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Respiratory diseases are leading causes of mortality and morbidity worldwide. Pulmonary imaging is 
an essential component of the diagnosis, treatment planning, monitoring, and treatment assessment 
of respiratory diseases. Insights into numerous pulmonary pathologies can be gleaned from functional 
lung MRI techniques. These include hyperpolarized gas ventilation MRI, which enables visualization 
and quantification of regional lung ventilation with high spatial resolution. Segmentation of the 
ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning 
(DL) has shown promising results for numerous segmentation problems. Here, we evaluate several 3D 
convolutional neural networks to segment ventilated lung regions on hyperpolarized gas MRI scans. 
The dataset consists of 759 helium‑3 (3He) or xenon‑129 (129Xe) volumetric scans and corresponding 
expert segmentations from 341 healthy subjects and patients with a wide range of pathologies. We 
evaluated segmentation performance for several DL experimental methods via overlap, distance 
and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy 
c‑means (SFCM) and K‑means clustering. We observed that training on combined 3He and 129Xe MRI 
scans using a 3D nn‑UNet outperformed other DL methods, achieving a mean ± SD Dice coefficient of 
0.963 ± 0.018, average boundary Hausdorff distance of 1.505 ± 0.969 mm, Hausdorff 95th percentile 
of 5.754 ± 6.621 mm and relative error of 0.075 ± 0.039. Moreover, limited differences in performance 
were observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe and 3He 
yielded statistically significant improvements over the conventional methods (p < 0.0001). In addition, 
we observed very strong correlation and agreement between DL and expert segmentations, with 
Pearson correlation of 0.99 (p < 0.0001) and Bland–Altman bias of − 0.8%. The DL approach evaluated 
provides accurate, robust and rapid segmentations of ventilated lung regions and successfully 
excludes non‑lung regions such as the airways and artefacts. This approach is expected to eliminate 
the need for, or significantly reduce, subsequent time‑consuming manual editing.

Respiratory diseases are leading causes of mortality and morbidity worldwide with 339 million experiencing 
asthma, 65 million people with chronic obstructive pulmonary disease (COPD)1,2 and 1.8 million new lung 
cancer cases diagnosed every  year3. Pulmonary imaging, using various modalities, is an essential part of the 
diagnosis, treatment planning, monitoring, and treatment assessment of respiratory diseases. The acquisition, 
processing, and interpretation of pulmonary images are critical components of patient management and are 
essential in reducing mortality and morbidity.

Currently, computed tomography (CT) is the clinical gold standard for pulmonary imaging due to its excep-
tional spatial and temporal resolution, and its ubiquitous availability. CT is a structural imaging modality that 
provides exquisite detail of morphological changes in the lung parenchyma but employs ionizing radiation. 
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Although proton magnetic resonance imaging (1H MRI) has historically been susceptible to the low proton 
density in lungs, recent advances in pulse sequences and hardware with ultra-short and zero echo times have 
enabled 1H MRI to compete with CT with the added benefit of no ionizing  radiation4,5. However, whilst structural 
imaging modalities facilitate the assessment of changes in lung tissue density, they do not directly provide an 
accurate picture of regional lung function.

Although nuclear imaging modalities such as single-photon emission computed tomography (SPECT) can 
provide regional lung function  information6, they require harmful ionizing radiation, reducing the ability to 
conduct regular scans during clinical care. This is particularly important when imaging children, as developing 
tissue is more sensitive to ionizing radiation. Moreover, SPECT is limited by poor temporal and spatial resolution 
and images acquired using 99mTc-diethylenetriamine pentaacetate (DTPA) aerosols, one of the most commonly 
used radiotracers for ventilation imaging with SPECT, are subject to clumping  artefacts6,7. In contrast, unparal-
leled insights into respiratory diseases can be gleaned from non-ionizing functional lung MRI modalities, such 
as dynamic contrast-enhanced lung perfusion MRI and hyperpolarized gas ventilation MRI. Hyperpolarized gas 
MRI provides visualization and quantification of regional lung ventilation with high spatial resolution within a 
single  breath8. Quantitative biomarkers derived from this modality, including the ventilated defect percentage 
(VDP) and coefficient of variation, provide further insights into regional  ventilation9–11. To facilitate the com-
putation of such biomarkers, segmentation of ventilated regions of the lungs is  required12.

Previous approaches for hyperpolarized gas MRI ventilation segmentation employed classical image pro-
cessing and machine learning approaches, such as hierarchical K-means13 and spatial fuzzy c-means (SFCM) 
 clustering14. However, as these methods rely on voxel intensities and thresholding, they only provide semi-auto-
matic segmentations; as such, they are prone to generate errors in regions where voxel intensities are similar to 
those of the ventilated lung region (e.g., airways and artefacts). Consequently, they frequently require significant 
time to manually correct.

Deep learning (DL), which utilizes artificial neural networks with multiple hidden layers, has shown tre-
mendous promise in medical image segmentation  applications15. Although DL was initially theorized over half 
a century ago, the field only received widespread acclaim in 2012 when AlexNet, a form of an artificial neural 
network referred to as a convolutional neural network (CNN), triumphed in the ImageNet Large Scale Visual 
Recognition  Challenge16. Subsequently, CNNs, and DL more generally, have become mainstream in the medi-
cal image segmentation field. UNet and VNet CNNs have demonstrated their profound impact in numerous 
medical image segmentation  problems17,18. Adoption has been enhanced through transfer learning to cope with 
limited datasets common in the medical imaging  field19. In a recent review of DL-based lung image analysis 
studies, Astley et al. identified a significant gap in DL-based lung MRI segmentation studies (n = 7) with only 
one published conference  proceeding20 and one journal  article21 evaluating DL for hyperpolarized gas MRI seg-
mentation. Tustison et al. used a 2D UNet for hyperpolarized gas MRI segmentation on a dataset of 113 images, 
developing a novel template-based method to augment the limited lung imaging data alongside pre-processing 
techniques, including N4 bias correction and adaptive denoising. A mean ± SD DSC between DL and manual 
segmentations of 0.94 ± 0.03 was  achieved21. However, the application of DL on a more extensive dataset with a 
broader range of pathologies is required prior to clinical adoption.

In this work we conducted extensive parameterization experiments to determine the best-performing 3D 
CNN architecture, loss function and pre-processing techniques for hyperpolarized gas MRI segmentation. We 
further evaluated five DL methods using the best performing configuration to accurately, robustly and rapidly 
segment ventilated lungs on hyperpolarized gas MRI scans. Using a diverse testing set, with both helium-3 
(3He) and xenon-129 (129Xe) noble gas scans and corresponding expert segmentations, we evaluated and com-
pared performance using a range of evaluation metrics. We also investigated the effect of the noble gas on DL 
performance. Furthermore, we compared the best performing DL method to conventional approaches. Finally, 
ventilated lung volume correlation and agreement were assessed for the best-performing DL method compared 
to expert-derived volumes.

Materials and methods
Hyperpolarized gas MRI acquisition. All subjects underwent 3D volumetric 3He or 129Xe hyperpolar-
ized gas MRI with full lung coverage at 1.5 T on a HDx scanner (GE Healthcare, Milwaukee, WI) using 3D 
steady-state free precession (SSFP) sequences as previously  described22–24. Flexible quadrature radiofrequency 
coils were employed for transmission and reception of MR signals at the Larmor frequencies of 3He and 129Xe. 
In-plane (x–y) resolution of scans for both gases was 4 ×  4mm2. 129Xe scans ranged from 16 to 34 slices with a 
mean of 23 slices and slice thickness of 10 mm. 3He scans ranged from 34 to 56 slices with a mean of 45 slices 
and slice thickness of 5 mm.

Dataset. The imaging dataset used in this study was pooled retrospectively from several research studies 
and clinical studies of patients referred for hyperpolarized gas MRI scans. Data use was approved by the Insti-
tutional Review Boards at the University of Sheffield and the National Research Ethics Committee. All data was 
anonymized and all investigations were conducted in accordance with the relevant guidelines and regulations.

The dataset consisted of 759 volumetric hyperpolarized gas MRI scans (23,265 2D slices), with either 3He (264 
scans, 11,880 slices) or 129Xe (495 scans, 11,385 slices), from 341 subjects. The slices were distributed approxi-
mately 50:50 between 3He and 129Xe. The dataset contained healthy subjects and patients with various pulmonary 
pathologies: asthma, COPD, asthma/COPD overlap, bronchiectasis, interstitial lung disease (ILD), idiopathic 
pulmonary fibrosis (IPF), lung cancer, cystic fibrosis (CF), children born prematurely, and patients investigated 
for possible airway disease. Demographic and clinical data for these subjects are summarized in Table 1.
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Each of the 759 scans in the dataset has a corresponding, manually-edited expert segmentation, representing 
the ventilated region of the lungs. These scans and segmentations were collected from numerous retrospective 
studies; consequently, the segmentations were generated using several semi-automated  methods14,25 and edited 
by multiple expert observers. Quality control was conducted by an experienced imaging scientist who identified 
potential errors and manually corrected them to ensure segmentation accuracy; the airways were removed down 
to the third generation, and it was ensured that no voxels were outside of the lung parenchymal region defined 
by a structural 1H MRI scan, thereby removing background noise.

Convolutional neural network. Parameterization experiments were conducted comparing network 
architectures, loss functions and pre-processing techniques; results of these experiments are provided in the Sup-
plementary Information. We used the nn-UNet fully convolutional neural network which processes 3D scans 
using volumetric convolutions. The network is trained end-to-end using hyperpolarized gas MRI volumetric 
scans. We use a 3D implementation of the UNet which has been modified to reduce memory constraints, allow-
ing 30 feature  channels26. Convolution operations vary in size from 3 × 3 × 3 to 1 × 1 × 1 depending on the layer of 
the network. The network also makes use of instance normalization. An isotropic spatial window size was used 
of [96, 96, 96] with a batch size of 2. A high-level visual representation of the 3D nn-UNet, specific to the spatial 
window sizes used, is shown in Fig. 1.

Parameters. The network utilizes a non-linear PReLU activation  function27 and is optimized using a binary 
cross-entropy loss function. ADAM optimization was used to train the  CNN28 and instance normalization was 
conducted for each pass. The spatial window size was [96, 96, 96] with a batch size of 2. A learning rate of 1 ×  10−5 
was used for initial training and 0.5 ×  10−5 for subsequent fine-tuning methods.

Pre‑processing. Each hyperpolarized gas MRI scan was pre-processed using spatially adaptive denoising, 
designed to consider both Rician noise and spatially varying patterns of noise. Denoising was implemented with 
ANTs 2.1.0 using the DenoiseImage function across three dimensions. Standard parameters were  used29.

Data augmentation. Constrained random rotation and scaling was used for data augmentation. Rotation with 
limits − 10° to 10° and scaling of − 10 to 10%, where a random rotation or scaling were applied at an interval 
within those limits, were used. A different random value was computed for each rotation axis and scaling factor.

Data split. The dataset was randomly split into training and testing sets with 75% and 25% of the data respec-
tively, in terms of the number of subjects. The training set, therefore, contained 237 3He scans (10,902 slices) and 
436 129Xe scans (10,028 slices) from a total of 255 subjects. 86 scans, each from a different subject, were selected 
for the testing set (3He: 27 scans (1242 slices); 129Xe: 59 scans (1357 slices)). Repeat or longitudinal scans from 
multiple visits for the same patient were contained in the training set; however, no subject was present in both 
the training and testing sets, with the testing set containing only one scan from each patient. This was ensured 
by randomly selecting only one scan from each subject in the testing set and discarding the remaining scans; 
these scans are not included in Table 1. The range of diseases in the testing set was representative of the dataset 
as a whole. In addition, it was specified that there would be no overlap between the newly defined testing set and 

Table 1.  Summary of demographics, clinical characteristics and image dataset information stratified by 
disease. HP hyperpolarized, CF cystic fibrosis, COPD chronic obstructive pulmonary disease, ILD interstitial 
lung disease, IPF idiopathic pulmonary fibrosis, SD standard deviation. *Data for 25 patients was unavailable. 
**Contains connective tissue disease-associated ILD (CTD-ILD), hypersensitivity pneumonitis and drug-
induced ILD (DI-ILD).

Disease Total number of scans Number of patients

Number of 
HP gas scans Sex*

Median (range) age*
Mean ± SD ventilated lung 
volume (liters)*3He 129Xe Male Female

Healthy 43 33 1 42 15 13 12 (9, 76) 3.78 ± 1.18

Asthma 169 81 4 165 28 52 50 (13, 73) 4.23 ± 1.03

Asthma/COPD overlap 11 5 0 11 0 5 56 (45, 67) 4.13 ± 0.68

Bronchiectasis 3 3 1 2 1 1 15 (9, 29) 3.76 ± 1.00

CF 247 58 134 113 29 28 16 (6, 48) 3.65 ± 1.05

COPD 62 23 56 6 4 5 64 (52, 80) 4.43 ± 0.71

Non-IPF ILD** 77 41 0 77 25 16 69 (39, 83) 3.78 ± 0.80

Investigation for possible airways 
disease 38 21 5 33 2 16 49 (36, 69) 3.89 ± 1.05

IPF 46 20 45 1 17 3 72 (52, 80) 3.87 ± 0.71

Lung cancer 22 16 14 8 10 6 69 (34, 85) 4.12 ± 0.86

Preterm birth 41 40 4 37 15 25 12 (9, 14) 2.75 ± 0.55
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the previous testing set used for parameterization experiments, described in the Supplementary Information, in 
terms of either patient or scan.

Computation. All networks were trained using the medical imaging DL framework NiftyNet 0.6.030 built on 
top of TensorFlow 1.1431. Training and inference were performed on an NVIDIA Tesla V100 GPU with 16 GB 
of RAM.

DL experimental methods. Five DL experimental methods were performed to train the network:

(1) The model was trained on 237 3He scans for 30,000 iterations.
(2) The model was trained on 436 129Xe scans for 30,000 iterations.
(3) The model was trained on 237 3He scans for 20000 iterations; these weights were used to initialize a model 

trained on 436 129Xe scans for 10000 iterations.
(4) The model was trained on 436 129Xe scans for 20000 iterations; these weights were used to initialize a model 

trained on 237 3He scans for 10000 iterations.
(5) The model was trained on 436 129Xe and 237 3He scans for 30,000 iterations.

The five experimental methods were applied to the data split defined above using the same testing set for 
each method, facilitating comparison between the five methods to identify the best performing training method 
across multiple metrics.

Comparison to conventional methods. For further benchmarking, the best-performing DL method 
was compared against two other conventional machine learning methods, namely, SFCM and K-means cluster-
ing. The methods used are described as follows:

(1) The k-means clustering algorithm used here was previously modified for hyperpolarized gas MRI 
 segmentation32. This method attempts to find k data points, given the integer k, in an n-dimensional space 
 (Rn) given m data points. These k data points are known as centres/centroids and the aim is to minimize 
the distance from each data point (m) to its centre/centroid33. The previously developed  method32 attempts 
to delineate the image data into a number of clusters that can best represent a radiologist’s analysis of the 
ventilation image with clusters defined from defects to hyperintense signal. The first stage of this method 
requires image normalization into the range of 0–255, following which the cluster initial centers are set at 

Figure 1.  Visual representation of the modified 3D nn-UNet network used in this work. The deconvolution 
side of the network is omitted as it follows the same structure as the convolutional path, however, with the 
addition of a 1 × 1 × 1 SoftMax layer.
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25% intervals between these values. A two-stage clustering process was applied with four clusters in the 
first stage, the lowest of which contains both signal void and hypointense signal. In the second stage, the 
clustering was reapplied to the lowest cluster from the first stage to define background, ventilation defect 
and hypointense signal regions.

(2) The SFCM method used in this work has been reported  previously14; images are initially filtered to remove 
noise and maintain edges using a bilateral  filter34. The standard FCM algorithm assigns N pixels to C 
clusters via Fuzzy memberships. The key assumption of the Spatial Fuzzy C-means is that pixels spatially 
close will have high correlation and hence have similarly high membership to the same cluster. This spatial 
information will modify the membership value only if, for example, the pixel is noisy and would have been 
incorrectly classified. The SFCM method makes use of nearby pixels during the iteration process by taking 
into account the membership of voxels within a predefined window (5×5 in this work) and will weight the 
central pixel depending on the provided weighting  variables35. The optimal number of clusters was manu-
ally selected by the observer.

Evaluation Metrics. The testing set results for each of the five DL experimental methods and two conven-
tional methods were evaluated using several metrics. The DSC was used to assess overlap between the ground 
truth (GT) and predicted (PR)  segmentations36 and is defined as:

Two distance metrics, average boundary Hausdorff distance (Avg HD) and 95th percentile Hausdorff distance 
(HD95) were  used37 and are defined as the following:

where h(PR, GT) represents the directed Hausdorff distance between the sets of PR and GT voxels at the bound-
ary, pr represents an individual voxel in the set PR and gt represents an individual boundary voxel in GT. h(PR, 
GT) is defined as:

�PR − GT� is the Euclidean distance between PR and GT. From this, HD95 is calculated as the 95th percentile 
of Eq. (2) and is frequently used in the image segmentation literature to remove the impact of outlier voxels. The 
Avg HD is defined similarly as:

where d(PR, GT) represents the directed average Hausdorff distance given by:

where N is the set of paired voxels in (GT, PR). The Avg HD reduces sensitivity to outliers and is regarded as a 
stable metric for segmentation  evaluation38.

Furthermore, a relative error metric (XOR) was used to evaluate segmentation  errors39 as follows:

where PR’ and GT’ are the complements of PR and GT, respectively. The metric was used specifically because it 
is expected to correlate with the manual editing time required to correct the segmentation outcome.

Statistical analysis. Data were tested for normality using Shapiro–Wilk tests; when normality was not 
satisfied, non-parametric tests were conducted. One-way repeated-measure ANOVA or Friedman tests were 
conducted as appropriate with Bonferroni correction for post-hoc multiple comparisons to assess statistical 
significances of differences between experimental DL-based methods. Independent t-tests or Mann–Whitney 
U tests were used to compare differences between 3He and 129Xe segmentations in the testing set, assessing the 
effect of the noble gas. The best performing DL method was compared to other conventional segmentation 
methods using one-way repeated-measure ANOVA or Friedman tests with Bonferroni correction for post-hoc 
multiple comparisons. Pearson or Spearman correlations and Bland–Altman analysis were conducted to com-
pare volumes of DL-generated and expert segmentations. Statistical analysis was performed using Prism 8.4 
(GraphPad, San Diego, CA) and SPSS Statistics 26.0 (IBM Corporation, Armonk, NY).

Results
Segmentations for each of the five DL methods were generated for 86 testing set scans. Figure 2 shows examples 
of segmentation quality for a healthy subject and patients with four different pathologies across the five DL 
experimental methods using 3He or 129Xe. The original scans and expert segmentations are included to facilitate 
comparison. It can be observed that, in general, there are negligible voxels outside the lung parenchyma classed 
as ventilated and that the CNNs accurately excluded ventilation defects, as shown in the examples of the asthma 

(1)DSC = 2
|PR ∩ GT|

|PR| + |GT|

(2)HD(PR,GT) = max(h(PR,GT), h(GT , PR))

(3)h(PR,GT) = max
pr∈PR

min
gt∈GT

�PR − GT�

(4)Avg HD(PR,GT) = max(d(PR,GT), d(GT, PR))
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and lung cancer patients. Case 4, of a healthy subject, represents an interesting case due to the presence of a zipper 
artefact caused by electronic noise in the hardware; it can be observed that some models are able to accurately 
exclude this artefact, whilst others remain unable to distinguish between the zipper artefact and ventilated lung 
voxels. Table 2 summarizes segmentation performance for the five DL experimental methods. The Combined 
3He and 129Xe method generated the best segmentations using all four metrics.

Figure 3 shows distributions of all four metrics for each DL method. The assumption of normality for each 
metric was not satisfied for all DL methods, as assessed by Shapiro–Wilk’s tests (p < 0.05). As such, Friedman 
tests were run, determining that there were differences between DL methods for each metric. Post-hoc pairwise 
comparisons were performed for each metric with Bonferroni correction for multiple comparisons. The com-
bined 3He and 129Xe method yielded statistically significant improvements over all DL methods using the DSC, 
XOR and HD95 metrics (p < 0.05). However, using the Avg HD metrics, the combined 3He and 129Xe method 
significantly outperformed all but one DL method.

Figure 4 shows the segmentation performance for the testing set stratified by noble gas (129Xe or 3He) using 
the DSC and Avg HD metrics. The majority of models show no significant difference between 129Xe and 3He 
for both metrics. Only two methods, namely, the ‘Train on 3He’ and ‘Train on 129Xe, fine-tune on 3He’ methods, 
showed a significant difference between noble gases across both metrics.

Based on the results of the five experimental methods, the combined 3He and 129Xe DL model was identified 
as the most accurate DL ventilated lung segmentation method due to statistically significant improvements over 
all other methods using the DSC, HD95 and XOR metrics. Consequently, we tested the combined 3He and 129Xe 

Figure 2.  Example coronal slices for a healthy subject and four cases with different pathologies for each DL 
experimental method. Individual, and median (range), DSC values are displayed.
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DL model on 31 2D spoiled gradient-echo 3He hyperpolarized gas MRI ventilation scans which differ in MRI 
sequence and acquisition parameters (see Supplemental Results). The results indicated that the model general-
ized to scans acquired with a different MRI sequence and produced high quality segmentations invariant of the 
sequence used.

Furthermore, ventilated volume was assessed for the combined 3He and 129Xe method. The assumption of 
normality of was satisfied for DL and expert ventilated volume, as assessed by Shapiro–Wilk’s tests (p > 0.05). 
Pearson correlation and Bland–Altman analysis are shown in Fig. 5 for the combined 129Xe and 3He model; 
the DL segmentation volume is highly correlated (r = 0.99) with the expert segmentation volume and exhibits 
minimal bias (− 0.8%).

Figure 6 shows qualitative and quantitative performance for the DL combined 3He and 129Xe training method 
with two conventional segmentation methods, namely K-means clustering and SFCM across three cases. The 
assumption of normality for the DSC metric was not satisfied for conventional and DL approaches, as assessed 
by Shapiro–Wilk’s tests. Post hoc Friedman’s tests were performed with Bonferroni correction for multiple com-
parisons  (X2(3), p < 0.0001). The DL segmentation method exhibited significant improvements over conventional 
methods (p < 0.0001), accurately excluding low-level noise and artefacts (e.g. Case 2) as well as non-lung regions 
such as the trachea and bronchi.

Discussion
The DL segmentation methods yielded highly accurate segmentations across a range of evaluation metrics on 
the dataset used. To the best of the authors’ knowledge, the hyperpolarized gas MRI dataset used here is the 
largest to date for ventilated lung segmentation, comprising 759 scans from patients with a wide range of lung 
pathologies. This is advantageous for preserving generalizability as it enables algorithms to learn features present 
in a range of diseases independent of the noble gas. Compared with 129Xe MRI, 3He MRI has an intrinsically 
stronger MRI signal due to the difference in gyromagnetic ratios between the two nuclei. Generally, lung ven-
tilation information of similar diagnostic quality has been obtained with the two nuclei; despite this, there are 
known differences in lung diffusivity as well as differences in spatial resolution between the  nuclei40,41. This is 
particularly important for deep learning applications as the resolutions of our 3He and 129Xe MRI scans differ 
greatly in the z-direction whereby 3He and 129Xe MRI scans have a slice thickness and an inter-slice distance 
of ~ 5 mm and ~ 10 mm, respectively. Therefore, it remains important to understand the performance of deep 
learning segmentation applications across the two nuclei.

The combined 3He and 129Xe DL method showed statistically significant improvements over all other methods 
using the DSC, HD95 and XOR metrics; however, using the Avg HD metric, no significant difference between 
the combined 3He and 129Xe method and 129Xe only method was observed, perhaps attributable to an outlier case. 
Some statistically significant differences were observed in performance when comparing 3He and 129Xe testing set 
scans; however, the combined 3He and 129Xe method exhibited identical performance independent of the noble 
gas used. This indicates that, for a given 3He or 129Xe scan, the combined 3He and 129Xe method is unlikely to be 
biased towards a specific noble gas. Due to the current paucity and unpredictable supplies of 3He worldwide, 
the field, in general, has transitioned towards the use of 129Xe as the predominant noble gas for hyperpolarized 
gas MR ventilation imaging. As this trend continues, it may be pertinent in future work to assess the impact of 
training and testing solely on 129Xe scans. In addition, external testing, detailed in the Supplemental Results, 
indicated the proposed model’s ability to generalize across MRI sequence and acquisition parameters not seen 
in the training set, further reinforcing that the model is using functional features from hyperpolarized gas MRI 
to produce accurate segmentations.

The CNN produced more accurate segmentations than the two conventional approaches for all evaluation 
metrics. In particular, the CNN was able to deal with images containing background noise and artefacts, as 
well as successfully excluding ventilation defects and airways. In comparison, the SFCM method was unable to 
distinguish airways or artefacts and segmented these areas erroneously. As such, it is highly probable that the 
CNN eliminates or dramatically reduces the manual-editing time required after automatic segmentation. The 
K-means clustering algorithm exhibited poorer than expected performance, possibly attributable to the lack of 
an available proton MRI. This represents a benefit of the CNN-based method as only the hyperpolarized gas 
MRI scan is required as an input. Previous work in the literature that aimed to employ DL for hyperpolarized 
gas MRI segmentation used a 2D UNet and achieved a mean DSC of 0.9421. In comparison, our combined 3He 
and 129Xe method trained via a 3D nn-UNet yielded a mean DSC value of 0.96. The 3D CNN allows the model to 

Table 2.  Comparison of segmentation performance for the five DL training methods for all scans in the 
testing set. Medians (ranges) are given; the best result for each metric is in bold.

Experimental DL methods

Evaluation metrics: median (range)

DSC Avg HD (mm) HD95 (mm) XOR

Train on 3He 0.961 (0.765, 0.981) 2.335 (35.91, 0.644) 10.00 (140.9, 1.934) 0.079 (0.613, 0.037)

Train on 129Xe 0.964 (0.886, 0.983) 1.341 (3.911, 0.675) 4.809 (15.90, 1.875) 0.072 (0.253, 0.035)

Train on 3He, fine-tuned on 129Xe 0.963 (0.892, 0.983) 1.384 (4.628, 0.636) 4.971 (29.80, 1.934) 0.075 (0.238, 0.034)

Train on 129Xe, fine-tuned on 3He 0.968 (0.842, 0.983) 1.483 (10.84, 0.596) 4.935 (67.85, 1.563) 0.066 (0.372, 0.034

Combined 3He and 129Xe training 0.971 (0.886, 0.983) 1.234 (5.630, 0.594) 4.193 (52.70, 1.875) 0.059 (0.255, 0.035)
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Figure 3.  Comparison of segmentation performance on 86 testing scans for five DL experimental methods 
using the DSC, Avg HD, HD95 and XOR metrics (left to right). P-values are displayed for Friedman tests with 
Bonferroni correction for multiple comparisons, comparing the combined 3He and 129Xe DL method to the 
other DL methods. Mean and standard deviation values are marked by a bold line and whiskers, respectively.
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treat the segmentation as a 3D volume and learns features present across multiple slices e.g. ventilation defects. 
Several pre-processing techniques have previously been used in the literature for lung image  segmentation42. The 
work of Tustison, et al.21 utilizes a novel template-based data augmentation strategy with N4 bias correction and 
denoising, which are computationally expensive and time-consuming; however, the impact of such techniques 
is not assessed in their work. In this study, we observed that N4 bias correction provided no significant benefit, 
while denoising yielded significant improvements.

All DL methods were trained and tested using a single GPU. Training required approximately nine days, 
while inference took 27 s per 129Xe scan and 35 s per 3He scan, corresponding to approximately one second per 
slice for both gases. Compared with conventional methods, such as SFCM, the time taken to generate automatic 
segmentations is significantly reduced from approximately 5 min to around 30 s, indicating the time-saving 
benefits of DL-based methods. Moreover, accurate automatic segmentation of hyperpolarized gas MRI ventila-
tion scans through CNN-based approaches will eliminate or reduce manual editing time, thus improving clinical 
throughput. To further improve clinical translation of DL-based techniques, we have provided the trained DL 
model along with necessary files and Supplementary Instructions, enabling members of the pulmonary imaging 
community to apply the trained model in their own research.

Figure 4.  Comparison of DSC (top) and Avg HD (bottom) values for 129Xe and 3He testing scans for five DL 
methods. P-values between 129Xe and 3He using Mann–Whitney tests are shown. Mean and standard deviation 
values are marked by a bold line and whiskers, respectively.

Figure 5.  Pearson correlation and Bland–Altman analysis of lung volumes for 86 testing set cases compared to 
volumes derived from expert segmentations for the combined 3He and 129Xe DL model.
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The specific dataset used is unique within the context of pulmonary imaging due to the presence of numerous 
features such as different noble gases, longitudinal scans, repeat scans and pre- and post-treatment scans. The 
variation in the number of repeat or longitudinal scans and slice thicknesses between 3D 3He and 129Xe scans 
impeded us from achieving a training and testing set split equally between both gases; notwithstanding, the 
number of 2D slices were approximately equal between gases. Although multiple scans from the same patient 
were included in the training set to increase dataset numbers, to enhance the robustness of the evaluation, no 
scan of the same patient was present both in the training and testing sets.

This study also represents the first large-scale investigation of architectures, loss functions and pre-processing 
techniques within the field of lung MRI. Selecting a subset of the data allowed us to perform parameterization 
experiments to determine the ideal choice of network architecture, loss function and pre-processing technique, 
without creating optimization biases in subsequent experiments (see Supplementary Information). The con-
clusions of the parameterization experiments were partially limited due to multiple factors; the same exact 
parameters cannot be used for each network due to the spatial imaging constraints of the specific network, such 
as requiring isotropic resolutions or the varying memory requirements of each architecture. This means that 
the windowing, batch size and bordering varies between architectures and can, therefore, make comparisons 
potentially difficult. However, where possible, we aimed to maintain consistent parameters across all networks 
tested. Further investigation may aim to optimize other hyperparameters that could be deemed equally important 
as the experiments conducted related to architecture, loss function and pre-processing; these may include the 
choice of activation function or optimization algorithm. Furthermore, parameterization results will vary based 
on the specific datasets used and, consequently, limit conclusions to the particular data used in these experiments.

Currently, segmentations edited by expert observers are the gold-standard for training supervised DL algo-
rithms. Studies have shown that manual segmentations are susceptible to inter-observer  variability43. Numerous 
research projects have employed techniques to create generalizable DL models across multiple institutions and 
 observers44. A limitation of our study is the presence of only one expert segmentation per scan, which precludes 
the ability to evaluate intra- and inter-observer variability. However, the wide range of expert observers used 
to generate and manually edit the expert segmentations led to significant variability in the training and testing 
sets. Hence, the CNN can learn a robust segmentation method invariant to the specific semi-automated method 
used to generate the ground truth or the expert observer who manually corrected it. In future work, multiple 
expert segmentations may be used to train the algorithm and allow the evaluation of inter-observer variability.

For the evaluation of certain clinically relevant metrics such as  VDP9, the whole-lung cavity volume is 
required in addition to ventilated lung volumes, most commonly computed from a whole-lung segmentation 
generated from a structural proton MRI scan. In this work, we showed that ventilated lung volumes derived from 
CNN-generated segmentations have a significant Pearson correlation of 0.99 and a minimal Bland–Altman bias 
of − 0.8% with expert volumes. However, evaluation of DL-based methods using not only ventilated lung volume, 
but also VDP, would further the extensive validation required for clinical adoption.

Figure 6.  Comparison of performance on testing scans between the combined 129Xe and 3He DL method and 
conventional segmentation methods (SFCM and K-means) with P-values for Friedman tests with Bonferroni 
correction for multiple comparisons. Mean and standard deviation values are marked by a bold line and 
whiskers, respectively. Individual DSC and Avg HD values for each method are displayed for three cases.
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Conclusion
In conclusion, we evaluated a 3D fully connected CNN using the nn-UNet architecture that is capable of produc-
ing accurate, robust and rapid hyperpolarized gas MRI segmentations on a large, diverse dataset. We compared 
five experimental DL methods and observed that combining 3He and 129Xe scans during training produces 
significantly improved segmentations. Compared with expert segmentations, this CNN-based method also 
showed a strong Pearson correlation and limited bias using Bland–Altman analysis. In addition, the CNN-
based segmentation method significantly outperformed two conventional segmentation methods commonly 
used in the literature.

Data availability
The imaging datasets generated and/or analysed during the current study are not publicly available as they 
were generated as part of an industrial collaborative study that is still underway. Requests for data should be 
addressed to J.M.W.
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