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Metagenomic analysis reveals 
associations between salivary 
microbiota and body composition 
in early childhood
Modupe O. Coker1,2,4*, Rebecca M. Lebeaux1,4, Anne G. Hoen1, Yuka Moroishi1, 
Diane Gilbert‑Diamond1, Erika F. Dade1, Thomas J. Palys1, Juliette C. Madan1,3 & 
Margaret R. Karagas1

Several studies have shown that body mass index is strongly associated with differences in gut 
microbiota, but the relationship between body weight and oral microbiota is less clear especially in 
young children. We aimed to evaluate if there is an association between child growth and the saliva 
microbiome. We hypothesized that associations between growth and the saliva microbiome would 
be moderate, similarly to the association between growth and the gut microbiome. For 236 toddlers 
participating in the New Hampshire Birth Cohort Study, we characterized the association between 
multiple longitudinal anthropometric measures of body height, body weight and body mass. Body 
Mass Index (BMI) z‑scores were calculated, and dual‑energy x‑ray absorptiometry (DXA) was used to 
estimate body composition. Shotgun metagenomic sequencing of saliva samples was performed to 
taxonomically and functionally profile the oral microbiome. We found that within‑sample diversity 
was inversely related to body mass measurements while community composition was not associated. 
Although the magnitude of associations were small, some taxa were consistently associated with 
growth and modified by sex. Certain taxa were associated with decreased weight or growth (including 
Actinomyces odontolyticus and Prevotella melaninogenica) or increased growth (such as Streptococcus 
mitis and Corynebacterium matruchotii) across anthropometric measures. Further exploration of the 
functional significance of this relationship will enhance our understanding of the intersection between 
weight gain, microbiota, and energy metabolism and the potential role of these relationships on the 
onset of obesity‑associated diseases in later life.

Obesity in young children is associated with premature death and disability in adulthood. In the United States, the 
prevalence of obesity among children aged 2–5 years increased from 5% in 1980 to over 13% in  20181, making it 
a significant and growing public health problem. Overwhelming evidence from animal and human studies sug-
gests that the gut microbiome influences the risk of overweight and  obesity2–4. Several studies (mostly in animals 
and several in humans) observed differences of important bacterial species in the gut microbiota between obese 
and normal weight/lean subjects, with some studies showing a higher Firmicutes/Bacteroidetes (F/B) ratio in 
obese/overweight subjects compared to those of normal  weight5,6. Data also suggest that lifestyle alterations and 
physical activity in turn alter the gut microbiome, and that these changes are dependent on obesity  status3,7. The 
mechanisms posited to underly these relationships are increased energy harvest, regulation of host metabolism, 
and the activation of innate immunity.

The relationship between the oral bacteriome and obesity is less clear with emerging evidence suggesting 
that dysbiosis of the oral microbiome is related to the underlying imbalances and metabolic processes leading to 
the acquisition of body fat/weight8,9. Beyond the well-known orodental diseases like caries, gingivitis and peri-
odontitis, the oral microbiome is associated with systemic inflammation and increased risk for health outcomes 
including cardiovascular disease, diabetes, rheumatoid arthritis and inflammatory bowel  disease10,11. As the start 
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of the alimentary canal and home to volumes of saliva ingested daily, the oral cavity has the potential to provide 
microbial information about the gastrointestinal tract with bacteria regularly passing through the oral cavity 
to the gut. As observed in the gut, an altered oral microbiome has been associated with metabolic changes and 
 obesity12–14 in both adolescents and  adults15. However, there is limited data on the relationship between obesity 
and the oral microbiota in early childhood.

In a previous study that compared adults and adolescents with obesity vs. normal weight, body mass index 
(BMI) was shown to differ significantly with respect to the proportion of Campylobacter rectus and Neisseria 
mucosa, as well as Tannerella forsythia in the subgingival biofilm with greater  abundance13. Taxa within the gen-
era Bifidobacterium, specifically B. longum, and Lactobacillus in saliva were cross-sectionally associated with lower 
obesity prevalence, lower BMI, and lower weight gain. These differences in the microbial composition indicate 
that there may be distinct patterns of association between the salivary microbiome and obesity.

The oral microbiome is crucial to a child’s oral and systemic health through its role in immune training and 
seeding of the infant  gut16. Our focus on early childhood is based on documented changes with complete primary 
dentition, suggesting establishment of a complex oral microbiome that likely lays a foundation of health with 
increasing  age17,18, highlighting the critical need to characterize factors that contribute to the development of 
the microbiome in early life. Equally important is the likelihood that the oral microbiota mirrors the maturation 
and stability of the gut microbial community by age 3 observed by several  groups19–21. High BMI in preschool 
years (and not later in childhood) has been shown to be associated with a higher risk of overweight or obesity 
in adolescence among children who had had stable  BMI22. Therefore, in examining the salivary microbiota of 
approximately 4-year-old children enrolled in an ongoing prospective cohort, the New Hampshire Birth Cohort 
(NHBCS)23–28, we aimed to investigate whether the salivary microbiota was associated with concurrent body 
weight metrics (overweight status or body fat mass). For a subset of participating children, we examined the 
potential impact of early growth exposure metrics prior to sample collection (weight trajectory up to age 2) on 
the salivary microbiota. Based on existing literature, we hypothesize that salivary microbiota in children would 
vary in diversity and richness by age, growth scores, adiposity and fat mass.

Results
Characteristics of the study population. Out of 273 children enrolled in the NHBCS with saliva micro-
biome samples available, we focused on 236 that had weight, height, and dual-energy X-ray absorptiometry 
(DXA) measurements collected at the same time. Of these, the average age of participants was 1410 days (81.9 
SD) or almost 4 years old. The distribution of descriptive characteristics for study participants by overweight 
status is shown in Table 1. The majority (165; 69.9%) of participants were at a normal weight while 62 (26.3%) 
were classified as overweight or obese. As depicted in Table S1, among the 236 children, 131 (55.5%) were male. 
To incorporate prospective anthropometric growth data prior to the time of saliva sample collection, we created 
two exploratory sub-cohorts from the 273 children (Figure S1A) with 137 children conserved in all three sub-
populations (Figure S1B). A total of 195 children had weight-for-length/height ratios available (Table S2). Rapid 
weight gain (RWG), a commonly used dichotomous child growth metric that typically is defined as an increase 
in weight-for-age z-score > 0.67 between birth and a 2-year weight measurement29,30, was assessed in 157 children 
with available data in the first 2 years of life. Among them, 45 (28.7%) were classified as having RWG (Table S3).

DXA scanning provided values for total fat mass (TFM) and total lean mass (TLM) in grams. Ultimately, 
five variables were selected to assess body composition for children at 3–4 years of age: (1) TFM as reported 
from DXA; (2) TLM as reported from DXA; (3) age- and sex-adjusted BMI z-score; (4) age- and sex-adjusted 
BMI percentiles to categorize children as underweight (< 5th), healthy weight (5th to < 85th), overweight (85th 
to < 95th), or obese (≥ 95th); and (5) a binary variable for overweight with the age- and sex-adjusted BMI 85th 
percentile used as the threshold.

Relationships between child growth measurements. Body mass index and DXA-measured TFM 
were highly but not perfectly correlated (Pearson correlation, r = 0.80) (Figure S2A), whereas DXA-measured 
lean mass was only moderately correlated with BMI (r = 0.47) (Figure S2B). Likewise, in linear regression mod-
els, adjusted for age and sex, a unit BMI increase was associated with a 777 (95% CI: 705, 848) gram increase in 
TFM and a 499 (95% CI: 392, 607) gram increase in TLM respectively. As expected, male and female children 
had different mean anthropometric measurements with male children being taller (Kruskal–Wallis p < 0.05), 
heavier (p < 0.05), and with a higher amount of TLM (p < 0.05). Using our exploratory sub-cohorts, we validated 
that both rapid weight gain between 0 and 2  years and weight-for-length ratio were associated with BMI at 
3–4 years of age among both males and females (Fig. 1A and Fig. 1B). Rapid weight gain was defined as a > 0.67 
increase in weight-for-age z-score between 0 and 2 years of age with 0.67 indicative of the difference between 
percentile bands measured on a standardized growth chart.

Community composition of salivary microbiota by growth status. A total of 627 GB of raw data 
was generated from the Illumina NextSeq platform. After filtering out low-quality data and host contamina-
tion, an average of 22.9 million reads of clean data were retained for each sample. The majority of saliva micro-
biota was made up of Firmicutes followed by Proteobacteria, Actinobacteria, and Bacteroidetes (Fig. 2A). From 
the 236 children, 203 species and 54 genera were prevalent at an abundance of 1% across all samples. The top 
genera by mean relative abundance (Fig.  2B) were Streptococcus, Gemella, and Neisseria and the top species 
(Fig. 2C) were Streptococcus mitis, Gemella haemolysans, and Rothia mucilaginosa. Limited differences in the 
relative abundance of species were noted by weight status group, but samples coming from underweight children 
showed the most variation from the other groups with a much lower abundance of Streptococcus mitis compared 
to the other groups (13.5% compared to 23.9–28.5%) (Table S4).
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Using MaAsLin2, we explored associations between child growth metrics and the relative abundance indi-
vidual saliva microbiota (Table S5). Although we found limited results reaching statistical significance (Ben-
jamini–Hochberg q-value < 0.25), we observed a high level of concordance in the direction of associations for 
taxa across metrics assessed. Of the top 10 genera by p-value in adjusted models for TFM and BMI z-score at 
3 or 4 years of age, 7 genera overlapped (Fig. 3A). Of those 7, Granulicatella and Streptococcus abundance were 
positively associated while Actinomyces, Neisseria, Prevotella, Rothia, and Veillonella were negatively associated. 
Regarding species, six species overlapped between growth measurements with Actinomyces odontolyticus and 
Prevotella melaninogenica abundance consistent across all three models (Fig. 3B). To further demonstrate the 
consistency and effect size similarities between models, we subsequently ran adjusted univariate linear regres-
sion models on specific taxa and plotted the overlap between species (Fig. 3C). Across all these species with a 
low p-value via MaAsLin2, the effect estimates across all child growth metrics were consistent but effect sizes 
were small.

Due to inherent differences in child growth by sex, we were interested in assessing the joint interaction of sex 
and child growth on the saliva microbiota. At the genus level, we found evidence of an antagonistic joint effect of 
female sex and child growth on Streptococcus while assessing both age and sex-adjusted BMI z-score as well as 

Table 1.  Descriptive overview of children with BMI, DXA, and saliva microbiome samples at 3–4 years of age 
by BMI percentile-based groups.

Underweight Normal weight Overweight Obese Overall

BMI percentile  < 5th percentile 5th to 85th per-
centile

85th to 95th per-
centile ≥ 95th percentile

Number of children 
by group 9 (3.8%) 165 (69.9%) 35 (14.8%) 27 (11.4%) 236 (100%)

Sample age of saliva sample (days)

Mean (SD) 1420 (87.4) 1410 (82.3) 1400 (64.1) 1430 (98.2) 1410 (81.9)

Median [Min, Max] 1390 [1320, 1600] 1390 [1160, 1750] 1400 [1310, 1550] 1410 [1310, 1680] 1390 [1160, 1750]

Sex

Male 6 (66.7%) 90 (54.5%) 16 (45.7%) 19 (70.4%) 131 (55.5%)

Female 3 (33.3%) 75 (45.5%) 19 (54.3%) 8 (29.6%) 105 (44.5%)

Maternal BMI (kg/m2)

Mean (SD) 21.9 (1.92) 25.4 (5.02) 26.5 (5.35) 29.0 (6.46) 25.8 (5.33)

Median [Min, Max] 22.4 [18.3, 24.4] 24.1 [17.5, 45.7] 25.4 [18.7, 41.5] 27.0 [21.5, 45.2] 24.4 [17.5, 45.7]

Missing 0 (0%) 4 (2.4%) 2 (5.7%) 0 (0%) 6 (2.5%)

Delivery method

Vaginal 8 (88.9%) 120 (72.7%) 23 (65.7%) 19 (70.4%) 170 (72.0%)

C-section 1 (11.1%) 45 (27.3%) 11 (31.4%) 8 (29.6%) 65 (27.5%)

Missing 0 (0%) 0 (0%) 1 (2.9%) 0 (0%) 1 (0.4%)

Gestational age at birth (weeks)

Mean (SD) 38.5 (1.24) 39.0 (1.83) 38.9 (2.27) 38.9 (1.88) 39.0 (1.88)

Median [Min, Max] 38.6 [36.7, 40.0] 39.3 [31.6, 42.0] 39.0 [31.0, 43.0] 39.3 [34.3, 41.4] 39.1 [31.0, 43.0]

Solid foods start age (months)

Mean (SD) 5.44 (1.59) 5.36 (1.28) 5.07 (1.33) 4.92 (1.22) 5.28 (1.30)

Median [Min, Max] 6.00 [3.00, 8.00] 6.00 [1.00, 10.0] 5.00 [3.00, 8.00] 5.00 [3.00, 8.00] 5.00 [1.00, 10.0]

Missing 0 (0%) 19 (11.5%) 6 (17.1%) 5 (18.5%) 30 (12.7%)

Body Mass Index (kg/m2)

Mean (SD) 13.5 (0.256) 15.6 (0.762) 17.4 (0.301) 18.8 (0.716) 16.2 (1.40)

Median [Min, Max] 13.6 [13.1, 13.9] 15.7 [13.7, 17.0] 17.3 [16.9, 18.0] 18.8 [17.9, 21.3] 16.0 [13.1, 21.3]

Height (cm)

Mean (SD) 100 (4.50) 102 (4.18) 102 (3.42) 104 (4.84) 102 (4.26)

Median [Min, Max] 98.3 [92.9, 106] 102 [91.2, 117] 101 [95.7, 109] 104 [96.2, 115] 102 [91.2, 117]

Weight (kg)

Mean (SD) 13.5 (1.11) 16.2 (1.61) 18.0 (1.26) 20.6 (2.08) 16.8 (2.26)

Median [Min, Max] 13.1 [12.0, 15.1] 16.2 [12.9, 19.6] 17.9 [15.5, 21.1] 20.4 [16.7, 25.0] 16.7 [12.0, 25.0]

Total fat mass (g)

Mean (SD) 3290 (644) 4920 (898) 6200 (989) 7370 (1350) 5330 (1340)

Median [Min, Max] 3340 [1970, 3990] 5000 [2550, 7430] 6010 [3980, 7940] 7330 [5050, 10500] 5200 [1970, 10500]

Total lean mass (g)

Mean (SD) 9860 (1100) 10,900 (1300) 11,400 (1430) 12,800 (1840) 11,200 (1530)

Median [Min, Max] 9500 [8250, 11500] 10,900 [8090, 14600] 11,100 [8900, 15500] 12,400 [9940, 16900] 11,100 [8090, 16900]
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DXA-measured fat mass (Fig. 4A) At the species-level, we found consistent results to the genus-level analysis. A 
synergistic joint effect of female sex and child growth on Neisseria cinerea was also observed (Fig. 4B). For males, 
an antagonistic joint effect with child growth was noted for Neisseria and Neisseria cinerea (Fig. 4C; Fig. 4D).

Microbial diversity of salivary microbiota by growth status. In addition to community composi-
tion, we were interested in associations between body mass and saliva microbiome diversity metrics. Moder-
ate dose-dependent associations between weight status and Shannon alpha diversity were noted; samples from 
underweight, normal weight, overweight, and obese children had a mean (standard deviation) Shannon diver-
sity metric of 2.84 (0.23), 2.75 (0.45), 2.71 (0.46), 2.68 (0.51) respectively. Alpha diversity measured by the Shan-
non index showed a moderately inverse association with BMI z-scores (Table 2). TFM was associated negatively 
with alpha diversity in a crude/unadjusted analysis. TLM showed no significant association (data not shown but 
the analysis was otherwise identical to TFM).

Between-sample or beta diversity analysis using principal coordinate analysis (PCoA) plots showed moderate 
associations with TFM and BMI z-scores (Figure S3). Unlike TFM and BMI z-scores, overweight status was not 
statistically significantly associated with beta diversity. Within PERMANOVA models, TFM and BMI z-scores 
were statistically significant (Table S6 and Table S7; crude model p-values < 0.05; adjusted model p-values < 0.1) 
with microbial beta diversity but described very little of either model’s variation.

Exploratory functional analysis of saliva microbiome by growth status. In addition to profiling 
taxa present in the samples, we aimed to better understand how child growth might be associated with functional 
differences in the saliva microbiome. While results did not indicate strong associations between child growth 
metrics and pathway abundances, we found consistently positive associations across models assessing TFM and 
age and sex-adjusted BMI z-scores. Among functional pathways, we identified sugar and methionine pathways 
including lactose and galactose degradation I and L-methionine biosynthesis I to be statistically significant but 
with small effect sizes (Fig. 5). Streptococcus species (predominantly S. mitis) were important in these functional 
pathways matching and provide further context to how Streptococcus may be associated with child growth.

Associations between other early‑life factors and the saliva microbiome. As this study is one 
of the first to profile oral microbiomes with shotgun metagenomics in children 3–4 years of age, we performed 
exploratory analyses of the impact of other early-life factors on saliva microbiota. Regarding diversity metrics, 
we found maternal BMI was positively associated with Shannon alpha diversity in all models (Table 2). Maternal 
BMI, age of saliva sample collection, and sex were moderately associated with beta diversity but no variables 
explained a significant portion of the variance (Table S7). Additionally, in our differential abundance analyses 
using MaAsLin 2 (Table S5), we consistently identified maternal BMI to be positively associated with Veillonella 
parvula and Veillonella. Independently, increasing age of the child and female sex were also associated with 
increased abundance of Haemophilus. While other associations between early-life exposures and microbes were 
often of similar direction and magnitude across models, no other early-life exposures were found to be statisti-
cally significant (Benjamini–Hochberg q-value < 0.25).

Figure 1.  Associations between body mass index (BMI) measured at 3 or 4 years of age versus child growth 
metrics measured between 0 and 2 years of age. (A) Age and sex adjusted BMI z-score versus rapid weight gain 
stratified by sex for 157 children. Wilcoxon p-value indicates difference in BMI z-score by rapid weight gain 
group for females and males. (B) Growth charts using the weight-for-length (weight-for-height) ratio plotted for 
195 children between the ages of 0 and 2 stratified by BMI percentile groupings at 3 or 4 years of age. Growth 
indices are colored by the sex of the child.
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Discussion
In the present study, we characterized the oral microbiome using shotgun sequencing technology and investi-
gated its relationship with age- and sex-adjusted BMI and body composition. Our study is among the first to 
provide comprehensive metagenomic insight into the association between growth outcomes and the salivary 
microbiome in early childhood. While there were no strong taxa-specific associations, we identified multiple 
bacterial taxa (including Actinomyces, Corynebacterium, Capnocytophaga, Prevotella, Streptococcus mitis and 
Veillonella) to be moderately associated with TFM, a child’s overweight status, BMI and RWG. Further, we 

Figure 2.  Saliva microbiome composition among 236 children grouped by body mass index percentile 
groupings. (A) Phylum-specific composition by mean relative abundance. (B) The composition of the top 10 
genera based on the highest mean relative abundance across all samples. (C) The composition of the top 10 
species based on the highest mean relative abundance across all samples. Color ranges (i.e., spectrum of blue for 
Streptococcus) for species are used to delineate species from the same genus. UW = underweight.
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identified high levels of concordance for these taxa with respect to abundance and direction across the various 
anthropometric measurements. Our study highlights the potential interactions between child growth and sex, 
with an antagonistic interaction noted for Streptoccocus abundance among females but a synergistic interaction 
with Neisseria cinerea. Overall, we found that various taxa within the phylum Firmicutes, Actinobacteria, and 
Bacteroidetes were associated with body composition and weight gain in the first two years of life.

Bacterial- and host-genome-association studies of obesity are complex, multifactorial and bidirectional in 
nature. The wide range of host and environmental effects and the significant inter-individual variability of the oral 
microbiome makes interpretation of studies, such as ours, challenging. Furthermore, in examining the association 
between oral microbiota and obesity in pre-school children, the accurate assessment of growth and adiposity is 
critical. We observed that BMI Z-scores were more highly correlated with DXA-derived fat mass compared to 
lean mass, confirming earlier reports and providing validation to the anthropometric  measurements31.

Literature provides strong evidence of significant differences in the human gut microbiome comparing peo-
ple with obesity to  controls2,4. There is some consensus of increased levels of gut Firmicutes to the detriment of 
 Bacteroidetes32 with obesity and type 2 diabetes. Early-life gut microbiota is strongly influenced by dietary fac-
tors including the introduction of formula and solid  food21,23,27. The most dominant and differentially abundant 
taxa in the infant gut due to obesity was Firmicutes followed by  Bacteroidetes33, as has also been found in adult 
 studies34. It has been hypothesized that having higher gut levels of Firmicutes promotes more efficient storage of 
energy from a given diet among obese subjects compared with lean subjects. Although gut studies focus on fecal 
bacteria, all bacteria from the gastrointestinal tract must pass through the oral cavity and are potentially seeded 
from the oral  cavity35. The relationship between the oral microbiota composition and obesity is less clear as there 

Figure 3.  Comparison of associations between growth metrics and microbes. (A) Venn diagram depicting the 
top 10 genera by lowest p-value produced from adjusted MaAsLin2 regressions. (B) Venn diagram depicting 
the top 10 species by lowest p-value. For both (A) and (B), blue and red are indicative of positive and negative 
coefficients respectively. (C) Dot and whisker plots to represent the relative abundance change attributable to the 
child growth metric. Each row represents the coefficient estimate from a different linear regression model. These 
adjusted regression models included the exposure (growth variable) and the following covariates: delivery mode 
(vaginal or cesarean), sex (male or female), sample age in days, maternal BMI, gestational age in weeks, and 
solid foods start age in months. The sample size of the adjusted models for the growth metrics measured at the 
time of saliva sample collection was 202. The sample size for the rapid weight gain model was 138. Species were 
selected for univariate linear regression analysis due to their overlap in the species-level Venn diagram.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13075  | https://doi.org/10.1038/s41598-022-14668-y

www.nature.com/scientificreports/

Figure 4.  Assessing the joint effects of body mass and sex on saliva microbiota at 3 or 4 years of age. MaAsLin2 
models included in addition to the interaction term: the growth variable, sex (male or female), delivery mode 
(vaginal or cesarean), sample age in days, maternal BMI, gestational age in weeks, and solid foods start age 
in months. Black circles indicate a p-value < 0.1. (A) Coefficient for interaction between female sex and child 
growth metric (age and sex adjusted BMI z-score or total fat mass in grams using a DXA scan) on the relative 
abundance of genera. (B) Coefficient for the interaction between female sex and child growth metrics on the 
relative abundance of species. (C) and (D) use the same data but the models for the interaction term represents 
joint effects with males instead of females. For species, only associations with an effect size > 0.005 or < − 0.005 
are included.
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have been mixed and inconsistent results. This is primarily due to variation in study population, methodology, 
body weight assessments and microbiome characterization. Our study is among the first to utilize WGS, include 
more than 100 participants or focus exclusively on pre-school children. Previous studies have reported no dif-
ferences in oral microbiota composition according to  BMI36,37 while others have observed distinct  features38–40. 
Nevertheless, there is growing evidence of a significant association between levels of specific oral bacterial taxa 
and obesity, BMI and weight  gain39,41,42. This increase in attention stems from the relationship between body 
weight and oral health, specifically the manifestation of periodontitis, gingivitis and dental caries. These findings 
lead to a logical thread of investigations related to answering the question “Is the relationship between obesity 
and oral health mediated by the oral microbiome?”.

Our findings of lower diversity in the oral microbiome with increasing BMI and fat mass are in line with 
previous  studies43. In contrast to our findings, several studies observed no  difference36 while one study reported 
a higher diversity in obese  children44. We observed no clear clustering of beta diversity indices by BMI or DXA 
measurements. This finding is likely due to the large inter-individual variation in the salivary microbiome among 
healthy-weight children leading to considerable overlap in distance measures as observed by  others36. Our study 
findings highlight lower levels of Prevotella (from phylum Bacteroidetes) in overweight children. Goodson et al.45 
reported that oral Prevotella spp. was more abundant in overweight women compared to normal weight women. 
In contrast, no significant association between oral Bacteroidetes with obesity was observed in a large study of 
African-American adults aged >  5039. Prevotella species dominate in periodontal diseases and abscesses and are 
often associated with mucosal  inflammation46. Prevotella in the gut has been previously shown to be negatively 
associated with BMI and fat mass in  children47 as we observed with saliva. Other studies of adolescents and 
adults have identified Prevotella to be positively associated with aging and pro-inflammatory  cytokines48, which 
is consistent with findings that obesity is associated with low-grade inflammation. Overall, these conflicting 
findings signal the need for future work.

Sex-specific differences in the association between growth and salivary microbiota observed in this study, 
though mechanism unclear, has been previously  reported49,50. A study of 483 girls and 417 boys in Finland 
revealed large, though not significant, gender-dependent body size-related differences in microbial diversity 
and bacterial  abundance43. Ortiz et al. also reported significant differences in the salivary microbiome between 
caries-active and caries-free boys and  girls51. Gut microbiota studies have reported distinct sex-specific tax-
onomy and functional  phenotypes24,52–54 particularly in relation to  neurodevelopment55. Some prepubescent, 
adolescent and adult studies have attributed these shifts or differences to the endocrine  system56, suggesting an 
interplay between hormones, fat deposition and the microbiota. Study participants for this current study were 

Table 2.  Association between Shannon alpha diversity of saliva samples and child growth metrics measured 
at 3–4 years. Each cell shows the linear regression coefficient for each exposure’s association with the Shannon 
index as derived from 6 different linear regression models. A crude and adjusted linear regression model was 
ran for each of our main body mass exposures of interest: total fat mass (in kg), body mass index z-score, and 
overweight status (with age- and sex-adjusted BMI at the 85th percentile used as the threshold) respectively. 
p < 0.1 = * and p < 0.05 = **; TFM = total fat mass, BMI = body mass index.

Dependent variable: Shannon alpha diversity (95% CI)

Model coefficients

Crude TFM Crude BMI z-score Crude overweight status Adjusted TFM Adjusted BMI z-score Adjusted overweight status

Total fat mass in kg − 0.041*
(− 0.084, 0.002)

− 0.034
(− 0.083, 0.015)

BMI z-score
− 0.056**
(− 0.110,
− 0.002)

− 0.060*
(− 0.119, 0.0001)

Overweight − 0.056
(− 0.188, 0.075)

− 0.036
(− 0.183, 0.111)

Solid foods start age (months) − 0.007
(− 0.058, 0.044)

− 0.008
(− 0.059, 0.043)

− 0.007
(− 0.059, 0.044)

Female − 0.038
(− 0.166, 0.089)

− 0.045
(− 0.172, 0.081)

− 0.044
(− 0.172, 0.084)

Log10-transformed sample age 
in days

− 1.802
(− 4.413, 0.809)

− 1.82
(− 4.412, 0.771)

− 1.917
(− 4.534, 0.700)

Gestational age (in weeks) − 0.011
(− 0.045, 0.024)

− 0.011
(− 0.045, 0.023)

− 0.012
(− 0.046, 0.023)

C-section − 0.022
(− 0.170, 0.125)

− 0.02
(− 0.167, 0.126)

− 0.023
(− 0.171, 0.125)

Maternal BMI (kg/m2) 0.015**
(0.003, 0.028)

0.017**
(0.004, 0.029)

0.015**
(0.002, 0.027)

Intercept 2.954**
(2.717, 3.191)

2.757**
(2.696, 2.818)

2.751**
(2.684, 2.819)

8.682**
(0.589, 16.774)

8.562**
(0.513, 16.611)

8.931**
(0.808, 17.054)

Observations 236 236 236 202 202 202

R2 0.014 0.017 0.003 0.055 0.064 0.047

Adjusted  R2 0.01 0.013 − 0.001 0.02 0.03 0.012
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Figure 5.  Exploratory analysis of body mass metrics and saliva microbiome functional profiles from pathway 
analysis. (A) Tile plot demonstrating the effect size and statistical significance of associations between child 
growth metrics (age and sex-adjusted BMI and DXA measured total fat mass in kilograms) and functional 
pathways. Effect sizes are derived from MaAsLin2 analyses. The models were adjusted for delivery mode 
(vaginal or cesarean), sex (male or female), sample age in days, maternal BMI, gestational age in weeks, and 
solid foods start age in months. Black circles represent a p-value < 0.15. Only associations with an effect size 
absolute value greater than 0.00001 in at least one of the two models were included in the plot. (B) and (C) 
Species-specific contributions of select pathways and KEGG gene families by overweight status. Pathways shown 
were selected from results from (A) and had the highest effect size in the two models.
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approximately 4 years of age suggesting that these differences might be in the incipient stages. Additional studies 
are needed to further elucidate this relationship.

The relationship between periodontal disease and obesity has also drawn more attention to the role of the oral 
microbiota in obesity. Adult studies have shown that obesity is associated with increased counts and proportions 
of certain periodontal pathogens, including Tannerella forsythia and Selenomonas noxia57. Our study population 
offers an advantage of examining the association between oral microbiota and obesity in childhood as children are 
not typically at risk of inflammatory diseases or conditions associated with aging such as periodontitis, diabetes 
and cardiovascular disease therefore the associations with obesity can be the focus of  investigation58. Consistent 
with this premise, and as expected, we did not observe any significant associations between body weight and well 
known pathobionts. S. mitis (considered one of the beneficial commensal bacteria and an emerging opportunistic 
pathogen when in niches distal to the oral cavity) was observed as being among the most taxonomically abundant 
and functionally active species with respect to anthropometric measures. Therefore, the contribution of S. mitis 
to childhood growth and weight/fat gain requires further examination.

RWG in early childhood has been identified as a risk factor for obesity in adolescence and adulthood and its 
associated  complications59. We report differentially abundant taxa based on RWG that seemed to overlap with 
other growth measures. However, we identified two overlapping taxa were associated in opposing directions 
for RWG compared to concurrent BMI Z scores. It is not clear if these differences are due to distinct periods 
of childhood growth. Furthermore, RWG in the first 2 years of life was not observed in all children who were 
overweight at approximately 4 year of age, suggesting that RWG in early life does not always reflect the same 
growth patterns later in life. Craig et al.41 sequenced hypervariable regions V3 and V4 of the 16S rRNA gene in 
oral and stool samples from over 200 two-year-olds and utilized functional data analysis to examine childhood 
weight-gain trajectories longitudinally. The authors report that in children who gained weight rapidly from birth 
to six months of age, oral bacterial diversity at two years of age was decreased with a higher Firmicutes to Bacte-
roidetes ratio; but this was not observed with the gut  microbiota41. While within-sample diversity and F/B ratio 
are key summary tools for assessing of the microbiota, they are limited in their ability to identify obesity-related 
features of the fecal or salivary microbiota. Nevertheless, the findings from Craig and  colleagues41 suggest that 
obesity-related associations may appear at an earlier time point for saliva microbiota than in the gut microbiota. 
Future investigations may hold promise of leveraging the oral microbiome as a biomarker for health outcomes 
in relationship to the gut microbome. Indeed, chronic inflammation and immune dysregulation resulting from 
oral bacteria or their products may have systemic effects, which could be associated with intestinal colonization 
by bacteria and correlated with the cancer health and disease.

There are several mechanisms by which weight gain could contribute to the oral microbiota or vice versa. 
Many postulate that bacteria in the oral cavity could contribute to systemic metabolic alterations, as with gut 
Firmicutes. Specific oral taxa could contribute to redirecting consumption of energy by facilitating insulin resist-
ance through increasing levels of TNFα and lipo-polysaccharides or reducing levels of adiponectin. In addition, 
oral microbiome could also contribute to taste  perception44 and appetite control.

While our findings were related to the oral cavity, the association between maternal BMI and Veillonella 
parvula in the gut has been previously reported by Costa and  colleagues60. It is plausible to consider maternal 
BMI as a proxy variable for child’s  diet61. In addition to the role of V. parvula in association with weight gain, 
costimulatory properties of Streptococcus and Veillonella spp. have been observed by several investigators in-
vitro and across various human microbial  ecosystems62,63. Specifically, some streptococci when combined with 
Veillonella substantially augmented immune cell profiles including IL-8, IL-6, IL-10, and TNF-α responses. 
These data suggest similar interactions and require further investigation particularly in the oral milieu where 
Streptococcus is the predominant genera.

A strength of this study is utilization of high-resolution whole genome sequence data to characterize the oral 
microbiota. To our knowledge, there is no previous study that has applied shotgun sequencing to saliva sam-
ples collected in early childhood for the purpose of this evaluation. Use of 16S data by previous studies lend to 
poor resolution of oral microbial taxa. Additionally, we were also able to leverage DXA measurements of body 
composition. To our knowledge, the relationship between DXA-measured fat mass and salivary microbiota has 
not been explored in children.

Despite these strengths, our findings need to be examined in light of several limitations. The cross-sectional 
design of this study has its inherent weakness; however, for a subset we were able to address the potential impact 
of early life growth on development of the oral microbiome. As the main aims of NHBCS did not include dental 
health assessments, we do not have clinical data on oral diseases and no radiographs were obtained to detect 
dental caries or bone loss in these child-subjects. While there is clear evidence that oral health status is strongly 
related to salivary microbiome, our objective was to examine the association between growth and salivary micro-
biome in the context of stable microbial community and relatively complete dentition. We also recognize that 
there is the potential for unmeasured or residual confounding based on unexplored associations or due to the use 
of covariates with dampened effects due to previous, as opposed to, current  exposure41. Specifically, as discussed 
earlier, although the impact of diet on the association between weight gain/growth and the establishment of the 
oral microbiota was not directly assessed in this study, we considered maternal BMI as an alternative indica-
tor and adjusted for it in all our analyses. Other limitations associated with studying the human microbiota in 
children and the salivary microbiome in particular include the inherent constraints with salivary microbiome 
characterization (availability of reference databases, frequency and timing of sample collection) and the lack of a 
priori data for sample size estimation (limiting statistical power to detect differences). Despite these limitations, 
our data suggests that microbiome-growth assessments using DXA and BMI Z scores were comparable and can 
be applied to other populations.

In conclusion, our data from 3 to 4-year-old children suggested a lower diversity with increasing BMI and 
body composition and highlights some differences in oral microbial composition on the basis of BMI (based on 
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overweight status) and TFM. These findings suggest that changes in the body composition might impact the oral 
microbiome in early childhood or vice versa, further increasing the risk of disease in later life. A larger sample 
size and prospective follow-up will help determine whether the observed differences become more pronounced 
as the children grow older, thereby identifying possible mechanisms by which the oral microbiome composition 
mediates disease. In future analyses, DXA assessment could also be used to explore associations between saliva 
microbiome and bone remodeling/mass. There is, therefore, need for additional large molecular epidemiologic 
studies to identify taxonomic and functional links underlying these associations that could be candidates for 
intervention.

Methods
New Hampshire birth cohort study (NHBCS). The NHBCS is an ongoing prospective cohort study of 
over 2,250 mother and child dyads from New Hampshire and Vermont, USA. The study was originally designed 
to assess the long-term effect of arsenic exposure from private well water on children born to pregnant women 
enrolled at approximately 24 and 28 weeks of  gestation23. Demographic and anthropometric data were collected 
via interviews administered prenatally, as well as at multiple timepoints postpartum, and via medical record 
review. Participants provided written informed consent and all study procedures and protocols were approved 
by the Center for the Protection of Human Subjects at Dartmouth, and all methods were carried out in accord-
ance with relevant guidelines and regulations. A subset of children with body composition measurements and 
saliva shotgun sequencing samples processed when the child was 3 or 4 years old were included in this study.

Childhood growth measurements. Multiple time points and variables were used to describe child 
growth. In cases when body mass measurements and saliva samples were collected at the same time (within 
30 days of each other but generally on the same day), this study design can be considered cross-sectional. For a 
subset of participants, early life growth measurements (< approximately 2 years of age) were also available and 
utilized for prospective analyses. Only children that had anthropometric measurements and DXA screening 
conducted at 3–4 years of age were included in the main analysis assessing associations between body composi-
tion and the saliva microbiome cross-sectionally (Supplementary Methods).

Body mass measurements at 3–4 years: The anthropometric data were assessed and abstracted from medical 
records by trained professionals. Data consisted of the following: height (in centimeters) and weight (in kilo-
grams) taken in the clinic during well-child visits when the child was 3 or 4 years of age (1095.75 days < age < 1
826.25 days). BMI was analyzed in kg/m2 and age- and sex-standardized using the CDC’s child growth charts 
derived from the package childsds64 in R. Although we considered CDC’s referenced growth charts to be a better 
fit for our cohort of US children, we also computed adjusted BMI z-scores using the World Health Organiza-
tion’s reference charts and found the two methods to be highly correlated (Pearson’s correlation = 99%). At ages 
3 and 4, children further underwent a full-body DXA scan to estimate body composition using a Horizon-A 
Advanced Fan-Beam DXA system (Hologic, Inc; Marlborough, MA, USA) following the protocol from the 
National Institutes of Health PhenX  Toolkit65.

Both BMI and DXA measurements were considered to assess child body mass. Although BMI and fat mass 
both assess child growth, there were a variety of reasons why we explored both in this analysis. We chose to look 
at BMI because it is a standardized variable that will enable other studies and research groups to compare results 
with our own. However, as BMI has sensitivity and specificity limitations and DXA has been used as the criterion 
measure in assessing fat mass in pediatric  populations66,67, we felt it was also important to consider in this study. 
Thus, we hypothesize that we may be able to identify some trends across both measurements of child growth 
but may also find varying associations because BMI reflects both fat and fat-free mass. In summary, using both 
of these measurements of body mass provides advantages to both internal and external validity.

Rapid weight gain from birth to age 2 years: Assessment of RWG was conducted to assess a prospective associa-
tion between rapid child growth early in life and on saliva microbiome composition. RWG has been associated 
with increased weight and obesity both later in childhood and into  adulthood29,30. This score is indicative of the 
difference between percentile bands on standardized growth charts with 0.67 being the value needed to pass 
through a centile  line68. Using delivery and pediatric medical records, we extracted birthweight and a 2-year (+ / 
6 months) weight measurement. Children with a gestational age below 37 weeks’ gestation were not included 
in this analysis to reduce potential confounding from gestational age at birth. Weight-for-age z-scores were 
calculated using the World Health Organization child growth charts (recommended for clinical use under age 
2) and standardized by sex using the childsds64 in R.

Growth chart: In addition to the dichotomous measurement of weight-for-age z-score we modeled growth 
trajectories of children from birth to 2 years of age using weight-for-length/height ratios. Weight-for-length 
(or weight-for-height) is recommended as opposed to body mass index in children under 2 years of  age69. For 
this analysis, we included children with saliva microbiome samples at 3 or 4 years of age and at least 2 measure-
ments for length and weight before 2 years of age (on or before day 730). Duplicated measurements of weight 
and height per child were removed and the mean value for the weight-for-length ratio was used if multiple 
measurements were taken on the same day. Using similar methods  to41, we used the fdapace: Functional Data 
Analysis and Empirical Dynamics  package70 in R to create growth trajectories for children. This tool enabled us 
to build growth curves based on the average value across all children. We used the default settings for the FPCA 
(functional PCA) command.

Characterization of the salivary microbiome. Saliva microbiome samples were collected using flocked 
nylon swabs (Copan Diagnostics) placed in the child’s buccal cavity for 20 s to absorb saliva and placed sponge-
down into free conical tubes. Sample collection occurred during the 3-to-4-year study visit that included anthro-
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pometric assessment and DXA screening. DNA extractions were performed using the ZymoBiomics Micro-prep 
kit (Zymo Research). Briefly, tubes containing nylon flocked swab heads were thawed and transferred to ZR 
BashingBead Lysis Tubes (0.1 & 0.5 mm beads) containing 800 µl Lysis Buffer and 25 µl Proteinase K (20 mg/
ml). Lysis tubes were placed in racks in a pre-warmed rotating oven and incubated for 30 min 55 °C and 30 rpm. 
Bead beating of Lysis tubes was performed in two rounds of 11 min each using a Disruptor Genie (Scientific 
Industries, Inc.). After lysis, tubes were centrifuged at 10000xg for 30 s in a microcentrifuge to pellet beads. 
About 400ul of lysate was transferred to Zymo-Spin™ III-F Filter columns and centrifuged at 10000xg for 30 s 
and collected in a 2 ml collection tube. 1.2 ml of Binding Buffer with 0.5% beta-mercaptoethanol was mixed 
with the collected lysate and the mixture was centrifuged through Zymo-Spin™ IC Columns for 10000xg for 60 s. 
Columns were washed with kit provided wash and DNA was eluted in 2 pooled elutions, using each time 19ul 
of Elution buffer pre-warmed at 60 °C. DNA was quantified using Qubit HS dsDNA kit (Invitrogen) and 2 µl of 
sample. A yield threshold of 1 ng/µl DNA was required to refer for shotgun sequencing. Above this threshold 
average DNA yield was 8.6 ± 9.8 ng/µl and ranged from 1 to 57.7 ng/µl. DNA extractions were performed in 
batches of 12 samples including one external saliva positive control swab and one negative control swab. Average 
DNA yields of batch positive controls was 15.2 ng/µl and CV of 19%. Negative control yields were too low to 
quantify at 2 µl. Extracted DNA was amplified from all samples were prepared for sequencing on the NextSeq 
platform (shotgun metagenomics) using 150 nt paired end reads at the Marine Biological Laboratory (MBL) in 
Woods Hole, MA using established methods and as previously  published23–25,28.

All samples were processed as single reads at the MBL and were subsequently processed. First, they underwent 
quality control to remove contaminants with KneadData v0.7.4. Only saliva samples that had one million reads 
after KneadData processing were kept in the analysis. Shotgun sequencing samples were functionally profiled 
using HUMAnN3 version 3.0.0.alpha.371 after being taxonomically profiled using  MetaPhlAn372. MetaPhlAn3 
and HUMAnN3 jobs were run on Dartmouth’s supercomputer and high-performance computing Linux cluster 
respectively. HUMAnN3 uses a tiered search approach to first map reads from samples to taxa using marker 
genes (MetaPhlAn3). Then it creates species-specific pangenomes to provide functional  annotations71. Only 
reads from bacteria were considered for this analysis which made up the vast majority (> 99%) of all samples.

Data analysis. Covariates: Covariates were selected based on an a priori literature review. In order to choose 
which covariates were confounders and needed to be adjusted for in the models, we plotted them on a directed 
acyclic graph (DAG) (Figure S4). Although our measurement of body mass and saliva microbiome were cross-
sectional in our main analysis, we hypothesize a direction of association with body mass as the exposure and 
the saliva microbiome as the outcome. This was directly examined in our prospective analyses by assessing child 
growth between 0 and 2 years of age. Based on the DAG, the potential confounders (i.e., related to our exposure 
and outcome directly or hypothesized to be based on previously identified indirect associations in separate stud-
ies) to adjust for in our analyses were age (measured by age in days of the saliva sample), sex (male or female)24,41, 
delivery mode (vaginal or cesarean delivery)3, gestational age (age in weeks)27,28 and diet (age when child started 
to eat solid foods in months)41. Although previous studies have found associations between maternal BMI or 
weight gain and children’s  BMI73, literature identifying associations between maternal BMI and the child’s saliva 
microbiome have not found  associations41,74. However, due to previously identified associations between mater-
nal BMI and the child’s gut  microbiota75, we decided to include maternal BMI measured by self-reported pre-
pregnancy weight and measured height (kg per meters squared) as a covariate.

Descriptive and statistical analyses: All analyses were completed in R 3.6.0 (http:// www.R- proje ct. org). Saliva 
microbiota sequence read counts were normalized per sample, yielding a compositional relative abundance data 
set for downstream analyses. We were interested in taxonomic composition at the phylum, genus, and species-
level. Each read was classified using the CHOCOPhlAn database within MetaPhlAn3, and, for each sample, 
ecological diversity measurements (α-diversity—a measure of richness and evenness within a single sample, and 
β-diversity—a measure of differences between samples) were calculated at the species-level.

To evaluate the relationship between alpha diversity and childhood growth measures, the phyloseq  package76 
was used to compute Shannon diversity. In statistical models, the Shannon alpha diversity was the outcome 
and was regressed against the relevant exposures using linear regression models. In these models, TFM was 
transformed into kilograms. Between sample or beta diversity was also assessed using the phyloseq package. 
Bray–Curtis was used to assess dissimilarity between samples and plotted as a principal coordinate analysis 
(PCoA) plot to visualize variation. Samples were colored by variables of interest. For overweight status, centroids 
were plotted with betadisper function within the vegan package (ellipses based on 1 standard deviation). Vari-
ation between samples was quantified using the adonis2 function from the vegan  package77 in PERMANOVA 
analyses. Lastly, Microbiome Multivariable Associations with Linear Models (MaAsLin2)78 was used to quantify 
differences between the relative abundance of taxa by body mass variables adjusted for covariates. MaAsLin2 is 
specifically designed for ‘omic analyses and uses robust statistical procedures to assess exposures of interest while 
controlling for other variables. Deviation from default parameters for taxonomic analysis included normalization 
though the centered-log ratio (CLR) approach and no additional transformation. Interaction variables consider 
the joint effect of the child growth variable among children in one group (i.e., the joint interaction of female sex 
and BMI). MaAsLin2 for pathway analysis used default parameters with the additional minimum abundance 
filtering of 0.0001. Due to the hypothesis-generating and exploratory nature of this study, effect size, p-value, 
and q-value thresholds were used to determine taxa, genes, and pathways of interest, but thresholds varied by 
analysis. Thresholds for inclusion in figures are noted in figure legends.

http://www.R-project.org
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Data availability
The saliva whole metagenomic shotgun sequencing samples are available through the National Center for Biotech-
nology (NCBI) Sequence Read Archive: https:// www. ncbi. nlm. nih. gov/ sra (Accession number: PRJNA296814).

Code availability
The authors will share Rmarkdown scripts upon request.
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