recurrent somatic mutations from COSMIC and tissue-specific DMRs from methHC42 that are frequently 
used in panel designs (Fig. 4a). We then ranked these marker-harboring regions based on our score for liquid 
biopsy panels. Our ranked lists for each cancer type can help future panel designs by allowing researchers to 
prioritize mutations and DMRs based on representation in cfDNA (Supplementary Data 5).

To validate the utility of using RelAccS for marker prioritization, we evaluated cell-free DNA of cancer patients 
with matched tumor in prostate cancer14. We hypothesized that since DNA fragments from regions with low 
accessibility in tumor but high accessibility in blood (RelAccS < 0) should be better represented in cfDNA than 
those with the opposite pattern (RelAccS > 0), allele frequencies in cfDNA should better reflect those in matched 
tumors for the former scenario. We indeed observed a higher correlation between AF of mutations that were 
detected in both tumor and cfDNA for regions with a negative RelAccS (r = 0.49) compared with regions with a 
positive RelAccS (r = 0.15) (Fig. 4b). It is important to note that tumor heterogeneity, purity, shedding, and other 
factors also contribute to variation in VAFs among different mutations . However, we assumed that the genomic 
context has the dominant contribution to variation in AFs of various mutations in the same individual. Our 
results show potential utility of the RelAccS criteria for marker selection as markers falling in genomic regions 
associated with lower RelAccS scores are more likely to be represented in cfDNA.

Discussion
Liquid biopsy testing for cancer detection relies on high quality marker selection and targeted sequencing panel 
design. The success rate for detection of somatic mutations in liquid biopsy is variable and dependent on many 
factors such as clonal heterogeneity, tumor fraction, background of hematopoietic mutations, and sequencing 
error rates. A recent study used a machine-learning based scoring strategy to prioritize driver mutations for inclu-
sion in panel designs14. In many cancer types, mutation-based panels are limited by the number and recurrence 

Figure 3.   Tissue specifically inaccessible panels design and evaluation (a). Workflow diagram showing our 
pipeline for identification of cancer-specifically inaccessible regions. (b) Heatmap of normalized ATAC-seq 
counts in top 30 regions identified as cancer-specifically inaccessible across TCGA samples. (c–f) Whole 
genome sequencing data of cfDNA from healthy individuals and cancer patients (obtained from27) were assessed 
for fragmentation pattern. For each of the 4 cancer types depicted, median fragment length in cfDNA was 
measured for each of the regions in our inaccessible panel for the corresponding cancer type. A t-test was then 
used to compare the values from the same genomic regions between cancer patient cfDNA (blue) and healthy 
cfDNA (red).
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rates of known somatic alterations5–11. Thus, novel epigenetic markers, either in combination with genetic mark-
ers or alone, hold great promise for improvement of liquid biopsy performance not only in cancer46–48, but also 
in other disease contexts49–51. Epigenetic markers are preferable to mutations for many diseases as they harbor 
tissue-of-origin information, and are also not limited to a few recurrent positions across the genome19. Further-
more, we and others have previously shown that chromatin accessibility affects fragmentation patterns observed 
in cfDNA25–27 and targeting tissue-specific chromatin regions such as transcription factor binding sites allows 
for novel panel designs based on epigenetic patterns rather than genetic alterations31. A recent study further 
demonstrated the application of targeted sequencing of TSS regions in gene expression estimation and subtype 
classification for lung cancer and lymphoma52.

In this study, we evaluated chromatin accessibility patterns as potential epigenetic markers in cfDNA. We 
leveraged the wealth of available ATAC-seq data on cancer samples as well as blood cells for the first time and 
applied machine learning methods to identify cancer-specifically accessible and inaccessible regions that are 
observed with higher and lower fragmentation in cfDNA data of relevant cancers, respectively. From our pipe-
line, the cancer-specifically accessible regions showed a higher distinction across tissues than cancer-specifically 
inaccessible regions (Figs. 2b, 3b), consistent with open chromatin at promoter of tissue-specifically expressed 
genes. As expected, most cancer-specifically accessible markers are ATAC-seq peaks originally identified in the 
same cancer by the TCGA study37. We suggest that ATAC-seq data can be used for marker selection not only for 
cancer detection, but also for tissue of origin determination of cfDNA in various disease contexts.

Liquid biopsy holds great promise as the future of cancer screening and monitoring. However, in most 
cancer types, the sensitivity of the current liquid-biopsy based tests suffer due to the low signal-to-noise ratio 
from a high background of fragments with hematopoietic origins in cfDNA. Much focus has been devoted to 
the improvement of the biochemistry of library preparation methods as well as data analysis steps, such as UMI 
barcoding, short fragment enrichment33, error suppression12, and marker type combinations34,53 to improve the 
limit of detection. In this study, we suggest a novel aspect for improved panel designs using chromatin acces-
sibility information. We hypothesize that markers located in genomic regions that are compact in the diseased 
tissue of interest (signal) but exposed in blood cells (background noise) are more likely to be detected in cfDNA 
as a higher proportion of cfDNA fragments in those regions originate from the diseased tissue. We translate this 
information from available ATAC-seq data into a score that can be used for prioritizing marker regions in liquid 
biopsy panels. Genetic alterations found in tumors can serve as liquid biopsy markers and are the basis of most 
targeted sequencing panel designs. However, some genetic lesions in tumors are hardly detectable in cfDNA 
and those that are detected tend to have variable fractions in cfDNA which complicates panel designs. Most 
panel design strategies rely on target selection based on recurrent alterations in the population. However, the 
concordance between variants detected in cfDNA with that of solid tumors is limited even in matched samples, 
rendering such panel design strategies inefficient and questionable. Many factors contribute to this variability 
in variant allele representation in cfDNA data all of which decrease the signal-to-noise ratio in cfDNA either by 
lowering the contribution of tumor fragments or by increasing the contribution of fragments from other cells 
throughout the body. Here, we introduce a metric named RelAccS to quantify this relative contribution and show 
that target selection for liquid biopsy panels can use this score for ranking and prioritization of regions that are 
more likely to be detected in cfDNA.

In summary, we illustrate the application of RelAccS in two different contexts of panel design. In the first 
context, regions are identified to be directly targeted according to RelAccS for classifying a cancer type from 

Figure 4.   RelAccS score can prioritize markers for inclusion in targeted sequencing panels (a). Workflow 
showing steps for ranking genomic regions harboring cancer markers for inclusion in targeted sequencing 
panels. Here we ranked cancer specific mutations43–45 and tDMRs from2,42, (Supplementary Data 5). (b) Matched 
tumor and cfDNA targeted sequencing data from 23 prostate cancer patients (obtained from14) were processed 
to variant calls (“Methods”). For each patient, variants detected in both tumor sample and cfDNA were selected 
and then divided to two groups based on their corresponding RelAccS score (RelAccS > 0 (pink), RelAccS < 0 
(green)). Pearson correlation is shown between allele frequency of variants in tumor (x-axis) and matched 
cfDNA (y-axis).
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other types, in which case we are suggesting the tumor-open regions would offer more specificity. In the second 
context, the goal is to sensitively detect cancer from normal based on either fragmentation features or other fea-
tures (e.g., mutations or DMRs) and using RelAccS to guide the choice of candidate targets. In this latter context, 
we suggest features that fall in the tumor-closed chromatin regions to be prioritized.

It is important to note that here as a proof-of-principle, RelAccS was simply calculated using ATAC-seq counts 
from tumors and blood cells by cpm normalization. This normalization takes differences in library sizes across 
samples into account, but ignores differences in composition of libraries. Thus, in the future, a more sophisticated 
version of RelAccS may add to its utility. Furthermore, the application of RelAccS for panel optimization can be 
expanded to epigenetic markers selection as well, including panels targeting differentially methylated regions, 
transcription factor binding sites, and transcription start sites. Such panels hold great clinical promise not only 
in the fight against cancer, but more generally for the future of non-invasive disease screening and monitoring 
across a diverse spectrum of human conditions.

Conclusions
The incorporation of chromatin accessibility states in targeted sequencing panel design is a promising new 
approach to improve cancer detection from cfDNA. As a proof of principle, we first investigated chromatin 
accessibility states of blood cells with cfDNA fragmentation patterns. We observed lowly accessible regions are 
associated with higher fragment length and increased local sequencing depth. This association was recently 
shown to become stronger with deeper sequencing of cfDNA52.

We present a robust pipeline which utilizes ATAC-seq profiles of tumors and blood cells to identify tissue 
specifically accessible and tissue specifically inaccessible chromatin regions for seven major human cancer types. 
In silico analyses suggest that these regions show different fragmentation patterns in corresponding cancer patient 
cfDNA and healthy individuals. We introduced a metric called RelAccS, which measures relative chromatin 
accessibility in tumor vs. blood cells and can quantify the relative contribution to cfDNA pool.

We illustrate the application of RelAccS in two different contexts of panel design. In the first context, regions 
are identified to be directly targeted according to RelAccS for classifying a cancer type from other types, in which 
case we are suggesting the tumor-open regions would offer more specificity. In the second context, the goal is to 
sensitively detect cancer from normal either solely based on fragmentomic features or based on other features 
(e.g., mutations or DMRs) and using RelAccS to guide the choice of candidate targets. In this latter context, we 
suggest features that fall in the tumor-closed chromatin regions to be prioritized.

In brief, we introduced novel epigenetic marker regions based on relative chromatin accessibility. We suggest 
that these markers can be used alone or with other genetic and epigenetic markers to help further improve the 
limit of detection in cancer detection from plasma. To our knowledge, this is the first use of chromatin accessibil-
ity states with machine learning approaches to identify cancer-specific markers with potential utility in liquid 
biopsy testing. Although further research is needed to address early-stage cancer detection challenges, our results 
provide a useful strategy for future targeted sequencing panel designs.

Methods
Blood cells ATAC‑seq data collection and analysis.  We collected measures of chromatin accessibil-
ity in genome of cells that contribute most to the cfDNA pool in healthy individuals. To this end, high quality 
ATAC-seq profiles from PBMC and neutrophils were obtained. Raw ATAC-seq data were downloaded from 
PBMC of 120 healthy individuals from dbGap (accession code phs001934.v1.p1) and raw ATAC-seq data from 
unchallenged neutrophils of 4 healthy individuals were downloaded from Gene Expression Omnibus (accession 
code GSE153520).

Fastq files were processed to peak call with PEPATAC pipeline54 (http://​pepat​ac.​datab​io.​org/​en/​latest/) similar 
to TCGA ATAC project37. First, adapters were removed with skewer55, then reads were mapped to GRCh38 build 
of human genome using bowtie2 with parameters-very-sensitive-X 2000. Samtools was used to sort and isolate 
uniquely mapped reads and duplicates were removed using picard56. Mark Duplicates with options VALIDA-
TION_STRINGENCY LENIENT -REMOVE_DUPLICATES true. Next the resulting bam files were corrected 
for Tn5 offset using deeptools57 alignmentSeive with parameter-ATACshift. Then peak calling was performed 
using MACS258 with parameters-shift-75-extsize 150-nomodel-call-summits-nolambda-keep-dup all-p 0.01. 
Peak summits were extended 250 bp in both directions and then filtered by ENCODE blacklist (https://​www.​
encod​eproj​ect.​org/​annot​ations/​ENCSR​636HFF/).

Consensus blood peak set.  We decided to identify accessible regions in cells that have the highest contri-
bution to normal cfDNA. Accordingly, we took advantage of PBMC and neutrophil ATAC-seq data set obtained 
and processed in the former step. As vascular endothelial cells also shed small amounts of cfDNA to blood 
stream, we took human umbilical vascular endothelial cell (HUVEC) ATAC-seq peaks into our analysis in the 
following steps. MACS2 peak calls of HUVEC from five healthy individuals was obtained from Gene Expression 
Omnibus (GSE145774). We then extended peak summits 250 bp in both directions to get a fixed length peak set 
for all samples. Then we used PEPATACr library to generate non-overlapping peak set for each sample of PBMC, 
neutrophil and HUVEC. The PEPATAC pipeline uses an iterative algorithm to handle overlapping peaks. First 
the most significant peak (peak with highest score) is kept and any overlapping peak is removed then the algo-
rithm repeats this process for the next significant peak. This process is continued until there are no overlapping 
peaks left in the peak set.

Next, specific peak sets for neutrophils, PBMC and HUVEC were generated. To do so, MACS2 peak scores 
in each sample were divided by sum of all peaks scores divided by one million, then all the peaks from the same 
cells were combined and overlapping peaks were trimmed using the same iterative process explained above. Peaks 

http://pepatac.databio.org/en/latest/
https://www.encodeproject.org/annotations/ENCSR636HFF/
https://www.encodeproject.org/annotations/ENCSR636HFF/
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present in at least two samples with scores higher than 5 were retained. This process resulted in a reproducible 
high quality “cell type specific peak set”.

Finally, we wanted to define a consensus blood peak set to identify accessible chromatin regions of genome 
of cells that contribute the most to cfDNA pool of healthy individuals. First, scores of all “cell type specific peak 
set” were renormalized. Then the resulting peak sets from PBMC, neutrophils and HUVEC were combined into 
a integrated peak set and overlapping peaks were removed with the same iterative process. In this study we refer 
to this final fixed width peak set as the “consensus blood cells peak set”.

Lowly and highly accessible regions in blood cells.  ATAC-seq insertion counts of PBMC and neu-
trophil samples in consensus blood peak set were calculated from corrected bam files using featureCounts59 and 
then normalized to each sample library size. Then average of normalized ATAC-seq counts of PBMC and aver-
age of that of neutrophils were calculated in every peak. As the neutrophil population in blood is higher than 
PBMC (approximately in a 2:1 ratio), for each peak in the consensus blood cells peaks set, weighted average of 
mean of normalized ATAC-seq count of PBMC and neutrophils was calculated (neutrophils: 2, PBMC: 1) as 
follows:

where ri is the region of interest.
We considered the lowest quartile of blood consensus peak set as “lowly accessible regions in blood cells” and 

the highest quartile as the “highly accessible regions in blood cells”.

Definition of RelAccS.  RelAccS score measures relative chromatin accessibility of genomic region of inter-
est in tumor vs. blood cells. First, raw ATAC-seq data matrix of primary tumor TCGA samples was downloaded 
from (https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​ATACs​eq-​AWG) and samples from desired cancer type 
were selected. Then ATAC-seq insertion counts were normalized to library size of each sample. For each region 
of interest, average of normalized ATAC-seq counts across TCGA samples of desired cancer was divided by 
normalized ATAC-seq counts of blood cells as follows:

where weightedmean
(

bloodcellsnormalizedATACseqcountsr i
)

 is calculated from Eq. (1).

Machine learning for building tissue‑specific classifiers.  We select tissue specifically accessible and 
tissue specifically inaccessible regions for 7 cancer types from TCGA ATAC pan cancer peak set which contains 
more than 560,000 peaks covering more than 260 Gb of genome.

First accessibility of peaks was compared between tumor samples and blood cells and then machine learning 
models are used to identify tissue specifically accessible/inaccessible peaks.

Accessible panels.  For every cancer of interest, we first calculated RelAccS in all ATAC pan cancer peaks from 
the TCGA using Eq. (2) and filtered out peaks with RelAccS less than 1.5. Then the remaining peaks were com-
pared with consensus blood peak set using overlapsAny function in R and overlapping peaks were removed. 
Next differentially accessible regions in selected peaks were identified using DiffBind R package. DBA_DESEQ2 
option was selected for normalization and a threshold of FDR < 0.01 was set. We compared accessibility in tumor 
samples with PBMC and neutrophils and selected regions were used as input features for classification. We used 
Random forests, SVM and LASSO for binary classification to distinguish cancer of interest from other cancers 
in the TCGA ATAC-seq dataset. Five-fold cross validation was implemented in all three types of classifiers. For 
each feature, average of Random forests’ feature importance and SVM coefficients were calculated. Then we 
selected the top 10% features with non-zero mean Random Forests importance and top 10% features with big-
gest absolute value mean SVM coefficient and features with non-zero LASSO coefficients in at least 2 folds out of 
five. We used these three sets and selected features that are common in at least two out of three of the classifiers 
to include in tissue specifically accessible panel.

Inaccessible panels.  First, we filtered TCGA ATAC pan cancer peak set based on their relative accessibility 
in tumor vs blood cells keeping peaks with RelAccS < − 1.5. Then we compared selected peaks with consensus 
blood cells peak set to choose overlapping peaks. Differential accessibility analysis was performed with DiffBind 
R package with same options as in accessible panel design. We used selected regions for binary classification to 
distinguish cancer of interest from other TCGA samples. Five-fold cross validation with Random forests, SVM 
and LASSO was performed and top features of every algorithm were chosen as previously explained. Finally, 
regions common in at least 2 out of 3 of top feature sets were selected for inclusion in tissue specifically inacces-
sible panel.

(1)

weighted mean
(

blood cells normalized ATACseq countsr i
)

=

mean
(

PBMC normalized ATACseq countsr i
)

+ 2mean
(

Neutrophil normalized ATACseq countsr i
)

3

(2)RelAccSri = log
2

mean
(

tumor samples normalized ATACseq countsr i
)

weighted mean
(

blood cells normalized ATACseq countsr i
)

https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
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Ranking recurrent somatic mutations.  Hotspots of mutations list was downloaded from latest version 
of cancer hotspot43,60,61 and curated mutation for each cancer type from database of curated mutations62. Also, 
known recurrent mutations were obtained from COSMIC63,64.

We then filtered out mutations that do not overlap with TCGA ATAC pan cancer peak set. We assigned 
RelAccS score of overlapping peak to each mutation and then sorted the list of mutations based on correspond-
ing RelAccS score from lowest to highest.

Recurrent differentially methylated regions (DMRs).  For each cancer type, tissue specific differen-
tially methylated regions were obtained through MethHC42 and a prior study2. Again, we only kept regions 
overlapping TCGA ATAC pan cancer peak set and assigned RelAccS score of overlapping peak to DMR. Finally, 
the list was prioritized using assigned RelAccS of each DMR, where the lower RelAccS corresponds to a higher 
priority.

cfDNA WGS data collection.  To investigate the depth and fragment length status of the proposed panels, 
WGS data of healthy and four distinct cancer types (BRCA, COAD, LIHC, and LUSC) were obtained with acces-
sion number of GSE71378. Among all the samples, IH01, IH02, IC35, IC37, IC17, and IC20 have been chosen 
for further analysis due to their high sequencing depth. The bam files of the mentioned samples were used which 
were mapped to the human reference genome (GRCh37) by ALN algorithm in BWA.

Correlation analysis between accessibility and cfDNA fragmentation patterns.  In the first 
phase, we tried to determine the depth and fragment length distributions of two types of regions sets that corre-
spond to regions of low and high chromatin accessibility in blood cells. For this aim, two healthy cfDNA samples 
(IH01, IH02) with distinct library preparation methods were obtained27. Then the depth of the target regions 
in the healthy cfDNA bam files was measured by using samtools bedcov. Counting the median fragment length 
was carried out by get_fragment_size function of ctDNAtools package and our implemented in-house python 
script65. The obtained results were visualized by Prism66.

Boxplots with 10–90 percentiles were used to show the mentioned two parameters distribution in healthy 
cfDNA samples. As it is illustrated in the Fig. 1 and Fig. S2, the unpaired t test was done to measure the p value.

In the next step, we calculated ATAC-seq counts of blood cells in each region as weighted mean of aver-
age of neutrophils ATAC-seq counts and average of PBMC ATAC-seq counts (Eq. 1). Then, the correlation of 
measured depth and fragment length in cfDNA healthy samples with their corresponding ATAC-seq counts in 
blood cells was investigated.

For this analysis, we log2-normalized the counts and then removed outlier regions (less than 1 log2). Then a 
smoothing approach was applied on the normalized data. The smoothing parameters were optimized to consider 
15 neighbors to average and second order of the smoothing polynomial. Finally, the correlation was measured 
based on Pearson Correlation Coefficients.

We propose two types of target selection strategies (accessible and inaccessible) for each cancer type. Total 
depth and fragment lengths at the cancer specific open and closed regions for BRCA, COAD, LIHC, and LUSC 
were assessed in their related cancer cfDNA along with the healthy cfDNA samples. For depth calculations, raw 
counts were normalized to total sequencing depth of their related cancer and healthy cfDNA samples.

Calculation of allele frequency correlations between tumor and matched cfDNA.  In this part, 
48 targeted sequencing data files from prostate cancer patients including cfDNA, white blood cell (WBC), and 
matched tumor data were obtained under the accession number of EGAD00001004526 from EGA. The obtained 
fastq files were quality-checked by FastQC and high-quality reads (which do not contain N character along with 
no duplicated sequences) were used for downstream analyses.

Next, variant calling was carried out based on the best practices of GATK for somatic variant calling. This 
pipeline comprised several steps as follow: first, fastq files from cfDNA, WBC, and tumor were mapped against 
hg38 reference genome. Next, the pre-processing of the generated bam files were done using picard56. Finally, 
joint calling of cancer data (cfDNA, matched tumor) with normal samples (WBCs) from the same individual 
was done. Then, low quality variants were filtered from VCF files (depth < 10, MMQ < 50, MBQ < 20). Same as 
in Cario et al.14, we considered a threshold of 20% for germline variants. Accordingly, we removed variants with 
higher allele frequency in cfDNA from cfDNA VCF and corresponding tissue VCF. We assigned prostate cancer 
(PRAD) RelAccS score of the overlapping peak to corresponding variant. We then divided variants into two 
groups: (1) variants with RelAccS > 0, (2) variants with RelAccS < 0.

We then selected the detected variants (variants present both in tumor and matching cfDNA samples). Allele 
frequency correlations between tumor and matched cfDNA was calculated in R.

Data availability
Publicly available sequencing data were used. PBMC ATAC-seq data were obtained from dbGap (accession 
code phs001934.v1.p1). All processed data generated during this study are included in this article and its sup-
plementary files.

Code availability
All codes used to produce the analyses presented in the manuscript is  available on 
Github[NO_PRINTED_FORM]65.
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