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Super‑resolved quantum ghost 
imaging
Chané Moodley * & Andrew Forbes 

Quantum ghost imaging offers many advantages over classical imaging, including low photon fluxes 
and non‑degenerate object and image wavelengths for imaging light sensitive structures, but suffers 
from slow image reconstruction speeds. Image reconstruction times depend on the resolution of 
the required image which scale quadratically with the image resolution. Here, we propose a super‑
resolved imaging approach based on neural networks where we reconstruct a low resolution image, 
which we denoise and super‑resolve to a high resolution image. To test the approach, we implemented 
both a generative adversarial network as well as a super‑resolving autoencoder in conjunction with 
an experimental quantum ghost imaging setup, demonstrating its efficacy across a range of object 
and imaging projective mask types. We achieved super‑resolving enhancement of 4× the measured 
resolution with a fidelity close to 90% at an acquisition time of N 2 measurements, required for a 
complete N × N pixel image solution. This significant resolution enhancement is a step closer to a 
common ghost imaging goal, to reconstruct images with the highest resolution and the shortest 
possible acquisition time.

Ghost imaging is an alternative image acquisition technique which utilises the correlations between two spa-
tially separated fields of light to reconstruct an image of an object, therefore, photons that have not physically 
interacted with the object are  used1,2. Individually each field cannot offer any image information on the object, 
however the correlations between them allows for the reconstruction of an  image3,4. Ghost imaging was originally 
demonstrated as a quantum entanglement  phenomenon5 and as a result of a spontaneous parametric down-
conversion (SPDC)  process6, and recently shown with entanglement swapped  photons7 and with symmetry 
engineered quantum  states8. It was later shown that classical correlations can similarly be used in a ghost imaging 
 experiment9–11. Quantum ghost imaging was initially thought to produce higher resolution images, however, 
it has been shown that in both quantum and classical cases images of almost identical quality are  produced2,12. 
Advantageously, the use of quantum light allows for imaging at low light levels, demonstrating a higher signal 
to noise ratio and  visibility12,13. Particularly, quantum ghost imaging is useful for biological imaging applications 
where it is beneficial to reduce the risk of photo-damage to light sensitive  matter14.

A common ghost imaging goal is to reconstruct images with the highest resolution and the shortest acqui-
sition  times15, however, a limitation that ghost imaging faces is the inefficient imaging speed. Imaging speeds 
depend on the number of measurements needed to reconstruct the image which scales quadratically with the 
required  resolution16. This imposes a practical limit on applications requiring high resolution images. Earlier 
raster scanning implementations were  used5, which evolved to more timely methods using a single-pixel bucket 
detector and pre-computed binary intensity fluctuation  patterns17, single-pixel scanning  methods18,19 and Fou-
rier single-pixel scanning  methods20. The imaging speed remained unsatisfactory and so too did the number 
of measurements required to reconstruct the  image21,22. Attempts to improve and enhance image quality and 
resolution focused on employing a pseudo-inverse ghost imaging technique via a sparsity  constraint23, employ-
ing a Schmidt decomposition for image  enhancement24, and imaging based on Fourier spectrum  acquisition25. 
Deep-learning has recently gained a lot of interest due to robust enhancement and denoising capabilities in image 
resolution. Neural networks have been used in under-sampling the object and employing neural networks to 
enhance the reconstructed  image26,27, performing Poisson noise reduction and using neural networks for image 
 upscaling28, using neural networks to denoise the  image29, using autoencoders as a self-supervised approach to 
enhance image  quality30, and super-resolution imaging in the far-field with neural  networks31.

In this work we outline a novel approach to producing super-resolved images in a quantum ghost imaging 
experiment. We experimentally reconstruct a low resolution image, which we denoise, and super-resolve with-
out losing the finer details of the image. A lossless high resolution super-resolved image is achieved with fewer 
measurements. After implementing super-resolving neural networks we trained the networks to super-resolve 
images acquired from a complete ghost image reconstruction, i.e. N 2 measurements where N × N pixels is the 
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image resolution. The N × N pixel image is then super-resolved to a 4N × 4N pixel image. Additionally, we 
implemented a reconstruction algorithm to suppress noise levels by leveraging noise-suppression characteris-
tics from three different reconstruction algorithms. We start by describing our image reconstruction method, 
followed by our neural network description and experimental details, and finally present our results, where we 
demonstrate significant super-resolving capabilities. We believe that this novel approach to obtaining lossless 
super-resolved images will prove valuable to both quantum and classical ghost imaging experiments focused on 
obtaining high resolution images.

Image reconstruction methods
Figure 1 conceptually illustrates our all-digital super-resolved ghost imaging (GI) concept. The photon cor-
relations necessary for ghost imaging, in our work, arise from a quantum  source5,6,32,33. The required position 
correlations arise from the spatial entanglement of the signal and idler photons produced by a spontaneous para-
metric downconversion (SPDC) process using a non-linear crystal (NLC)34. Entangled photon pairs are spatially 
separated into two independent paths, one to illuminate the object (object arm) and one which is collected by a 
spatially resolving detector (reference arm). Our spatially resolving detection system is realised by displaying a 
series of binary patterns (masks) on a spatial light modulator (SLM), the projection is then collected by a bucket 
detector. The measured correlations then provide information on the similarity (or overlap) between the object 
and each mask. Scanning through a series of masks is a lengthy process which scales with the required resolu-
tion and is a great area of interest to the ghost imaging  community26–28,33,35,36. Importantly, the patterns must 
form a complete basis to completely reconstruct the image. Once we have scanned through a series of masks 
and have reconstructed the image at a low resolution (low res), we then exploit artificial intelligence algorithms 
to denoise and super-resolve the image. This process produces super-resolved high resolution (high res) images 
without needing to measure at a higher resolution. Super-resolving neural networks allow us to measure at a low 
resolution while achieving up to 4 × super-resolving resolution enhancement.

Traditionally the image is reconstructed as a linear combination of all masks weighted by the coincidences 
and is expressed as the traditional second order ghost imaging (TGI) reconstruction  algorithm21:

where I is the image, ci the coincidence counts, and Mi the mask for the ith measurement. We refer to ci as the 
coincidence counts for ease of understanding as we weight the masks by the respective coincidence counts to 
recontruct the image, however ci is the overlap between the object and mask - which is proportional to the coin-
cidence counts. The TGI reconstruction brings forth a large background which typically suppresses the signal, 
the reconstructed image is, therefore, of low quality. To improve this, many studies calculate the joint probability 
distribution applied to imaging to improve the signal to noise  ratio37–40. Using the joint probability distribution 
as a reconstruction algorithm requires that the accidental counts be subtracted from the coincidences so as to 
reduce the noise. We term this method accidental subtracted ghost imaging (ASGI). The image is reconstructed 
as follows:

(1)I =

N∑

i=1

ciMi ,

(2)I =

N∑

i=1

(ci − ai)Mi ,

Figure 1.  Conceptual sketch of our all-digital ghost imaging optical setup. Entangled photons are spatially 
separated along two arms. One photon interacts with the object and is collected by a bucket detector. The 
other photon is collected by a spatially resolving detector comprising a patterned mask and a bucket detector. 
Each detector is connected to a coincidence counting (CC) device to perform coincidence measurements. The 
reconstructed low res image is then sent through a series of neural networks for denoising and super-resolving 
to a higher resolution.
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where ai is the accidental counts for the ith measurement. Typical to ghost imaging image reconstruction, in a 
further effort to increase the signal to noise ratio, is the removal of the DC component, this removes the back-
ground effect and greatly improves the reconstructed image quality (TGIDC):16,41–44

where c̄N is the ensemble average of the coincidences over N measurements. Leveraging noise suppression 
characteristics from the above reconstruction algorithms, we propose a novel reconstruction algorithm which 
merges the above and suppresses the background effect in a more efficient manner. The reconstruction takes 
into account both the accidentals and the removal of the DC component as follows:

where āN is the ensemble average of the accidental counts over N measurements. We have termed this acciden-
tal subtracted ghost imaging with DC term removal (ASGIDC). We show in the experimental section that this 
reconstruction algorithm performs better than other commonly used algorithms by using their noise suppression 
characteristics in combination, producing the greatest object-image fidelity. The reconstructed image, utilising 
the ASGIDC algorithm, was clearer than the other images, demonstrating the highest signal-to-noise ratio and 
a largely suppressed background.

Super‑resolving network details
Our super-resolving neural network architectures were designed and implemented to enhance the image resolu-
tion without resizing the image. Resizing an image to a higher resolution is lossy i.e. fine details are lost. While 
experimentally reconstructing a higher resolution image in a ghost imaging experiment leads to exponentially 
long image reconstruction times. In a 2-fold manner, by utilising neural networks, we can reconstruct at a low 
resolution, denoise and super-resolve the image to a high resolution. This yields efficient measurement times 
while the output is enhanced up to 4 × the measured resolution. Importantly we note that throughout the paper 
our use of the word “resolution” is with reference to the pixels per inch (PPI) resolution  description45. Our net-
works are split into two distinct parts. Part one involves generating images from simulated data that are indistin-
guishable from real data, in application real experimental data was sent into this network for denoising. Part two 
consists of a super-resolving network to enhance the image resolution and to resolve fine details without any loss 
occurring, the images generated in part one are then passed through this network for resolution enhancement. 
The implemented neural network process is shown schematically in Fig. 2, from left to right: the simulated ghost 
image, from the MNIST dataset, goes through two network architectures - one to denoise and one to enhance 
the resolution of the image. The neural networks are optimised to the MNIST digit dataset, prior knowledge of 
the object type is important when selecting a training dataset. For a binary object not of the digit category one 
would need to select a training dataset corresponding to the category of the object, i.e. for alphabets, birds, or 
cells we would utilise a training dataset whose characteristics are similar to that of the object of interest.

We implemented a generative adversarial network (GAN) as shown in Fig. 2a. The idea around GANs is that 
there exists two models that work coherently: a generative model and a discriminative model. The generator was 
given the task of generating or creating images that look natural or similar to the original data. The discriminative 
model was tasked with determining whether or not these images looked natural or were created artificially. A 
GAN is often referred to as a zero-sum game. The generator tries to fool the discriminator while the discrimi-
nator tries to not get fooled by the generator. As both models trained through alternating optimization, both 
methods were improved until a point where the generated data was indistinguishable from the MNIST digit 
dataset. The models were then allowed to generate synthetic data with similar statistical properties to the point 
where the synthetic data and the real data were indistinguishable. In our case the generator was tasked to take in 
the simulated data (data generated from simulating the ghost imaging experiment) and to then generate images 
that were indistinguishable from the MNIST digit data. Image indistinguishability is calculated by minimising 
the loss function when training the model. When the loss function reaches a plateau at a minimum, training is 

(3)I =

N∑

i=1

(ci − c̄N )Mi ,

(4)I =

N∑

i=1

((ci − c̄N )− (ai − āN ))Mi ,

Figure 2.  Schematic diagrams of the implemented neural network architectures showing the series of 
implemented 2-dimensional convolutional layers. (a) Schematic diagram of the implemented generative 
adversarial network (GAN), trained on simulated data to denoise the reconstructed image. (b) Schematic 
diagram of the implemented super-resolving autoencoder (SR AutoE), trained to enhance the resolution of an 
image.
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considered complete and the images are indistinguishable with respect to their statistical moments. The aim was 
to train the model to generate real data and to finally recognise the experimental data as real after it has been 
denoised. When building the training set we used the MNIST digit dataset, each image within the dataset was 
used as a digital object and the ghost imaging image reconstruction was simulated by the use of random masks. 
Our ghost imaging simulation was implemented similarly to that in Ref.44 and as described by Eq. (4). Finally we 
added random noise drawn from a normal distribution to further simulate what the experimental results would 
look like. The result of an image from the simulated dataset is shown on the left of Fig. 2a. The synthetic dataset 
is therefore matched to the experimental realisation by simulating what the experimental realisation would 
look like based on utilising the MNIST digit dataset as objects in a ghost imaging experiment. The generator is 
a convolutional autoencoder that contains both an encoder and a decoder. We used a series of 2D convolutional 
and transpose convolutional layers in the network architecture, these layers are connected by max pooling and 
up sampling layers respectively. The final layer of the generator uses the tanh activation function as this layer 
outputs the denoised image. The discriminator, in general, is used to classify an image as real or fake. The dis-
criminator is a convolutional classifier and was used only to validate the generator’s predictions. The final layer 
of the discriminator is a dense layer with a sigmoid activation for classification, a schematic diagram is shown 
in Fig. 2a. Our implemented GAN is similar to that implemented in Ref.46 with the caveat of an entirely different 
training set. When using the GAN to denoise experimental data we only utilised the generator.

For the second network we implemented a super-resolving autoencoder (SR AutoE) architecture This is a 
specialised neural network due to its super-resolving capabilities, further details on the architecture are con-
tained in Refs.47–49. Autoencoders are used in applications where image denoising, image reconstruction from 
sparse sampling, and data compression and decompression are important. These neural networks are used as a 
dimensionality reduction technique in principle component analysis and are used in super-resolving applications 
to generate high resolution images. Autoencoders are a type of neural network which compress the input into a 
latent-space representation. The output is then reconstructed from the latent-space representation, thereby mak-
ing autoencoders a self-supervised, machine learning algorithm. Part two of our network architecture required 
less augmentation of the training set. We used the GAN output at 12 × 12 pixels and the MNIST dataset scaled 
to 32 × 32 pixels to train the SR AutoE, the architecture of which is shown in Fig. 2b. Our SR AutoE consists of 
a 2D convolutional autoencoder architecture similar to that which appears in the GAN. For the encoder, 2D 
convolutional layers are separated by max pooling layers, while the decoder consists of transpose convolutional 
layers separated by up sampling layers. The schematic architecture of our SR AutoE is shown in Fig. 2b.

A limitation present in all networks is that their capacity to generalise decreases when given data that was not 
previously seen. In the case of both networks, the GAN and SR AutoE, the signals from the experimental data 
are generalised to the features that each individual network learnt during training.

Experimental details
Figure 3a shows a schematic sketch of the quantum ghost imaging optical setup implemented for this work. Light 
from an OBIX 405LX diode laser at a wavelength of � = 405 nm was used to pump a temperature controlled type 
1 Periodically Poled Potassium Titanyl Phosphate (PPKTP) NLC. The optimal temperature was set to obtain 
co-linear emission of entangled bi-photons at wavelengths of 810 nm each via SPDC. Any unconverted pump 
photons were filtered out by means of a THORLABS bandpass filter (F) centered at a wavelength of � = 810 
nm (FWHM = 10 nm). Vertically polarized down-converted photons emitted from the NLC were then rotated 
to horizontal polarization by a half-waveplate (HWP). The polarization rotation was done to ensure optimal 
modulation of the impinging photons by a HOLOEYE PLUTO-2.1 spatial light modulator (SLM) situated in each 

Figure 3.  Schematic diagram of the implemented quantum ghost imaging setup followed by results from the 
tested reconstruction algorithms. (a) Entangled bi-photons are produced via SPDC at the NLC. The entangled 
photons are spatially separated by a 50:50 BS and imaged onto a SLM in each path. Coincidence measurements 
are done between both paths and the coincidences are used to reconstruct an image of the object. (b) Fidelity 
results of the different reconstruction algorithms, insets show the image after a complete reconstruction.
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arm. The entangled photon beam was separated into two paths by a 50:50 beam splitter (BS) and each arm was 
then directed to a SLM where the required holograms were displayed. The SLM in one arm displayed the digital 
object to be imaged while the SLM in the other arm was used to display the required scanning masks. A blazed 
grating was added to both holograms to separate the first diffracted order from the zeroth, unmodulated, order. 
Photons from the first diffracted order in each arm were then coupled into THORLABS multimode optical fibres 
(MMFs), of core size 62.5 µ m, connected to Perkin Elmer - SPCM-13 avalanche photo-diodes (APDs) for photon 
detection. Coincidences were measured within a 25ns window by our National Instruments (NI) photon counting 
device (CC). The crystal, SLMs and fibre entrances were placed at conjugate planes. In the experimental setup 
any background or ambient light contributed to noise, resulting in a noisy image reconstruction. Additionally 
shot noise contributed to noisy images. Shot noise occurs due to the discrete nature of electric charge, therefore 
our coincidence counter as well as our APDs contributed to shot noise.

Prior to starting our ghost imaging measurements we routinely test for, and confirm the presence of entangle-
ment in controlled superposition states of orbital angular momentum (OAM). Specific to this work we tested 
for the entangled nature of OAM states generated by SPDC through the violation of a suitable Clauser-Horne-
Shimony-Holt (CHSH) Bell  inequality50. Our experiment was carried out similarly to that reported in Ref.51. By 
using appropriate holograms displayed on the SLMs in each arm, we can generate two-photon states entangled 
within a two-dimensional OAM subspace. For these test measurements we coupled the photons from the first 
diffracted order into THORLABS single-mode fibres, with a core size of 5 µ m. We found a Bell parameter of 
S = 2.71± 0.07 for the l = ±1 subspace therefore successfully violating the Bell inequality. To confirm entangle-
ment we also performed a full quantum state tomography (QST) for the l = ±1, p = 0 subspace in the Laguerre-
Gaussian basis and report a fidelity of F = 0.962 , a concurrence of C = 0.927 , and a linear entropy of SL = 0.061 . 
Additionally, our quantum contrast was Q = 20.18± 0.44.

For our ghost imaging experiments we used binary sets of Hadamard and random masks as detailed in some 
of our previous  work16,44. Random patterns, since they are not correlated to each other, form an over-complete 
set with randomly distributed binary pixels, each with a 50% probability of being either on or off. Our Hadamard 
masks are generated by extracting the Walsh functions from the native MATLAB function for Hadamard matrices 
where N is the order of the Hadamard matrix. By performing the outer product between columns of a Hadamard 
matrix of order N, the result is a complete set of N2 Hadamard masks of N × N pixel resolution. Choosing the 
order of the Hadamard matrix will therefore result in the corresponding mask resolution. The mask resolution 
determines the resolution at which the object will be imaged. A higher resolution results in a larger number of 
basis elements and therefore an increased number of masks is needed to reconstruct the image. Increasing the 
resolution has direct consequences on the reconstruction time, the number of Hadamard masks required to 
form a complete set scales as N2 and so there is a trade-off between reconstruction time and image resolution. 
A 32 × 32 pixel image would, therefore, require 1024 masks. The random masks form an over-complete set and 
we therefore used approximately twice the amount of random masks, here we used 2000. The Hadamard and 
random masks were generated in a pre-measurement step in MATLAB. LabVIEW was used to control the SLMs, 
and to record the signal emitted from the APDs and received from the coincidence counting device. LabVIEW 
was also used to perform the real-time image reconstruction. We took measurements for two different objects 
(digits 2 and 3) using three common reconstruction algorithms as well as our own reconstruction algorithm. 
We used 32 × 32 pixel Hadamard and random masks to image the object, however due to a large black border 
around the main area of the object (as shown in Fig. 3a) the effective resolution of the reconstruction is a 12 × 
12 pixel image (shown as insets in Fig. 3b). The images were reconstructed using four different algorithms so as 
to test and confirm that our algorithm performed the best. The results of which are shown in Fig. 3b. The insets 
show the image after a complete set of reconstructions for each algorithm and we used the object-image fidelity 
as a test of image quality. The object-image fidelity is a fidelity measure calculated from the normalised mean 
squared error, the correlation, the contrast, and the luminance between the two images (in this case the digital 
object and the image) and is based on the quality index factor proposed in Ref.52 and detailed in Ref.44. We saved 
the final image after reconstructing with the total number of masks and focused only the effective resolution area 
indicated by the dotted red lines in Fig. 3a. For the effective resolution, we selected the area of the image that 
only contained the reconstructed object and a shorter black border, i.e. 12 × 12 pixels. Figure 3b shows that Eq. 
(4) performed better than the other commonly used reconstruction algorithms. The image was then sent into 
both neural networks for denoising and super-resolving. The fidelity of the image was calculated at each step in 
the reconstruction, denoising, and super-resolving processes.

Results
We implemented our neural networks, built the dataset, and trained the models as a pre-measurement step. It 
was important for us to test the models on experimental data which was completely unseen by the networks, as 
such the digital object used in the ghost imaging experiment was a computer generated digit and not a handwrit-
ten digit. We varied experimental parameters such as the object, mask type, and reconstruction algorithm. The 
algorithm in Eq. (4) reconstructed images of a better quality as shown in the object-image fidelity tests (Fig. 3b), 
all images were then reconstructed with Eq. (4). Figure 4a shows the digital objects that were used while Fig. 4b,c 
show the results of the image reconstruction (left), the denoised image (centre), and the super-resolved image 
(right) for the random and Hadamard mask reconstructions, respectively. As can be seen, all images shown in 
Fig. 4 are of the same surface area however, the PPI differs from image to image. The GAN output has a lower 
PPI while the SR AutoE output has a higher PPI.

The GI image is obtained after a complete image reconstruction with 2000 random masks or 1024 Hadamard 
masks. In the random reconstruction, we reconstruct with approximately 2 × the number of Hadamard masks 
so as to have an over-complete set of measurements. Visibly, it can be seen that the images reconstructed with 
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random masks are less complete in comparison to those reconstructed with the Hadamard masks (left columns 
of Fig. 4b,c). This artifact is taken care of by the GAN, which was trained to not only remove the noise but to 
fill in the parts of the image buried heavily in noise. To produce a super-resolved image of good quality, it was 
necessary to implement a network that would remove or suppress the noise in the GI image reconstruction. We 
see that for both mask types the GAN outputs a similar denoised image, owing to the signal being the same yet 
is hidden by different amounts of noise. The GAN output is, therefore, reconstruction invariant and was suc-
cessful in predicting the correct output from both types of mask reconstructions. After denoising our images 
we send them into the super-resolving autoencoder (SR AutoE). As can be seen in the final columns of Fig. 4b,c 
the super-resolved images are not resized images of the GAN output but rather the network has learnt to fill in 
the fine details that are lost with resizing/resampling.

To quantify the quality of the super-resolved images, we tested the object-image fidelity of objects at different 
resolutions with the SR AutoE output, the average results (and error bars) are shown in Fig. 5a. We denoised and 
super-resolved the reconstructed image, we then calculated object-image fidelity at resized object resolutions of 
32 × 32, 64 × 64, 128 × 128, and 256 × 256 pixels and averaged over all the relative images, the results are shown 
in Fig. 5a. We show that the fidelity decreases with an increase in object resolution. However at 4 × the measured 
resolution we have a fidelity of ~87% . Thereby super-resolving to 4 × the measured resolution. Comparatively, 
the raw images reconstructed by Eq. (4 )falls short of achieving an 80% object-image fidelity (Fig. 3b). Figure 5b 
displays the average object-image fidelity, over all the reconstructed images, at each step in the process. We 
calculated the fidelity for each of the reconstruction algorithms, we then chose the algorithm with the highest 
fidelity to reconstruct all our images, we sent these images into the GAN for denoising and calculated the fidelity 

Figure 4.  Results of the image reconstructions for both digits that were reconstructed, denoised and super-
resolved. (a) The digital objects that were used in the experiment. (b) Results of the image reconstruction by 
random masks—from left to right: the image obtained from the experiment, the denoised image from the GAN, 
the super-resolved image output from the SR AutoE. (c) Results of the image reconstruction by Hadamard 
masks—from left to right: the image obtained from the experiment, the denoised image from the GAN, the 
super-resolved image output from the SR AutoE.

Figure 5.  Object-image fidelity results for objects at several pixel resolutions and for each step of the process. 
(a) The results of the object-image fidelity calculated from the SR AutoE output for objects of several resolutions. 
(b) The results of the average object-image for the different reconstruction algorithms, the GAN output, and the 
SR AutoE output for a 32 × 32 pixel object.
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and finally we super-resolved the image by the SR AutoE and calculated the fidelity. The fidelity increased at each 
step in our super-resolving process as shown in Fig. 5b. We therefore achieved super-resolved images with ~90% 
object-image fidelity and super-resolved to 4 × the measured resolution.

Conclusion
To summarise, we implemented a novel method to generate super-resolved images at a resolution 4 × greater than 
that at which we measured. We designed and implemented a neural network based approach to super-resolve 
an image after a quantum ghost imaging image reconstruction and varied parameters such as the object and 
mask type. Our dataset was built from simulated data and we built, trained and optimised our networks as a pre-
measurement step so as to allow for instantaneous denoising and super-resolving post-measurement. This process 
can be implemented in real-time and as a functional application programming interface (API) supplementary 
to any data acquisition software, in our case LabVIEW. We tested the performance of our new reconstruction 
algorithm and found that it suppressed the background with a higher signal-to-noise ratio and produces the 
greatest object-image fidelity. After reconstructing with our new reconstruction algorithm we sent the images 
into the GAN for denoising, followed by the SR AutoE for super-resolving. Visually we showed that the GAN 
is able to denoise the reconstructed images irrespective of the masks used for reconstruction and is therefore 
robust to mask types. The SR AutoE super-resolved the images closer to the MNIST dataset as this is what it was 
trained on. This, however, did not lead to a loss of information but rather a lossless resolution enhancement with 
the image super-resolving to the same digit as the object. During each step of our super-resolving process we 
calculated the average object-image fidelity across all image reconstructions and different objects. We showed 
an increase in the fidelity across all steps with the greatest fidelity achieved at the SR AutoE output. Addition-
ally, we showed that this technique is robust to different mask types and objects. We quantified the quality of the 
super-resolved images at different test resolutions by calculating the object-image fidelity. By doing so we have 
shown 4 × super-resolving capabilities with a fidelity at ~90% . We believe that this is a significant step forward 
in producing super-resolved images from a ghost imaging reconstruction and will prove valuable to the ghost 
imaging community (Supplementary file).
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