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Crowd flow forecasting 
via agent‑based simulations 
with sequential latent parameter 
estimation from aggregate 
observation
Fumiyasu Makinoshima * & Yusuke Oishi

Unlike conventional crowd simulations for what‑if analysis, agent‑based crowd simulations for 
real‑time applications are an emerging research topic and an important tool for better crowd 
managements in smart cities. Recent studies have attempted to incorporate the real‑time crowd 
observations into crowd simulations for real‑time crowd forecasting and management; however, 
crowd flow forecasting considering individual‑level microscopic interactions, especially for large 
crowds, is still challenging. Here, we present a method that incorporates crowd observation data 
to forecast a large crowd flow, including thousands of individuals, using a microscopic agent‑based 
model. By sequentially estimating both the crowd state and the latent parameter behind the crowd 
flows from the aggregate crowd density observation with the particle filter algorithm, the present 
method estimates and forecasts the large crowd flow using agent‑based simulations that incorporate 
observation data. Numerical experiments, including a realistic evacuation scenario with 5000 
individuals, demonstrated that the present method could successfully provide reasonable crowd flow 
forecasting for different crowd scenarios, even with limited information on crowd movements. These 
results support the feasibility of real‑time crowd flow forecasting and subsequent crowd management, 
even for large but microscopic crowd problems.

Over the past few decades, various crowd simulation models have been  developed1, and the utilisation of the 
crowd simulation has rapidly increased in our society. For example, crowd simulation techniques have been 
actively employed to assess evacuation safety for various hazardous events, such as  fires2,  floods3 and  tsunamis4. In 
addition, crowd simulation has also been utilised in designing  environments5 and has other diverse  applications6.

Along with the development of simulation techniques, recent developments in tracking technologies, such 
as video analysis, provide richer observation data regarding  crowds7. Recently, such analyses have been further 
enhanced by novel techniques, such as machine  learning8. Additional data from various observation channels, 
such as GPS, Wi-Fi and Bluetooth, are also useful to understand the crowd  movements9,10. The number of such 
observation channels is increasing in the recent smart cities, where information communication technologies are 
being pervasively installed and utilised to improve various  activities11,12, and the available data for a more realistic 
crowd simulation is growing and becoming exceedingly rich. By utilising richer observation data, crowd simula-
tion models or parameters can be calibrated based on empirical  data13–16; however, the validity of such identified 
parameters in different or future events should be examined. As an example, an empirical  study17 reported a clear 
difference in evacuation response tendencies for different sociocultural groups. Although crowd simulation is 
a powerful tool for various crowd-involved applications, it is mostly limited to what-if analysis under the given 
scenarios, which is mainly caused by the uncertainty in real crowd movements. This challenge limits the use of 
crowd simulations for real-time applications, such as real-time crowd forecasting and management. Data from 
recently enhanced observations with AI and IoT are increasing and can be available in real-time; thus, the uti-
lisation of such rich observation data for agent-based models in real-time may exceed the conventional what-if 
analysis and enable real-time crowd forecasting based on real-time observation data. Such real-time crowd flow 
forecasting is imperative in smart cities as it can provide vital information to mass event organizers or authorities 
for better crowd managements for improved mobility and crowd disaster  prevention18.
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Utilising real-time data to make simulations “live” is an important but challenging topic in the field of agent-
based  simulations19; recent studies have attempted to develop techniques to incorporate observation data into 
agent-based models for more accurate simulations. For macroscopic crowd flows, Sudo et al.20 proposed the 
city-scale real-time human mobility estimation method using an extended particle filter and tested it against the 
data collected on the day of the 2011 Great East Japan Earthquake. Their network-based model estimated large-
scale human mobility in road networks in an area of approximately 68 km2 every 30 s, which was better than 
baseline models. Lueck et al.21 developed the particle-filter estimator using sparse population counting sensors 
for tracking crowds in ongoing events, and verified the proposed method against simplified evacuation scenarios 
on a simple network model including 100 agents. Their numerical experiments confirmed the performance of 
the estimator under different sensor configurations. Rife et al.22 further confirmed whether the  estimator21 could 
track the individual-level behaviour from the aggregate population counting data and discussed its potential 
to extract individual identity from aggregate sensor data. Cai et al.23 proposed using an agent-based model in a 
network and particle filter with low-cost population data to reconstruct human mobilities in cities. The devel-
oped method was applied to a local city, covering approximately 669 km2 , and the prediction performance was 
validated using mesh population distribution and traffic census. Although these studies have proposed a method 
applicable to large crowd flows, their network-based macroscopic models have a limitation in providing sufficient 
crowd details (e.g., individual-level interactions), which is vital for managing and preventing crowd disasters.

The number of existing studies is limited; however, some have attempted to incorporate observation data 
into microscopic crowd simulations, which can consider detailed individual-level interactions. Wang and  Hu24 
proposed the use of a particle filter with observation data from sparse binary proximity sensors to estimate 
the two-dimensional positions of individuals as a likely initial condition for more accurate simulations. Their 
method was tested by tracking up to 6 individuals, and the result showed that the estimation became difficult 
as the number of individuals increased due to an increase in the complexity of the system to be estimated. 
Malleson et al.25 investigated the performance of the particle filter algorithm to incorporate position observa-
tions into a simple two-dimensional microscopic agent-based crowd model (StationSim) to locate the positions 
of individual agents. They tested the method against scenarios including up to 40 agents. The results showed 
that the performance of the estimation became worse as the number of agents increased; this was because the 
behaviour of the agents diverged due to their increased interactions. Clay et al.26 similarly tested the applicability 
of the unscented Kalman filter to a two-dimensional simple crowd problem with StationSim , and the proposed 
method was verified against scenarios involving up to 30 agents with limited observation conditions. Although 
the result indicated the potential applicability of the proposed method to larger crowds with limited information, 
the increased difficulty of estimating larger crowds was also confirmed in the experiments.

As reviewed, despite the increasing attempts to develop techniques for incorporating crowd observations into 
agent-based simulations, there are still challenges for their practical applications. In particular, the number of 
people considered in the simulation is still limited to a small population (e.g., tens of people with a microscopic 
model), and the interactions among agents are rather simplified. As a result, crowd forecasting for large crowds 
with detailed agent-based models remains challenging, mainly because of its complexity induced by microscopic 
interactions. Additional efforts in developing methodologies for real-time detailed crowd flow forecasting are 
required to realise better crowd management in smart environments.

Here, we propose a data assimilation method to estimate and forecast relatively large but microscopic crowd 
flows (e.g., thousands of people) by introducing the concept of latent parameters. Given that aggregate crowd 
observations such as density maps are available, the present method assumes the latent parameters behind the 
crowd, which macroscopically govern the observed crowd behavioural tendency. Subsequently, both the state of 
the crowd and the latent parameters can be sequentially estimated from the given observation using the particle 
filter algorithm. In numerical experiments, we demonstrate that microscopic agent-based crowd simulations 
with sequentially estimated latent parameters successfully provide reasonable estimates of the crowd flow, even 
for microscopic large crowd movements involving thousands of individuals.

Results
Crowd flow forecasting framework. Figure 1 visualises the schematic illustration of the proposed crowd 
flow forecasting approach. In the present method, we assume that some primary simple behavioural modes exist 
behind real complex crowd flows, and complex crowd flows emerge from the superposition of the behavioural 
modes. For example, although individual circumstances or intentions vary, complex crowd flow at a train sta-
tion might be explained by the superposition of behaviours based on choices from different platforms. If we 
can successfully estimate the composition of the behavioural modes in real-time, the crowd simulation with the 
estimation should give better crowd flow forecasting while reducing the complexity of the simulation model.

According to the above concept, we prepare a crowd simulation model equipped with the parameters θ that 
are assumed to exist behind the target crowd flow and control the composition of the primary behavioural mode. 
In this study, we refer to the parameters θ as latent parameters. The present method uses the simulation models 
with different latent parameters as particles within the particle filter algorithm, as shown in Fig. 1. Because crowd 
simulation with different latent parameters can result in various crowd flows, we obtain various possible crowd 
states by running the forward simulations. Then, at the point when real-time crowd observation (e.g., aggregate 
density observation from cameras) can be obtained, we can evaluate the particles and estimate the likely crowd 
flows and latent parameters. The actual composition of behavioural mode is not observable from aggregate 
observations alone; however, assuming that a better fit between the model and observations indicates a higher 
consistency of the considered latent parameters, we can estimate the likely composition of behavioural modes 
as latent parameters through agent-based simulations and particle filter algorithm. By sequentially estimating 
the likely crowd states and latent parameters behind the crowd flow, the present method provides better crowd 
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flow forecasting using real-time observation data. For details of the simulation model and the procedures of the 
latent parameter estimation, see the “Methods” section.

Synthesising crowd flow through exits. To verify the proposed forecasting approach, we synthesised 
the crowd flows using a force-based crowd  simulation4, which can simulate individual-level microscopic inter-
actions among agents and obstacles. For details of the force-based agent-based simulation, see the “Methods” 
section. The synthesised crowd flows were prepared to be used as observations for crowd forecasting, and the 
forecasting performance was verified against them, that is, the identical twin approach adopted in the previous 
 studies24,25.

The first synthetic observation data were obtained by simulating the crowd flow passing through simple exits 
(hereafter called Experiment 1). Figure 2 summarises the simulation setup and the synthesised crowd flow. The 
simulation environment for Experiment 1 had two exits, and a total of 1000 agents entered the environment 
at a given rate (50 agents every 5 s) from the bottom (Fig. 2a). In contrast to the commonly employed nearest 
exit choice assumption, in which the number of agents choosing the right and left exits becomes approximately 
equal, we assumed that the agents had a certain preference for the exits, which better mimics a realistic crowd 
flow. In this experiment, the ratio of agents choosing the right and left exits was set to 3:7. This preference rate 
was constant during the simulation, i.e., the behavioural tendency was time-invariant.

Corresponding to the assumed exit preference, a crowd flow concentration at the left exit and the resulting 
congestion can be observed (Fig. 2b). In this study, we considered that the density map was available as an obser-
vation of crowd flow (Fig. 2c). As shown in the figure, the density map used in this study represents the number 
of pedestrians in grids ( 1× 1 m 2 ), which cannot distinguish individuals. Recent video analysis can easily detect 
the number of people in a certain area, and the aggregate observation result is privacy-aware; thus, the use of 
crowd density as an available observation is a reasonable assumption for practical use in terms of technical and 

Figure 1.  Schematic illustration of the proposed crowd forecasting approach. By sequentially estimating the 
likely crowd states and latent parameters behind the crowd flow based on observation data, the present method 
provides better crowd flow forecasting.

Figure 2.  Model setup and synthesised crowd for Experiment 1. a Configuration of the environment. b 
Synthesized crowd flow. The purple and orange particles represent agents who chose the right and left exits, 
respectively. c Assumed corresponding density observation to be obtained.
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privacy aspects. Consequently, only the entry rate of the agents and the density observation were assumed to be 
available for crowd forecasting in Experiment 1. Therefore, the present forecasting method must estimate the 
assumed exit preference from the aggregate observations for an accurate forecasting.

Synthesising evacuation crowd from a beach. The second synthetic observation assumed a more 
complex crowd flow: an evacuation from a beach (hereafter called Experiment 2). The simulation environ-
ment for Experiment 2 was based on an evacuation simulation model for the Miura beach in  Japan27 (Fig. 3a). 
Although the model was based on a specific beach, similar structures can be seen on other beaches in  Japan27. 
The environment had seven exits (Exits 1 – 7) with bottleneck widths ranging from 2 to 10 m, and the follow-
ing two exits reached the right and left exits. As for the initial location of agents, we randomly distributed 5000 
agents in a 50× 240 m 2 area. In contrast to Experiment 1, we considered two factors for simulating the more 
complex behaviour of the agents.

The first was the evacuation departure distribution, as shown in Fig. 3b. The evacuation departure timing 
was based on a normal distribution N (90, 302) . The agents in the simulation checked the simulation time every 
1 s and started to move if the simulation time exceeded their departure timing.

The second was the introduction of follower agents in the simulation. A notable characteristic of evacuation 
from beaches is the involvement of visitors. Previous studies that surveyed actual evacuation preferences for a 
potential tsunami at beaches revealed that most people at a beach are visitors, and thus are not familiar with the 
surrounding  area28,29. In addition, the survey also reported that the behaviours of such visitors tended to depend 
on the surrounding  people28. This empirical evidence suggests that the tendency of the evacuating crowd at 
beaches can change drastically according to the number of following evacuees, resulting in a significant uncer-
tainty that makes forecasting difficult. To model this nature in synthesising realistic behaviours, we considered a 
simple follower model and included 4500 follower evacuees in the simulation. Figure 3c shows a schematic view 
of the simple follower model. At each time step, follower agents searched for surrounding agents within Rf  (10 m) 
and change their destination by following the local majority within Rf  . When the follower agents could not find 
three or more individuals around them, they chose the nearest exit. The non-follower agents were considered to 
randomly select the right or left exit with an equal probability.

The simulated crowd largely diverged because of the randomness in the exit choice of the non-follower agents 
and the effect of follower agents. Thus, we ran 500 simulations and selected three unique cases to verify the 
forecasting method: Case 1 (marked the largest number of evacuees for the right exit among 500 runs); Case 2 
(experienced distributed evacuees at the right and left exits and marked fastest evacuation completion among 500 
runs); and Case 3 (gathered the largest number of evacuees at the left exit and recorded the longest evacuation 
completion among the 500 runs). Note that the choice of the exit for non-follower agents was the only random 
factor in the simulation, and other factors such as departure timing and initial position were fixed in this syn-
thesis.  Figure 4 summarises the initial setup of the simulation at t = 0 s and the simulated crowd for the three 
distinctive cases at t = 200 s. The simulations demonstrated that different levels of congestion at the exits could 
be caused and even enhanced by the small uncertainty in the behaviours of agents. This indicates the difficulty in 
forecasting evacuating crowds because of the uncertainty in both the evacuation departures and the behaviours 
of visitors. If we observe the T90 , the time required to achieve an evacuation completion rate of 90% that is often 
used as an important indicator for evacuation time estimates in various evacuation problems, such as in nuclear 
 accidents30, a difference in evacuation delays corresponding to the congestion tendency can be observed (374 s 

Figure 3.  Model setup of Experiment 2 (evacuation). a Configuration of the environment. b Assumed 
departure timing. The synthesised departure timing for 5000 agents is visualised as a histogram with the 
assumed theoretical distribution (red dashed line). c Schematic view of the follower agent model. At each time 
step, the follower agents search for neighbouring agents moving within Rf  and change their exit preference by 
following the local majority.
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in Case1; 338 s in Case2; and 448 s in Case3). Such potential congestion and the corresponding delay in evacu-
ation from beaches have been also suggested in an actual evacuation drill at a  beach31. Therefore, evacuations 
from a beach are valuable case studies to test the capability of the present forecasting method because of the 
significant uncertainty in crowd movements and the potential usefulness of crowd flow forecasting, which can 
lead to real-time evacuation guidance for smoother evacuations. As a result, in Experiment 2, the performance 
of the present forecasting method was verified by investigating whether it could estimate the evacuating crowd 
with observations in which only the initial position of agents at t = 0 s and the snapshots of the aggregate density 
map were available. A clear difference compared to Experiment 1 is that the behavioural tendency in Experiment 
2 is time-variant; thus, the performance of the present forecasting method for dynamically changing behaviours 
can be confirmed in Experiment 2.

Forecasting simple crowd flows through exits. We first verified the present method against the simple 
crowd flow through exits (Experiment 1). For Experiment 1, observations within 50 s were considered available, 
and subsequent crowd movements were forecasted using agent-based simulations with the estimated state and 
a single latent parameter θ1 , which was assumed to control the exit preference. For a detailed setup of the latent 
parameters for Experiment 1, see the “Methods” section.

Figure 5 compares the ground truth simulation results (Fig. 5a, b) and the estimated crowds (Fig. 5c). As 
shown in Fig. 5c, the method successfully estimated the crowd concentration at the left exit. Although crowd-
ing at the right exit was slightly overestimated at the later phases ( t = 150 s, 200 s), the level of congestion (e.g., 
extent of the crowd) at the left exit agreed with the ground truth. Within the observation period (50 s), only half 
of the total agents could be observed; however, the method gave a reasonable estimation of crowd flow. Figure 6a 
shows the time series of the estimated θ1 value with the assumed exit preference rate in crowd synthesis. At the 
earliest phase, the probability of choosing the right and left exit was roughly equal ( θ1 ∼ 0.5 ) because there was 
not enough available observation to infer exit preference. As the observations increased, a clearer behavioural 
tendency could be observed, and the method estimated that the left exit was likely to be preferred by the crowd. 
The assumed preference rate of 0.7 in the synthesis was successfully estimated after approximately 20 s, and a 
consistent estimation of θ1 ∼ 0.7 could be observed in subsequent periods. Since the crowd flow in Experiment 
1 had a time-invariant behavioural tendency, the method successfully estimated the subsequent crowd flow, as 
confirmed in Fig. 5c, even observing the part of the considered agents. As a result, both the behavioural process 
and the resulting number of people exiting both exits were accurately estimated, while the crowd simulation 
with the conventional nearest exit choice assumption failed to predict the imbalanced exit preference (Fig. 6b).

Forecasting evacuating crowd flows. The present method was further verified against complex evacu-
ating crowd flows at a beach (Experiment 2). For Experiment 2, only the initial position of agents and the snap-
shots of the density maps were considered available, and crowd movements with time-dependent departures and 
exit preferences including the realistic following behaviours were forecasted using agent-based simulations with 
the estimated state and two latent parameters, θ1 and θ2 , which were assumed to control the exit preference and 

Figure 4.  Synthesised crowd flow in Experiment 2. Three cases of the synthesised crowd flow at t = 200 s are 
visualised with the initial agent distribution at t = 0 s. The orange and purple particles represent agents who 
chose the left and right exits, respectively. a Initial state of the evacuees. b Evacuating crowd at t = 200 s in Case 
1. c Evacuating crowd at t = 200 s in Case 2. d Evacuating crowd at t = 200 s in Case 3. The randomness of 
the exit choice in a small fraction of non-follower agents with a large number of following agents can cause a 
significantly different evacuation flow tendency, which is difficult to predict via what-if simulations in advance.
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evacuation departure tendency, respectively. For a detailed setup of the latent parameters for Experiment 2, see 
the “Methods” section.

The crowd flow in Experiment 2 is rather complex compared to Experiment 1, i.e., the synthesised crowd has 
a following behaviour that the estimator does not have, and the crowd tendency is time-variant because of the 
considered departure distribution. Hence, the performance of the forecast with different observation periods 
was first confirmed using the observation data of Case 1. To verify the proposed method in the Experiment 2, 
we evaluated the estimated time required to achieve an evacuation completion rate of 90% ( T90 ) as well as the 
estimated crowd flow. Figure 7a compares the estimation of T90 for different observation periods. With the shorter 
observation period (e.g., 50 s and 100 s), the T90 values were overestimated with relative errors of 39.3% and 
21.4%, respectively, and the variation of the forecast was large, as shown by the error bars. The subsequent longer 
observation periods improved the estimation results, i.e., relative errors of 0.3% and 1.6% for 150 s and 200 s 
observations, respectively, and the estimation results converged, as can be observed by their smaller variation.

To understand where the estimation error for the shorter observation period arose, Fig. 7b visually compares 
the estimated crowd flow with 50 s and 200 s observation periods to the ground truth at t = 100 s and 300 s. 
In the ground truth at t = 100 s, an obvious crowd flow moving towards the exits can be observed while many 
individuals remain. However, the estimation with 50 s observation failed to estimate the timing of evacuation, 

Figure 5.  Comparisons between the ground truth simulation results and the forecasting results. a Ground 
truth simulation results. b Ground truth density maps (corresponding observations). c Estimated density maps 
(forecasting). Note that the estimated density value was visualised as an NaN colour (white) if the rounded value 
was lower than one.

Figure 6.  Estimated parameter and the resulting statistics. a Time series of the estimated parameter θ1 . The 
black dashed line represents the assumed parameter (0.7) when synthesising the observation. The estimated 
parameter θ1 is visualised as a solid red line. b Comparisons of the cumulative number of people for the right 
and left exit. The error bars for the estimation represent the standard deviations.
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and the estimation showed large moving crowds. In contrast, the estimator with 200 s observation successfully 
regulated the departure tendency and reproduced the slower departure tendency. At t = 300 s, in the ground 
truth, crowds experienced congestion near the right exit, and almost no evacuees were found on the left side. 
The estimator with 50 s observation period failed to estimate not only the timing of the evacuation but also the 
exit preference of crowds. This result confirmed that both the misestimation of the timing of evacuation and the 
exit preference led to the large errors found in Fig. 7a. With sufficient observation, the estimator successfully 
estimated the crowd flow at t = 300 s, which was almost equivalent to the ground truth.

Figure 7c shows the time series of the estimated value of the latent parameter θ2 with 200 s observation to 
confirm how the estimator with longer observation produced the distributed evacuation departures. In this figure, 
the cumulative departure distribution of the ground truth data is visualised as a reference. At the very beginning, 
no information is available to determine θ2 since the detailed crowd movement cannot be detected in the density 
map with coarse resolution. As soon as the estimator realises from the observed density map that estimations 
with large θ2 are unlikely, the estimated θ2 drops to nearly zero. Subsequently, the estimated θ2 gradually increases 
corresponding to the evacuation departure in the ground truth. As a result, in contrast to the conventional 
simulations in which evacuation departure tendency was given in advance based on previous observations or 
assumptions, the developed method could estimate the actual ongoing evacuation departure tendency from 
the observations. The estimator only knows snapshots of the density maps as observations, and no information 
regarding the assumed departure curve is given; however, the present method successfully provided reasonable 
crowd flow forecasting by sequentially estimating the state of the crowd and the latent parameters. These results 
demonstrated that the present method can be applied to crowd flows with time-variant behavioural tendencies.

To further verify the applicability of the present method, we applied the same algorithm to different crowd 
flows (Cases 2 and 3). Owing to the fact that the above results for Case 1 indicated that a 200 s observation period 
was sufficient in Experiment 2, further performance investigations for the rest of this study were conducted with 
a 200 s observation period for comparison. Figure 8 summarises the estimation results for Cases 2 and 3. Some 
disagreements between the estimation and the actual flow, mainly caused by the simplification in the estimator 
(i.e., the realistic following behaviour was not included in the estimation, and only the macroscopic behavioural 
tendency was controlled by the latent parameters), could be found; however, the general behavioural tendencies 
were successfully estimated. For Case 2, a characteristic distributed evacuating flow could be estimated (Fig. 8a), 
and the resulting T90 was also estimated with reasonable accuracy (a relative error of 4.4%). The same algorithm 
successfully forecasted the distinctive feature of the crowd flow in Case 3 (e.g., the crowd concentrating at the 
left exit); however, the congestion at Exit 3 was overestimated. Even with a sufficient observation period, this 

Figure 7.  Crowd flow forecasting results for Case 1. a Estimation of T90 with different observation periods. 
Error bars represent the standard deviation of the estimation. The grey dashed line represents the ground truth 
value. b Comparison of the estimated crowd flow at t = 100 s and 300 s. Ground truth data are visualised in the 
top panel. c The time series of the estimated θ2 with the 200 s observation. The red line represents the estimated 
θ2 . The cumulative departure distribution is shown as a grey histogram for reference.
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overestimation caused a large error in the estimated T90 value, which reached a relative error of 33.3%, as shown in 
Fig. 8b. The main cause of this error arose from the gap between the complex real (synthesised) crowd movement 
and the simple crowd model considered in the estimator. In the synthesised crowd flow, the following behaviours 
were introduced to synthesise realistic behaviours, and this effect caused an imbalance of concentration among 
exits. In contrast, the movements of the agents towards the exits in the estimator were only modelled by the exit 
selection (right or left) with the single parameter θ1 , and the agents tried to follow the shortest path towards the 
selected exit. As a result, the single parameter was not sufficient to accurately produce the imbalance between 
Exits 2 and 3 while reproducing the overall congestion level. To verify this explanation, we included an addi-
tional latent parameter θ ′1 to be estimated, which controlled the finer exit preference between Exits 2 and 3 after 
selecting the left exit. Specifically, two different navigation maps were created for the left exit by changing the 
cost for passing through Exits 2 and 3, and these maps were included in the exit selection. The estimation result 
with the additional parameter for Case 3 is shown in Fig. 9, with the ground truth and the original estimation. 
The result demonstrated that the additional latent parameter produced an imbalance between Exits 2 and 3 and 
improved the estimation result. These results confirmed that only a few parameters were required to forecast 
relatively complex microscopic crowd flows if the latent parameters were appropriately designed. With more 
latent parameters, more complex behaviours could be considered in the estimator; however, at the same time, 
the required number of particles in the particle filter to produce a reliable estimate would also increase. Thus, in 
practical applications, the considered latent parameter can be adjusted depending on the forecasting accuracy 
required for target applications.

Forecasting with limited observations. The results in the previous sections show that the present 
method can provide reasonable crowd flow forecasting by utilising snapshots of the density map. The perfor-
mance was verified with the full observation of the density map; however, in reality, such observations are lim-
ited by the observation equipment. For example, such a density map can be obtained by analysing observations 
from a surveillance camera that has a limited field of view (FOV). To verify the performance of the forecasting 
method assuming a more realistic situation, we ran the estimation again for Case 1 but with density maps within 
a limited FOV. In this experiment, we assumed two different camera installations (Setups 1 and 2) with various 
FOVs, and the error for weighting the particles was evaluated only within the FOV, i.e., the errors outside the 

Figure 8.  Forecasting results for Cases 2 and 3. a Comparison of the crowd flow between the estimation and the 
ground truth data at t = 300 s. b Comparison of the T90 value between the estimation and the ground truth.

Figure 9.  Forecasting results with a different number of latent parameters and the ground truth data at 
t = 300 s. a Ground truth observation. b Forecasting result with two latent parameters. c Forecasting result with 
three latent parameters.
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FOV did not affect the estimation. In contrast to the original full observation, direct information regarding the 
congestion at the exits was not available in the limited observation with the FOV.

In Setup 1, the camera was placed at the centre of Exit 4, and two different FOVs ( 60◦ and 150◦ ) were assumed 
(Fig. 10a). Figure 10b presents the estimation results with full observation and limited observations in Setup 1. 
As shown in the figure, even with the limited density map, the estimation results are almost equivalent to the 
results with full observation and agree with the ground truth. A possible reason for this successful estimation is 
that a large portion of crowd flows towards the right exit (e.g., as seen in the ground truth crowd flow in Fig. 7b) 
can be observed even with the limited FOVs in Setup 1. Thus, different camera setups that cannot capture the 
primal crowd flows will lead to poorer estimations.

To further examine the performance of the method with limited observations, we additionally prepared Setup 
2 (Fig. 10c), in which a camera having different FOVs ( 30◦ , 60◦ , and 90◦ ) was installed at Exit 7. In contrast to 
Setup 1, the information regarding crowd flows on the left side is not available from the camera with narrower 
FOVs in Setup 2. Figure 10d shows the estimation results obtained in Setup 2. While the observation with 90◦ 
FOV resulted in a good estimation equivalent to the result with full observation, the estimation performance 
became worser with narrower FOVs, as expected. Although the congested crowd at Exit 5 could be estimated 
even with narrow FOVs, the large crowd flow towards the right exit through Exit 4 could not be estimated with 
observations from narrower FOVs, resulting in the overestimation of the crowd towards the left exit. These 
results can be explained by the feature of Setup 2, i.e., almost no information regarding crowd flows from the left 
side was available, and only the partial crowd flows towards Exit 5 were observed with the narrow FOVs. These 
results with limited observations indicate that direct or full observation is not always necessary for reasonable 
crowd forecasting, and even a part of the behavioural observation is sufficient if the observed behaviours have 
enough information to infer the behavioural tendency of the target crowd flow.

When we focus on the cover ratio (the ratio of the number of observable grids to the total number of grids) 
of the setups, we find that a higher cover ratio does not necessarily lead to a better estimation performance. For 
example, although the estimation with FOV 60◦ in Setup 1 was more consistent with actual crowd flow than that 
with FOV 60◦ in Setup 2, the cover ratio of the former setup was smaller, i.e., the cover ratio of 60◦ in Setups 1 
and 2 were 16.2% and 24.5%, respectively. This result implies the importance of the optimal observation equip-
ment installation for target crowd flows and the potential of accurate crowd flow forecasting with limited but 
optimised observations.

Discussion
In this paper, we presented a crowd flow forecasting method that sequentially estimated both the crowd state and 
latent parameters from the aggregate density observation data. While previous studies using data assimilation 
techniques with microscopic agent-based  models24–26 attempted to locate individual behaviours, the present 
method estimated the overall crowd flow with the microscopic model without distinguishing the individuals. 
This simplification enabled the forecasting of much larger crowd flows, involving thousands of individuals, as 
confirmed by the numerical experiments.

A key concept in the present method is the introduction of latent parameters, which are assumed to underlie 
the actual complex behaviours and macroscopically govern the crowd flow tendency. In Experiment 2 in this 
study, the actual imbalance of the crowd flow at the exits was caused by the realistic following model; however, 
the resulting observed behaviour was considered as an exit preference with the single parameter θ1 , and the dif-
ferent crowd flows were successfully forecasted by sequentially estimating the parameter. Similarly, the distributed 

Figure 10.  Crowd flow forecasting with limited observation settings. a Schematic view of Setup 1. The blue 
lines represent the assumed field of views (FOVs) for the limited observations. b Estimated crowd flows with the 
full and limited observations in Setup 1. c Schematic view of Setup 2. The blue lines represent the assumed FOVs 
for the limited observations. d Estimated crowd flows with limited observations in Setup 2.
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evacuation departure tendency was reproduced by only estimating parameter θ2 without any assumption on the 
departure distribution. Behavioural uncertainty in real crowd flows such as in the evacuation departures had 
limited the use of agent-based simulations for real-time applications, and agent-based simulations are generally 
used for what-if analysis; hence, they have not been “live”19. The proposed method fills a gap towards live simula-
tions and has potential to lead to real-time applications of agent-based simulations such as real-time evacuation 
guidance. Although the present approach was tested mainly against evacuation scenarios, the core concept of 
the method is expected to be useful for wide variety of crowd flows.

The availability of the density map observation assumed in this study is feasible in terms of both technical 
and privacy aspects, and the results of the performance test with limited observations in this study also support 
the applicability of the present method to real crowd problems. However, several challenges remain for more 
complex, real-world problems. The first concerns the agent design in the simulations constructing the estima-
tor. The crowd flow considered in this study is rather complex when compared to the previous efforts, but the 
principal behavioural tendency is still simple. This enabled us to appropriately design the agent-based simulation 
with the latent parameters in the particle filter and to forecast the synthesised crowd with reasonable accuracy. In 
modelling real crowds, however, it is not always easy to consider the least but sufficient model that can capture 
the principal tendency of the crowd flow. Methods for finding such models from the data to produce a good 
approximation of the observation should be studied to consider the applications to complex real crowds. The 
second concerns the correction of the simulation. In the current method, although the observation data weighed 
the simulations in the particle filter to estimate the likely crowd state and latent parameters, the data were not used 
to directly modify the running variables in the simulations, such as the agent positions, even if the gap between 
the actual crowd and the simulation could be identified by the observation. As a result, the estimator would 
give poor forecasting if there was a large gap between the observations and the simulations in the estimation. 
In contrast to the synthesised data, because more gaps are expected between the actual observed behaviour and 
simulation in real applications, a correction in running simulations would be required to give better forecasting. 
These are not directly applicable to agent-based simulations; however, the techniques utilising observation to 
correct simulations have been studied, such as in the field of atmospheric  science32, and should be useful refer-
ence. The presented method is still expected to be applicable to real but simple crowd flow problems; however, 
further studies discussed above will certainly expand the scope of using agent-based simulations in real-time.

Methods
Agent‑based crowd simulation. We used an agent-based simulation to synthesise an observation and 
forecast the crowd flow. The simplified force-based  model4, which was developed based on previous force-based 
 models33,34, was employed in this study. The model considered the effects of the surrounding pedestrians by 
calculating the repulsive force, similar to general force-based models. However, the effects of the obstacles were 
considered not by calculating the forces from those obstacles, but by the movement rules referencing potential 
grids as a simplification. Consequently, the movements of the agents are described by the following equation (1):

Here, the first term on the right hand side represents the driving force to reach a destination, consisting of the 
i-th desired velocity v0i e

0
i  , the current velocity vi , and the constant parameter τα , which is the relaxation time. 

The second term on the right hand side, the interaction force Fij proposed  in34, is considered and calculated by 
the following equation (2):

where τ is the estimated time to collision, which is calculated using the relative displacement rij = ri − rj and the 
relative velocity vij = vi − vj between agents i and j, and k and τ0 are constants. As shown in a previous  study4, 
the model can qualitatively and quantitatively reproduce interactions between agents and obstacles. Since the 
model has been validated against various fundamental diagrams, we used the same model parameter configura-
tion presented in the original  paper4.

Crowd flow forecasting with sequential latent parameter estimation. Using the agent-based 
model and the synthetic observation data presented in the previous sections, we forecasted crowd flow by incor-
porating observation data into the simulation model. In this study, we propose a method to forecast crowd flow 
by sequentially estimating the latent simulation parameter governing the crowd flow with an agent state using a 
particle filter. Here, we assume that the transition of the crowd flow and its observation can be expressed by the 
nonlinear non-Gaussian state space model, which is described by the following equations (3) and (4):

where xk and yk are the state vector and the observation at time k. In this study, f and h are the nonlinear functions 
corresponding to the agent-based simulation and the transformation of a state into a density map (aggregate 
observation), respectively. uk and nk are the system and observation noise, respectively. The effect of randomised 

(1)
dvi

dt
=

v0i e
0
i − vi

τα
+

∑

i �=j

Fij

(2)Fij = −∇rij (kτ
−2e−τ/τ0)

(3)xk = f (xk−1, uk)

(4)yk = h(xk ,nk)
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parameters in crowd simulation can be considered as system noise. Observation noise is not considered in this 
study.

Unlike previous studies using a particle filter with a microscopic agent-based model to estimate crowd 
 flow24,25, the present method assumes that xk includes not only the state of the agents (e.g., their position, veloc-
ity and movement state) but also the macroscopic simulation parameters θk . In this study, we refer to θk as latent 
parameters that macroscopically govern the behavioural tendency of crowds. The method, rather than consider-
ing the parameters for each agent, assumes that the latent macroscopic parameters and the corresponding simple 
behavioural modes exist behind the observed complex crowd, and forecasts the crowd flow by sequentially 
adjusting the latent parameters. For the crowd flow in Experiment 1, we considered θ1 to represent the exit choice 
preference, i.e., agent i chooses the left exit and not the right exit if U (i)

1 ≤ θ1 , where U (i)
1  follows an uniform dis-

tribution U[0, 1] , i.e., U (i)
1 ∼ U[0, 1] . In addition to θ1 , a latent parameter θ2 controlling the evacuation departure 

is considered for the crowd flow in Experiment 2, i.e., agent i starts to move if U (i)
2 ≤ θ2 , where U (i)

2 ∼ U[0, 1] . 
The initial particles were generated with a random θ ranging from zero to one. Note that we did not include any 
information regarding the departure distribution and the follower model in the simulation model f to estimate 
the crowd. Therefore, the synthesised complex crowd movement in Experiment 2 was estimated using a simple 
agent-based model and the latent parameters θ1 and θ2.

The particle  filter35,36 approximates the filtering distribution p(xk−1|y1:k−1) and the predictive distribution 
p(xk|y1:k−1) with the N particles {x(l)k−1|k−1

}Nl=1
 and the predicted particles {x(l)k|k−1

}Nl=1
 as the following equations 

(5) and (6):

where δ is the Dirac delta function. Afterwards, we can sequentially obtain the filtering distribution with Sup-
plementary Algorithm S1. In this study, the weights of the particles, �(l)k  , are calculated based on the sum of 
the absolute errors over the grids between the observed density map yk and the simulated density map ŷk , i.e., 
�
(l)
k = 1/

∑

|yk − ŷk| , which is similar to the weighting method in data assimilation for an ocean  model37. For the 
resampling algorithm, we employ residual systematic  resampling38 (Supplementary Algorithm S2). To maintain 
the diversity of the particles after resampling, we add the Gaussian noise ǫθ∼N (0, 0.12) to each latent parameter 
at every 1 s, similar to  roughening35. This noise helps the estimator explore possible states and follow the observa-
tion. With these algorithms, the state of the crowd and the latent parameters can be sequentially estimated based 
on the observations. This assimilation procedure is executed every 100 simulation steps, which corresponds to 
1 s in the crowd simulation. The number of particles used in this study is 500. Hyperparameters such as the 
amplitude of the noise and the reasonable number of particles are determined in preliminary experiments.
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