
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10883  | https://doi.org/10.1038/s41598-022-14631-x

www.nature.com/scientificreports

Inferring functional communities 
from partially observed biological 
networks exploiting geometric 
topology and side information
Jayson Sia1,3, Wei Zhang2,3, Edmond Jonckheere1, David Cook2* & Paul Bogdan1*

Cellular biological networks represent the molecular interactions that shape function of living cells. 
Uncovering the organization of a biological network requires efficient and accurate algorithms to 
determine the components, termed communities, underlying specific processes. Detecting functional 
communities is challenging because reconstructed biological networks are always incomplete due 
to technical bias and biological complexity, and the evaluation of putative communities is further 
complicated by a lack of known ground truth. To address these challenges, we developed a geometric-
based detection framework based on Ollivier-Ricci curvature to exploit information about network 
topology to perform community detection from partially observed biological networks. We further 
improved this approach by integrating knowledge of gene function, termed side information, into the 
Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential 
conserved and varied biological communities from partially observed Arabidopsis protein interaction 
datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side 
information identified an expanded auxin community to include an important protein stability 
complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root 
development. The results show that community detection based on Ollivier-Ricci curvature with side 
information can uncover novel components and novel communities in biological networks, providing 
novel insight into the organization and function of complex networks.

A key challenge in systems biology is understanding how individual molecular components interact to form 
functional communities giving rise to cell structure and function. Uncovering the organizing principles that 
determine these interactions is crucial for developing a systematic understanding of molecular functions of 
pathways and their crosstalk. One approach is to map the physical or functional interactions between cellular 
components, including DNA, RNA, proteins and small molecules, to construct a cellular biological  network1. 
Such cellular biological networks represent biophysical snapshots of a global organization of cellular components. 
The maps of molecular interactions are often represented as networks, where nodes corresponding to cellular 
components are connected by edges representing either physical or functional interactions determined from the 
empirical interaction  data2–4. A central hypothesis to biological network analysis is that highly connected nodes 
represent organized units, so called communities in network science, that conduct one or more biological func-
tions. The level of functional organization can occur across scales, ranging from discrete motifs to larger order 
 modules5. Conceptually, a motif represents the lowest functional organization, such that highly connected nodes 
perform a discrete function, while interacting motifs form modules that perform higher order cellular  functions6.

Various community detection algorithms have been proposed to decompose complicated large-scale net-
works to infer their underlying organization and identify communities with shared functions. For instance, the 
Girvan–Newman (GN)  algorithm7 iteratively removes the edge with the largest edge betweenness, a measure of 
the number of shortest paths passing through an edge, in a graph. Modularity-based community  detection8–10 
measures the quality of the division of the network into densely connected modules/communities. Although 
there are other community detection methods, i.e., spin model-based11 and random walk-based12 methods, the 
community detection for biological networks faces several challenges: (i) the high-dimensionality, complex 
multi-scale dynamics and interdependence among biological constituents renders current techniques as either 
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inaccurate or provide incomplete understanding; (ii) community detection algorithms commonly applied to bio-
logical networks arose from the information theory and assume complete network information (i.e., all nodes and 
edges are known). This is rarely if ever true for biological datasets due to biological data acquisition conditions, 
such as specific developmental stages and growth conditions, and/or technological limitations. Consequently, 
only a partial snapshot of a complete molecular interaction network is available for data analysis, which may 
result in the missing nodes and/or node connections in a  pathway13–15; (iii) related to network completeness, 
there is a trade-off between data quality and throughput, where efforts to capture more of a network’s nodes can 
suffer from higher false-positives, which will negatively impact community  detection16–18; (iv) Current math-
ematical approaches do not integrate known biological node information during community detection. Known 
information is often used post-hoc to help identify community function, but the approach is often subjective and 
lacks a robust framework, failing to utilize the prior knowledge on biological functions of genes and pathways.

The applications of geometric analysis of networks have increased in the field of network science. Under-
standing the underlying topology of a network is important in revealing the salient properties of large-scale 
complex networks. One of the geometric network measures is the concept of network curvature. Ricci curvature 
and particularly its discretized  forms19 (Ollivier-Ricci20 and Forman-Ricci21) have been applied in the study of 
networks. Earlier  studies22 described the topological implications of curvature, particularly negative curvature, 
on the higher-order connectivity and the existence of central, influential neighborhoods in biological and social 
networks. Recent work using network Ollivier-Ricci curvature include the analysis of the internet  topology23, 
quantifying the systemic risk and fragility of financial  systems24, as well as  cancer25,  brain26, and drug-drug 
 interaction27 networks and machine learning for biological  applications28. The Forman-Ricci curvature has also 
been applied to the analysis of biological networks and its  structures29,30. Additionally, the Ollivier-Ricci curvature 
has been applied as a tool for network community detection utilizing the implications of negative  curvature27 and 
Ricci  flow31. While conventional community detection algorithms rely on network structure alone, they ignore 
available valuable metadata, sometimes termed nodal attributes. Previous work extended the Stochastic Block 
Model to incorporate covariates or extra relevant information in network  analysis32,33, and others incorporate 
nodal attributes as part of the community detection  procedure34–38. Some of these not only allow community 
detection while considering additional nodal information, but are also able to generate networks with communi-
ties correlated with node attributes or deal with missing  data39,40.

To further address the challenge of community detection in biological networks, we propose the Ollivier-
Ricci curvature (ORC)-based community identification (ORCCI) coupled with side information to identify 
functional communities from graph representations of biological interaction data. Using this framework, we 
quantify the network geometric topology and incorporate prior knowledge about nodes into the community 
detection algorithm (Fig. 1). This ORC-based community detection analyzes the curvature of node connections 
(i.e., edges), iteratively removing edges and recomputing the curvatures until distinct communities are identi-
fied. The hypothesis is that edge curvature represents local community structure in a network, where positive 
ORC connects nodes in functional communities and negative ORC bridges between functional  communities27. 

Figure 1.  Community detection of partially observed networks utilizing geometric topology and side 
information. An idealized biological community is depicted on the left with three defined functional 
communities color coded and grouped. Experimental approaches are listed that attempt to capture this 
community, but complete node observation is often not achievable. The top row shows the typical process 
in biological network analysis: data collection, network construction, and community detection (based on 
the Ollivier-Ricci curvature community identification (ORCCI) algorithm). The bottom row depicts side 
community information typically available from expert knowledge or prior empirical analysis. Incorporation of 
this side information with community detection can improve community detection performance.
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In addition to this novel algorithmic approach to community detection, our approach advances community 
detection by incorporating prior knowledge of node-level function annotation, so called side information (SI). 
Side information is inherently sparse for biological data, where most genes have an unknown function, but uses 
high-confidence functional annotation as ground-truth information for community function. We applied the 
ORC-based community detection coupled with side information approach on both synthetic and real-world 
protein-protein interaction (PPI) networks collected from various Arabidopsis thaliana experiments and evalu-
ated the performance by comparing the functions of the detected communities with node-level ground-truth 
functions. The results demonstrate geometric topology and side information can be exploited to identify known 
functional communities, identify novel members of known and novel communities to understand complex 
biological networks.

Results
Side information improves ORC-based community detection performance in partially 
observed synthetic networks. To develop the geometric topology-based ORC community detection 
algorithm, we modified the ORC algorithm to include side information as a constraint during edge removal. 
Here, an edge that would normally have been removed, would be retained between two nodes if they shared the 
same side information. Our rationale was that adding known node information into biological network analysis 
would allow us to leverage prior experimental information and assist community detection. We analyzed the 
performance using synthetic networks constructed with the Stochastic Block Model (SBM)41. The synthetic net-
works contained 1000 nodes belonging to 10 pre-defined ground-truth communities (Fig. 2a). The community 
detection was performed over 100 iterations on the synthetic networks to calculate the average performance. To 
address how partial network observation impacts ORC-based community detection, we varied the percentage of 
observable nodes of the hypothetical networks from 20 to 100%. At the same time, we analyzed how side infor-
mation (i.e., previously defined node function) impacts community clustering. We varied the amount of node-
level side information for a graph from no side information ( 0% ) to full knowledge ( 100% ). Since the output 
of the ORC-based community detection is a hierarchical partition of the network, we considered two network 
partitions: ORC-final (denoted as ORC) is a fine-grained final partition of the network where all the negative 
curvature edges have been removed; and ORC-maximum modularity (denoted as ORC MM) is an intermediary 
partition of the network where the network modularity measure is maximized. As the ORC MM identifies com-
munities prior to their terminal split, it results in merged and larger communities compared to ORC.

Figure 2.  Partial network observation and side information analyses on synthetic networks. (a) A generated 
stochastic block model of network size 1000 with 10 pre-defined ground-truth communities visualized using 
ForceAtlas2 layout. Normalized mutual information (NMI) as a community detection performance criterion 
evaluated for the (b) ORC-final partitions and (c) ORC-maximum modularity partitions as a function of 
percentage side information for varying levels of network observations. Surface plots for all pairs of percentage 
side information and percentage observability values for (d) ORC-final partitions and (e) ORC-maximum 
modularity partitions.
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We used normalized mutual information (NMI) to evaluate ORC-based community detection performance 
on the synthetic  networks42. For the ORC (final) partition, we found that increased network observability resulted 
in more accurate community detection in synthetic networks with a fixed amount of side information (Fig. 2b). 
Furthermore, increased network observability had a greater impact on community detection performance when 
more side information was known (0.6 versus 0.2 side information). This is likely because the limited network 
structure (i.e., fragmented connections) in a low observability setting (i.e., many missing nodes and therefore 
connections) impedes accurate community detection. Similarly, increasing the number of nodes with side infor-
mation in synthetic networks with fixed network observability improved community detection performance 
(Fig. 2b). We found that side information had the greatest impact on community detection performance, where 
increased side information increased performance when network observability was in the middle test ranges 
(e.g., between 0.4 and 0.8). Interestingly, increasing network observability above 60% did not increase the com-
munity detection performance, regardless of the side information provided. This could be because even at non-
complete observability, the synthetic network structure is strong enough that fewer tightly connected nodes 
represented near ground-truth communities. In addition, we did not observe complete community identification 
(NMI = 1) even having complete side information, especially at lower network observation ( < 0.4 ). Lowering 
network observability can cause the loss of connections between smaller components in a known ground-truth 
community, which results in the breakup of the community into smaller “islands” or components even prior to 
community detection.

We next assessed the performance based on the ORC MM community partition. Similarly, increasing network 
observability and side information lead to more accurate community detection (Fig. 2c). With 0% side informa-
tion, ORC MM had a lower NMI score of 0.44 than ORC partition of 0.52 at the same low network observability 
of 20%. However, ORC MM had a higher NMI score of 0.86 than ORC partition of 0.6 at full network observ-
ability of 100%. This is likely because maximum modularity works better for clear community structures with 
dense-connected community  members43. The ORC MM results in wider standard deviation intervals, suggesting 
a higher volatility in the NMI score.

We integrated the varying levels of side information and network observability into surface plots for both the 
ORC and ORC MM to understand their impacts on community detection (Fig. 2d,e). Similarly, we observed that 
as the amount of side information decreased from 60% and below, the performance drops to a (min/max) NMI 
score between (0.6/0.85) to (0.5/0.6) and (0.6/0.95) to (0.45/0.85) for ORC and ORC MM partitions, respectively, 
and depending on the level of network observability. Overall, the side information improves the NMI score across 
all network observabilities for both ORC partitions. It is worth noting that regardless of the percent of network 
observability, having side information in the range of [0.2, 0.4] results in an increase in NMI performance. This 
shows that prior knowledge of community membership for certain subset of nodes can improve the discovery 
of network community.

Ollivier-Ricci curvature and side information improve community detection from a small 
Arabidopsis protein network. To evaluate the performance of ORC-based community detection coupled 
with side information on real-world biological networks, we applied the developed method to an Arabidopsis 
PPI dataset. We first tested whether the ORC-based community detection methods could identify functional 
communities from a subset of the Arabidopsis phytohormone signaling interactome, which the original authors 
termed PhIMAIN

47. The PhIMAIN sub-network was developed from the full Arabidopsis phytohormone signaling 
interactome dataset ( PhIFULL ) and cross-referenced against two literature-based48,49 networks to improve the 
false discovery rate. After curation, the PhIMAIN network contains 495 binary interactions among 273 proteins 
(Fig. 3a). From the total proteins, 67.3% of them contained functional annotation belonging to at least one of 
the eight phytohormone pathways, including auxin, abscisic acids (ABA), ethylene (ET), salicylic acids (SA), 
jasmonic acids (JA), gibberellic acids (GA), brassinosteroids (BR), and cytokinins (CK) (Fig. 3b). These phyto-
hormone labels were used as node-level side information to aid the ORC-based community detection (colored 
nodes in Fig. 3a and Supplemental Table 1). We evaluated how the two ORC-based community detection net-
work partition levels, together with and without side information, (ORC, ORC+SI, ORC MM, ORC MM+SI), 
performed and benchmarked the results versus an edge betweenness-based7 community detection algorithm 
previously applied to the PhIMAIN  network47. From the four ORC-based community detection approaches, we 
identified 18–30 potential functional communities from PhIMAIN . To address if these communities represent the 
known phytohormone pathways, we labelled each community using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway  analysis45 and Gene Ontology (GO) enrichment  analysis46 (Supplemental Table 2). For com-
munities with phytohormone labels, we measured the ratio of nodes with a matching phytohormone annotation 
to the total nodes in the community, termed pathway protein ratio (Fig. 3c). The ORC-based community detec-
tion results for ORC, ORC+SI and ORC MM+SI had an average pathway protein ratio approximately 50% and 
the ORC MM exhibited the highest average ratio at 70% (Fig. 3c). These results were either comparable or better 
than the previous edge betweenness method (Btwns) (Fig. 3c), which suggests that the ORC-based community 
detection coupled with side information can cluster phytohormone proteins into their corresponding biological 
communities.

The community size distributions for ORC and ORC+SI showed a majority of communities of sizes 10 and 
below compared to ORC MM and ORC MM+SI showed some communities of sizes greater than 25 (Fig. 3d). 
This tallies with the expectation that ORC MM results in larger sized communities. Conceptually, nodes are 
hierarchically organized to provide cellular functions into motifs (smallest functional units with less than five 
interacting proteins) and modules (larger functional groups of interacting motifs and proteins)5. We found 
that the control edge-betweenness method led to fewer small communities (size ≤ 3 ) and motifs ( 3 < size ≤ 5 ) 
compared to all four ORC-based approaches, but identified more modules (size > 5 ), representing communities 
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made up of multiple labels. The ORC final partition methods (ORC and ORC+SI) identified a large proportion 
of small communities and motifs (Fig. 3e). For example, ORC+SI identified 11 single-function phytohormone 
modules compared to 5 such modules by ORC, and only 3 multi-function phytohormone modules compared 
to 9 such modules by ORC (Fig. 3e). Side information can help ORC final partition to merge communities with 
shared functions into a larger module and break a multi-function module into several small single-function 
motifs and modules. The ORC MM identified more large-size modules and fewer small communities and motifs 
(19 communities) compared to the ORC final partitions (55 for ORC, and 57 for ORC+SI) (Fig. 3e). By integrat-
ing protein phytohormone pathway side information, the ORC MM+SI can breakdown the giant modules with 
mixed functions (phyto-multi) into several modules with distinct functions (phyto-single) (Fig. 3d,e). These 
results show how side information improves the identification of single-function communities. The side infor-
mation can help recognize the neighborhoods with shared functions, which are usually detected as separate 
communities by ORC as this algorithm is executed until there are no more valid partition splits according to the 
ORC community partition rule. Thus, ORC+SI identifies more modules with smaller size and fewer number of 
total motifs and modules, which facilitate the downstream  study45,46 of the biological function(s) of a specific 
module (Fig. 3d,e). ORC MM+SI did not help improve the average phytohormone pathway protein ratio because 
the maximum modularity partition tends to give larger community partitions by merging two or more small 
phytohormone communities due to their relatively close connectivity (Fig. 3d), which resulted in a biased higher 
average phytohormone pathway protein ratio. ORC MM+SI can help breakdown the merged community into 
small communities with dedicated functions as can be seen from the lower mean community size (Fig. 3d) and 
increased number of communities (from N = 31 to 61) (Fig. 3e) compared to ORC MM.

The results where additionally assessed using standard information retrieval  criteria50, where we found that 
ORC+SI gave the best results, and the four ORC-based methods resulted in better classification performance 
than the Btwns method (Fig. 3f). We found that side information improved ORC performance, (i.e., ORC+SI 
has higher accuracy, precision, sensitivity and F1-score compared to ORC). However, ORC MM+SI had lower 

Figure 3.  A comparison of network community detection methods for Arabidopsis phytohormone protein–
protein interaction (PPI) PhIMain network. (a) PhIMain network with 273 nodes and 495 edges. Node colors 
represent known phytohormone pathway information (see legend in (b)). (b) Ratio of phytohormone pathway 
proteins compared to the entire network. Pathway labels: Auxin auxins, ABA abscisic acid, ET ethylene, 
SA salicylic acid, JA, jasmonic acid, GA gibberellic acids, BR brassinosteroids, CK cytokinins, Multi multi-
labeled pathway protein, Others other non-phytohormone pathways and other associated gene function (e.g., 
transcription factor, transporter, stress, and abiotic-biotic stimulus); and, Unknown unlabeled proteins. Different 
community detection (CD) methods are compared with (c) percentage of identified pathway protein ratio, (d) 
community size distribution and (e) community number differentiated according to small, motif, single- or 
multi-function phytohormone, or other non-phytohormone pathway communities. Method labels: Btwns, 
 Betweenness44, the baseline method; ORC, Ollivier-Ricci curvature-based  method27 (at final partition); ORC+SI, 
ORC with side information; ORC MM, ORC (at maximum modularity partition); ORC MM+SI, ORC MM 
with side information. Boxplot labels are obtained from the Turkey post hoc test for multiple comparisons. 
Community functions are determined by the Kyoto Encyclopedia of Genes and Genomes (KEGG)  analysis45, 
Gene Ontology (GO) enrichment  analysis46, and annotated phytohormone pathway proteins. (f) Performance 
comparison of the different methods in terms of accuracy, precision, sensitivity and F1 score.
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performance compared to ORC MM. The seemingly reduced performance when side-information was added 
to ORC MM was attributed to the way KEGG/GO assigns multiple functions to large communities inflating the 
performance score. With side information, this has led to more smaller communities with dedicated functions 
(Fig. 3f). Taken together, ORC-based community detection coupled with node side information can detect 
physical and functional motifs and modules in the Arabidopsis PhIMAIN network.

It is important to note the influence that SI has on correct community detection in our experiments. As 
argued in Ref.51, metadata and ground truth are not the same. We sought to minimize the influence of incor-
rect SI in the current work by using carefully curated SI based on high-confidence functional annotation from 
prior  literature45,46,52,53. To directly assess how incorrect side-information impacts community detection, we 
compared our community detection results to those obtained when varying levels of incorrect side-information 
were present. Here, we randomly assigned an increasing percentage of nodes in the a network with incorrect SI 
(see Supplementary Information for details). The results show that as SI in the network becomes increasingly 
incorrect, the quality of the community detection, as measured by accuracy for instance, become increasingly 
worse (Fig. S6).

Side information improves community detection performance for the expanded Arabidop-
sis phytohormone network. To test the performance on biological networks with increased size and 
complexity, we next applied the ORC-based community detection approaches (ORC, ORC+SI, ORC MM, ORC 
MM+SI) to the full phytohormone interactome dataset, termed PhIFULL . Compared with the curated PhIMAIN 
network, the expanded PhIFULL network was suitable for exploration of local network topological structures 
and hypothesis generation on novel components in a biological pathway and crosstalk among  pathways47. The 
PhIFULL PPI network contains 2021 binary interactions among 925 proteins, which is roughly 4 × more interac-
tions and over 3 × more proteins than the PhIMAIN dataset (Fig. 4a). Only 30.2% of PhIFULL proteins belong to 
the eight main phytohormone pathways, 30.8% belong to other biological pathways, and 39.0% are unknown 
proteins without functional annotation, which makes this dataset substantially more difficult to identify the 
phytohormone communities due to the potentially increased noise and more limited node-level side informa-
tion (Fig. 4b). For the PhIFULL network, we used side information for 22.6% of the 925 proteins (colored nodes in 
Fig. 4a), compared to the 50.1% of 273 proteins that had side information for the PhIMAIN network analysis. The 
betweenness-based community detection was not calculated for the PhIFULL network, and we therefore evalu-
ated the performance among the four ORC-based community detection methods. Only with the assistance of 
side information, the two ORC-based methods (ORC+SI, ORC MM+SI) show a higher average pathway protein 
ratio on the PhIFULL network (Fig. 4c) compared to their performance on the PhIMAIN network. ORC+SI identi-

Figure 4.  A comparison of network community detection methods for Arabidopsis phytohormone 
protein–protein interaction (PPI) PhIFull  network. (a) Network visualization with 925 nodes and 2021 edges. 
Node colors represent known phytohormone pathway information (see color legend in (b)). (b) Ratio of 
phytohormone pathway proteins compared to the entire network. The different community detection (CD) 
methods are compared with (c) percentage of identified pathway protein ratio, (d) community size distribution, 
and (e) community number. (f) Performance comparison of the different methods in terms of accuracy, 
precision, sensitivity and F1 score. See Fig. 3 for pathway and method labels.
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fied less motifs (53) and modules (33) in the PhIFULL network (Fig. 4e) compared to the ORC method (63 motifs 
and 52 modules, respectively) which is a similar observation in PhIMAIN network. Although side information 
helps ORC MM breakdown the largest communities, we did not find more single-function modules identified 
by ORC MM+SI than ORC MM, which was different from the ORC MM+SI performance on PhIMAIN network 
(Fig. 4d,e and Supplemental Table 4). The drop in the ability to identify single-function modules by ORC MM+SI 
may be due to the increased network size and number of interactions among proteins in PhIFULL network. In 
agreement with this observation, we found more large modules of size greater than 60 that were detected by the 
four ORC-based approaches. The increase in network size resulted from the incorporation of unknown labelled 
genes into known functional communities (Fig. 4d, Supplemental Table 4). In particular, ORC+SI detects more 
biological meaningful modules than the other three ORC-based methods, including 19 modules with phytohor-
mone functions (phyto-single and phyto-multi) and 14 modules with other functions, such as gene regulation, 
protein processing, and RNA processing (Fig. 4e). The global evaluation revealed the use of side information can 
slightly improve community detection performance for both ORC and ORC MM in PhIFULL network (Fig. 4f). 
The increased complexity, attributed by the increase in network size and number of interactions as well as fewer 
side information, resulted in a drop in performance on the PhIFULL network compared to the PhIMAIN network. 
Taken together, ORC-based community detection can still identify the biological meaningful communities in 
a more complicated protein network, and the side information can improve the community detection perfor-
mance despite the even smaller set of nodes with side information.

ORC-based community detection can identify phytohormone pathways in a whole-genome 
Arabidopsis protein network. We assessed the performance of the ORC-based methods on an even 
larger, more complex dataset in an attempt to further evaluate the approach. The Arabidopsis phytohormone 
signaling interactome dataset ( PhIMAIN and PhIFULL ) analyzed above, was collected to over-represent phyto-
hormone interactions. In order to address if we could identify major components of the phytohormone path-
ways from a genome-wide dataset collected under non-biased experimental conditions, we analyzed another 
larger protein–protein interactions data set. Here, we used the Arabidopsis Interactome version “main screen” 
( AI-1MAIN ) network containing 5506 binary interactions between 2657  proteins54 (Fig. 5a). AI-1MAIN shares 
128 proteins (4.82%) with the literature-curated PhIMAIN network and 405 proteins (15.24%) with the PhIFULL 
network. From the AI-1MAIN dataset, 188 proteins ( 7.9% ) are annotated as involved in the eight main phytohor-
mone signaling pathways, 237 were annotated for a non-phytohormone function (8.9%), and a majority have 
an unknown function (83.2%, Fig. 5b). We used side information for 14.6% of the 2657 proteins in AI-1MAIN 
(colored nodes in Fig. 5a), comprising both phytohormone and non-phytohormone annotations.

We first assessed the extent to which ORC-based community detection in the AI-1MAIN can reveal the phy-
tohormone signaling pathways. We observed around 40% of auxin and JA proteins and more than 20% of ABA, 
CK, and SA proteins were successfully distinguished in their corresponding communities by four ORC-based 
methods in the genome-scale protein network (Fig. 5c). However, only 10% ET proteins but almost no GA or BR 
proteins were rediscovered by the four methods. This suggested the ORC-based community detection methods 
can still successfully identify some of the phytohormone pathways in a whole-genome scale Arabidopsis protein 
network but with varied sensitivity on detecting different phytohormone pathways. The average of the eight 
phytohormone pathway protein ratios is around 20% for all four ORC-based methods, which is a significant 
reduction compared to their performance in PhIMAIN and PhIFULL networks (Figs. 3c, 4c,  5c). Such degrada-
tion in recovery of phytohormone proteins in the corresponding communities was expected since there is a 
significantly smaller proportion 7.9%) of annotated phytohormone proteins in AI-1MAIN networks compared 
with 67.3% in PhIMAIN and 30.2% in PhIFULL.

Side information improves ORC-based community detection in a whole-genome Arabidopsis 
protein network. We next assessed whether the use of side information can assist the ORC-based commu-
nity detection in the whole-genome scale protein network by evaluating the identified community size, number 
of motifs and modules, and robustness in detecting community contents. We found both ORC and ORC+SI 
identified similar sizes of communities and have comparable abilities in detecting the number of motifs (260 by 
ORC vs 253 by ORC+SI) and modules (141 by ORC and 139 by ORC+SI, Fig. S1a,b). Meanwhile, ORC MM+SI 
identified fewer motifs and more modules than ORC MM (Fig. S1b). However, ORC and ORC+SI identified 
more communities and relatively smaller community sizes compared to ORC MM and ORC MM+SI, suggesting 
that ORC final partition provides better resolution in community identification (Fig. S1b). Additionally, with a 
significant increase in network size, more large size communities were detected by all four methods, which was 
consistent with previous observations in PhIMAIN and PhIFULL networks (Fig. S1a). Given the size of AI-1MAIN 
network, the small amount of side information as a proportion of the total network size ( 14.6% ) was not enough 
to significantly improve the community detection performance in terms of merging small motifs with shared 
functions into large modules.

To evaluate the detection robustness, we evaluated the conservation and variation of communities identified 
by four ORC-based methods with the originally defined 26 “baseline” communities identified by the edge-
clustering  method54. We defined the overlap (or conservation) ratio as the number of overlapping proteins in 
communities identified both by ORC-based methods and the edge-clustering method (Tables 1, 2, Fig. S2a). We 
defined variation as the difference in the community membership with respect to the edge-clustering method, 
where the variation was normalized by the community size. A normalized variation of 0 indicates all proteins 
identified by the ORC community are members of the baseline AI-1MAIN community, while a normalized vari-
ation of 1 indicates N number of proteins belonging only to the ORC community, where N is the size of the 
AI-1MAIN community (Table 2, Fig. S2b). We considered the communities with more than five times variation to 
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the original AI-1MAIN community as unlikely or untestable communities and did not include them in downstream 
analysis for interpretation. We found 7 and 11 such communities under ORC MM and ORC MM+SI, respectively 
but no such communities under either ORC or ORC+SI algorithms. In addition, the ORC and ORC+SI detected 
communities showed higher average overlap ratios ( 0.77ORC and 0.3ORC+SI , respectively, Fig. S2a, Table 2) and 
lower average variation ratios ( 0.40ORC and 0.51ORC+SI , respectively, Fig. S2b, Table 2) than ORC MM and ORC 
MM+SI, suggesting ORC algorithm is more robust than ORC MM in community detection on large-scale pro-
tein network. In particular, there are 7 highly conserved communities in the 26 baseline communities that were 
detected by all community detection methods with high conservation ratio and small variation ratio (Tables 1, 2, 
Fig. S2a,b). However, comparison between the two ORC-based algorithms revealed ORC+SI showed less robust-
ness than ORC in terms of average conservation and variation ratios, suggesting the use of side information 
identified more communities with a relative higher variation level in community contents.

We hypothesized that the varied protein members uniquely belonging to an ORC community may contain 
novel components and relationships functioning in the pathway. An important application of community detec-
tion is to identify such novel components and relationships within known pathways, discover potential functional 
pathways, and reveal unknown interactions between pathways. To test our hypothesis and evaluate whether side 

Figure 5.  A comparison of network community detection methods for Arabidopsis phytohormone protein-
protein interaction (PPI) ( AI-1MAIN ) network. (a) Network visualization with 2657 nodes and 5506 edges. 
Node colors represent known phytohormone pathway information (see color legend in (b)). (b) Ratio of 
phytohormone pathway proteins compared to the entire network. (c) A comparison of different community 
detection (CD) methods are shown for the percentage of identified pathway protein ratio. (d) Venn diagram 
of community overlaps between the baseline AI-1MAIN auxin community with the largest auxin community 
identified by ORC final partition (ORC and ORC+SI) together with the side information list SI. (e–g) show 
the same network structure from the union of baseline AI-1MAIN and ORC+SI largest auxin community. Node 
legend colors in (e) indicate the auxin side information, (f) indicate community memberships in the baseline 
and/or ORC+SI, and (g) indicate community memberships in the baseline and/or ORC.
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information can assist ORC-based community detection to identify novel components and relationships in the 
whole-genome AI-1MAIN dataset, we compared the shared and unique members between the phytohormone 
communities labeled in AI-1MAIN network and detected communities by the ORC-based methods with and 
without side information. The AI-1MAIN contains three “baseline” phytohormone communities, including Auxin 
signaling (16 proteins), Brassinosteroid signaling & phosphoprotein binding (10 proteins), and Seed germina-
tion and GA and JA signaling (7 proteins). Here, we focus on the Auxin signaling communities detected by 
ORC-based methods which showed the highest variation compared with the AI-1MAIN baseline community (16 
members, Fig. 5d–g, Tables 1,  2). By including the auxin pathway protein side information (Fig. 5e), we found 
more protein members in Auxin community detected by ORC+SI than the corresponding community detected 
by ORC (Fig. 5f,i). Based on the local community structure, we further divided the auxin community identified 
by ORC+SI into four sub-communities for illustration purposes: auxin-1 (bottom-right), auxin-2 (top-right), 
auxin-3 (top-left), and auxin-4 (bottom-left) (Fig. 5f). Auxin-1 is the core sub-community commonly identified 
by the baseline, ORC and ORC+SI methods (13 common proteins, Fig. 5d,f,g). While most of the auxin side 
information are found in auxin-1, we found 2 additional nodes with auxin side information present in each of 
the auxin-2,3,4 sub-communities (Fig. 5e). This resulted in the merging of the auxin-2,3,4 sub-communities 
with auxin-1 forming the extended auxin community discovered by ORC+SI. Specifically, the hub protein gene 
AT1G22920 in auxin-2, which encodes sub-unit CSN5A of the COP9 signalosome (CSN)55,56 , provided crucial 
side information bridging auxin-2 with auxin-1 and auxin-3. This illustrates how side information can impact 
community detection.

To determine if this expanded auxin community is functionally relevant, GO enrichment analysis revealed that 
the community identified by ORC+SI was enriched for auxin function ( Foldchange = 19.66 , Padj = 2.06e−05 ) 
and CK function ( Foldchange = 28.55 , Padj = 1.14e−02 ), supporting the expanded community membership. 
When analyzing the biological functions for sub-communities by GO enrichment analysis, we found that auxin-1 
was the main auxin-response community, impacting lateral root formation, and it was enriched in response to 
auxin GO term (Foldchange = 67.21, Padj = 4.63e−25 ). We did not find enriched GO biological functions in 
auxin-2 community. Previous research showed that the single csn5 mutants displayed reduced root growth in 
general, and a specific reduction in the response to auxin measured by root growth inhibition and lateral root 
 emergence57,58. It is clear that CSN, and specifically the CSN5 sub-unit, plays diverse and pleiotropic roles in 
plant hormone signaling, defense, development and light  signaling57,59–61. It has also been suggested that mem-
bers of CSN form sub-complexes, which may serve specific functions, and evidence suggests that CSN5 does 

Table 1.  Sizes of overlapping communities between the AI-1MAIN network and the ORC method results.

ID

AI-1MAIN baseline communities

All overlapping communities The largest overlapping community

Community size (Number of communities) Community size (Number of overlapped proteins)

Annotation Size ORC ORC + SI ORC MM ORC MM + SI ORC ORC + SI ORC MM ORC MM + SI

4298 Water transport 11 11 (1) 11 (1) 11 (1) 11 (1) 11 (11) 11 (11) 11 (11) 11 (11)

1995 Transcription/gene expression 8 9 (1) 9 (1) 9 (1) 9 (1) 9 (8) 9 (8) 9 (8) 9 (8)

1534 Oxidoreductase activity 7 8 (1) 8 (1) 8 (1) 8 (1) 8 (7) 8 (7) 8 (7) 8 (7)

500 DNA binding 6 7 (1) 7 (1) 140 (1) 347 (1) 7 (6) 7 (6) 140 (6) 347 (6)

4167 Aromatic compound metabolism 6 7 (1) 7 (1) 7 (1) 7 (1) 7 (6) 7 (6) 7 (6) 7 (6)

5081 Ribonucloprotein complex 6 6 (1) 9 (1) 6 (1) 58 (1) 6 (6) 9 (6) 6 (6) 58 (6)

711 Cytoskeleton org. and root hair elong 9 15 (2) 11 (2) 35 (2) 19 (1) 9 (8) 9 (8) 9 (8) 19 (9)

5027 TCA cycle 8 11 (3) 10 (2) 18 (2) 27 (2) 5 (5) 7 (7) 15 (7) 24 (7)

1652 Auxin signaling 16 28 (4) 75 (3) 109 (2) 347 (1) 21 (13) 70 (14) 50 (15) 347 (16)

2535 Nucleosome assembly 13 24 (4) 29 (4) 30 (3) 29 (4) 8 (8) 10 (10) 11 (11) 10 (10)

5249 Potassium transport and kinase act 9 19 (4) 17 (4) 50 (1) 58 (1) 6 (6) 6 (6) 50 (9) 58 (9)

456 DNA repair and ubiquitination 8 12 (3) 12 (4) 140 (1) 60 (2) 7 (6) 6 (5) 140 (8) 59 (7)

899 Ubiquitination 7 8 (2) 8 (2) 159 (1) 269 (1) 5 (4) 5 (4) 159 (7) 269 (7)

1568 Transcription and nitrogen meta 7 36 (6) 24 (4) 275 (4) 361 (2) 3 (2) 5 (4) 140 (3) 347 (6)

4080 Calmodulin binding 9 13 (3) 13 (3) 13 (1) 13 (1) 5 (5) 5 (5) 13 (9) 13 (9)

4932 BR signaling and phosphoprotein bind 10 17 (4) 15 (4) 22 (2) 347 (1) 6 (5) 5 (5) 12 (9) 347 (10)

2796 RNA binding 10 15 (3) 13 (3) 121 (3) 21 (2) 8 (8) 5 (5) 8 (8) 9 (9)

3963 mRNA splicing 6 15 (4) 17 (4) 190 (2) 269 (1) 4 (3) 5 (3) 159 (5) 269 (6)

5255 Seed germ. and GB and JA signaling 7 29 (2) 43 (4) 59 (2) 323 (3) 8 (6) 6 (3) 8 (6) 9 (3)

4617 Ubiquitination 40 60 (10) 59 (12) 104 (7) 437 (7) 18 (17) 16 (15) 28 (27) 32 (28)

3347 No enriched GO annotations 14 36 (8) 51 (9) 159 (1) 269 (1) 10 (6) 9 (5) 159 (14) 269 (14)

4716 Transmembrane transport 350 526 (48) 533 (52) 790 (15) 1310 (20) 158 (158) 114 (114) 354 (315) 332 (306)

369 Ubiquitin-dependent degradation 6 17 (5) 17 (5) 299 (2) 328 (2) 3 (2) 3 (2) 140 (4) 59 (4)

1784 No enriched GO annotations 6 14 (3) 20 (4) 28 (2) 379 (3) 4 (4) 3 (2) 10 (5) 347 (3)

2706 No enriched GO annotations 22 58 (9) 108 (10) 148 (4) 484 (4) 9 (8) 8 (7) 46 (19) 77 (19)

1861 Vesicle trafficking 83 314 (27) 274 (26) 893 (13) 1186 (11) 16 (16) 16 (16) 107 (70) 89 (70)
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participate in these sub-complexes57,62,63. As such, the occurrence of AT1G22920/CSN5 as a major hub within 
the auxin-2 sub-community may reflect its multi-faceted role in the cell, and its connection between the other 
putative auxin sub-networks. Analysis of the individual proteins in auxin-2 suggested that it is involved in 
plant  photomorphogenesis57,58. The auxin-3 sub-network is also connected to the CSN5A hub node, and GO 
enrichment analysis suggested shade avoidance function for auxin-3 (Foldchange >100, Padj = 2.41e−02). This 
phenomenon is controlled by multiple phytohormone pathways, including cytokinin  signaling64. The crosstalk 
between cytokinin and auxin are well illustrated by the local network structure of auxin-4 that interacts with 
cytokinin via the hub protein encoded by AT2G01760 in this sub-community. This hub protein is annotated 
as a member of type-B response regulators (Response Regulator 14) involved in phosphorelay signal transduc-
tion acting upstream or within cytokinin-activated signaling pathway but without experimental  validation65. 
Taken together, the use of side information helped identify potentially novel components in the auxin response 
pathway, linking to other possible functions and the cytokinin pathway. Future research to validate and explore 
these connections is needed.

Partial network observation impacts community detection. Finally, we investigated how partial 
observation on networks impacted community detection in these real-world datasets. We used three Arabi-
dopsis protein networks with varied network sizes to represent partial observation variation due to the sam-
pling or assay sensitivity. AI-1MAIN (2650 proteins) is considered to represent ≈ 2% of the complete Arabidopsis 
299, 000± 79, 000 (mean±SD) biophysical binary protein  interactions54. The PhIMAIN data (277 proteins) is a 
subset ( 29.9% ) of the PhIFULL data (925 proteins), which is concentrated on phytohormone proteins and share 
405 proteins with AI-1MAIN (Fig. 6a). Between the PhIFULL and AI-1MAIN datasets, there are 375 proteins and 
2252 proteins uniquely contained respectively. We compared the corresponding phytohormone communities for 
auxin, GA/JA, and BR, detected from the three Arabidopsis PPI-datasets, and compared them to the communi-
ties originally identified by edge-clustering method from the AI-1MAIN dataset (Fig. 6b, Figs. S4a, S5a). Since we 
have shown from the previous sections that ORC+SI provided better community detection in AI-1MAIN , we used 
ORC+SI identified three phytohormone communities for comparison of the variation of protein members and 
local network structures (Fig. 6b–e, Figs. S3–S5). Comparison of protein member variation showed that partial 
observation resulted in 93, 54, and 48 non-detectable proteins in the auxin communities in PhIMAIN , PhIFULL , 

Table 2.  Overlap and variation ratio between AI-1MAIN communities and ORC methods’ largest overlapping 
community.

ID

AI-1MAIN baseline communities

All overlapping communities The largest overlapping community

Community size (Number of communities) Community size (Number of overlapped proteins)

Annotation Size ORC ORC + SI ORC MM ORC MM + SI ORC ORC + SI ORC MM ORC MM + SI

4298 Water transport 11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1995 Transcription/gene expression 8 1.00 (0.89) 1.00 (0.89) 1.00 (0.89) 1.00 (0.89) 0.12 (0.00) 0.12 (0.00) 0.12 (0.00) 0.12 (0.00)

1534 Oxidoreductase activity 7 1.00 (0.88) 1.00 (0.88) 1.00 (0.88) 1.00 (0.88) 0.14 (0.00) 0.14 (0.00) 0.14 (0.00) 0.14 (0.00)

500 DNA binding 6 1.00 (0.86) 1.00 (0.86) 1.00 (0.04) 1.00 (0.02) 0.17 (0.00) 0.17 (0.00) 22.33 (0.00) 56.83 (0.00)

4167 Aromatic compound metabolism 6 1.00 (0.86) 1.00 (0.86) 1.00 (0.86) 1.00 (0.86) 0.17 (0.00) 0.17 (0.00) 0.17 (0.00) 0.17 (0.00)

5081 Ribonucloprotein complex 6 1.00 (1.00) 1.00 (0.67) 1.00 (1.00) 1.00 (0.10) 0.00 (0.00) 0.50 (0.00) 0.00 (0.00) 8.67 (0.00)

711 Cytoskeleton org. and root hair elong 9 0.89 (0.89) 0.89 (0.89) 0.89 (0.89) 1.00 (0.47) 0.11 (0.11) 0.11 (0.11) 0.11 (0.11) 1.11 (0.00)

5027 TCA cycle 8 0.62 (1.00) 0.88 (1.00) 0.88 (0.47) 0.88 (0.29) 0.00 (0.60) 0.00 (0.14) 1.00 (0.07) 2.12 (0.04)

1652 Auxin signaling 16 0.81 (0.62) 0.88 (0.20) 0.94 (0.30) 1.00 (0.05) 0.50 (0.14) 3.50 (0.03) 2.19 (0.02) 20.69 (0.00)

2535 Nucleosome assembly 13 0.62 (1.00) 0.77 (1.00) 0.85 (1.00) 0.77 (1.00) 0.00 (0.62) 0.00 (0.30) 0.00 (0.18) 0.00 (0.30)

5249 Potassium transport and kinase act 9 0.67 (1.00) 0.67 (1.00) 1.00 (0.18) 1.00 (0.16) 0.00 (0.50) 0.00 (0.50) 4.56 (0.00) 5.44 (0.00)

456 DNA repair and ubiquitination 8 0.75 (0.86) 0.62 (0.83) 1.00 (0.06) 0.88 (0.12) 0.12 (0.29) 0.12 (0.50) 16.50 (0.00) 6.50 (0.02)

899 Ubiquitination 7 0.57 (0.80) 0.57 (0.80) 1.00 (0.04) 1.00 (0.03) 0.14 (0.60) 0.14 (0.60) 21.71 (0.00) 37.43 (0.00)

1568 Transcription and nitrogen meta 7 0.29 (0.67) 0.57 (0.80) 0.43 (0.02) 0.86 (0.02) 0.14 (1.67) 0.14 (0.60) 19.57 (0.03) 48.71 (0.00)

4080 Calmodulin binding 9 0.56 (1.00) 0.56 (1.00) 1.00 (0.69) 1.00 (0.69) 0.00 (0.80) 0.00 (0.80) 0.44 (0.00) 0.44 (0.00)

4932 BR signaling and phosphoprotein bind 10 0.50 (0.83) 0.50 (1.00) 0.90 (0.75) 1.00 (0.03) 0.10 (0.83) 0.00 (1.00) 0.30 (0.08) 33.70 (0.00)

2796 RNA binding 10 0.80 (1.00) 0.50 (1.00) 0.80 (1.00) 0.90 (1.00) 0.00 (0.25) 0.00 (1.00) 0.00 (0.25) 0.00 (0.11)

3963 mRNA splicing 6 0.50 (0.75) 0.50 (0.60) 0.83 (0.03) 1.00 (0.02) 0.17 (0.75) 0.33 (0.60) 25.67 (0.01) 43.83 (0.00)

5255 Seed germ. and GB and JA signaling 7 0.86 (0.75) 0.43 (0.50) 0.86 (0.75) 0.43 (0.33) 0.29 (0.12) 0.43 (0.67) 0.29 (0.12) 0.86 (0.44)

4617 Ubiquitination 40 0.42 (0.94) 0.38 (0.94) 0.68 (0.96) 0.70 (0.88) 0.03 (1.28) 0.03 (1.56) 0.03 (0.46) 0.10 (0.38)

3347 No enriched GO annotations 14 0.43 (0.60) 0.36 (0.56) 1.00 (0.09) 1.00 (0.05) 0.29 (0.80) 0.29 (1.00) 10.36 (0.00) 18.21 (0.00)

4716 Transmembrane transport 350 0.45 (1.00) 0.33 (1.00) 0.90 (0.89) 0.87 (0.92) 0.00 (1.22) 0.00 (2.07) 0.11 (0.10) 0.07 (0.13)

369 Ubiquitin-dependent degradation 6 0.33 (0.67) 0.33 (0.67) 0.67 (0.03) 0.67 (0.07) 0.17 (1.33) 0.17 (1.33) 22.67 (0.01) 9.17 (0.03)

1784 No enriched GO annotations 6 0.67 (1.00) 0.33 (0.67) 0.83 (0.50) 0.50 (0.01) 0.00 (0.50) 0.17 (1.33) 0.83 (0.10) 57.33 (0.01)

2706 No enriched GO annotations 22 0.36 (0.89) 0.32 (0.88) 0.86 (0.41) 0.86 (0.25) 0.05 (1.56) 0.05 (1.88) 1.23 (0.07) 2.64 (0.04)

1861 Vesicle trafficking 83 0.19 (1.00) 0.19 (1.00) 0.84 (0.65) 0.84 (0.79) 0.00 (4.19) 0.00 (4.19) 0.45 (0.12) 0.23 (0.15)
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and AI-1MAIN , respectively (Fig. 6c). We found this was caused by a protein missing in a given dataset or bro-
ken connections (i.e., missing edges) between existing proteins and a detected auxin community (Fig.  6d,e, 
Fig. S3). For example, 93 non-detectable proteins in PhIMAIN auxin community include 80 proteins missing in 
PhIMAIN data and 13 proteins with broken links with detected auxin communities (Fig. 6c). In particular, four 
proteins present in AI-1MAIN auxin community also were detected in PhIMAIN data but failed to be detected 
in PhIMAIN auxin community, including two proteins in auxin-1, one protein in auxin-2, one hub protein in 
auxin-4 (Fig. 6d). Likewise, there are 42 missing proteins and 12 broken-link proteins in the 54 non-detectable 
proteins in the PhIFULL auxin community (Fig. 6c). Among 12 broken-link proteins, 10 of them spread across all 
four auxin sub communities in AI-1MAIN (Fig. 6e). Visualizing the local network structure of the PhIFULL auxin 
community shows that the missing proteins caused a change in edge connections among other existing proteins 
and thereby altered the network structure (Fig. S3b–d).

Similarly, partial observation caused dramatic community structure variation of the other two phytohormone 
communities, GA/JA and BR signaling communities, across the three datasets. Compared with AI-1MAIN , PhIFULL 
identified more complete GA/JA and BR signaling communities, which is different from the results for the auxin 
community detection in AI-1MAIN (Figs. S4, S5). For GA/JA community, ORC+SI identified a six-protein com-
munity in AI-1MAIN , a five-protein community in PhIMAIN , but a large community of 60 proteins in PhIFULL , 
containing 16 side information-labeled proteins in three subcommunities (Fig. S4a,b,d1). Compared with the 
PhIFULL GA/JA community, relationship analysis and local network structure showed a majority of missing 
proteins and link-broken proteins in PhIMAIN and AI-1MAIN datasets (Fig. S4c,d). For BR community, ORC+SI 
identified a large community (51 proteins) in the PhIFULL dataset, but failed to identify it in PhIMAIN , and only 
a small five-protein community in AI-1MAIN due to majority of missing proteins and broken links in these two 
datasets (Fig. S5). Taken together, the relationship analysis and local community structure variation analysis for 

Figure 6.  Auxin signaling pathway community overlap. (a) Venn diagram of overlap among the three 
Arabidopsis datasets. (b) Venn diagram showing the auxin ORC+SI community overlap across the three 
datasets: PhIMAIN , PhIFULL and AI-1MAIN . (c) Venn diagram of auxin communities and dataset memberships. 
(d,e) Show the same network structure from the union of AI-1MAIN baseline auxin community and the 
AI-1MAIN ORC+SI largest auxin community. Legend colors in (d) indicate gene memberships and overlap in 
AI-1MAIN baseline and PhIMAIN ORC+SI largest auxin community, and (e) indicate gene memberships and 
overlap in AI-1MAIN baseline and PhIFULL ORC+SI largest auxin community.
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three phytohormone communities across three partial observed networks supports the hypothesis that protein 
(i.e., nodes) presence/absence variation between datasets causes significant differences in community detection. 
These results show that from a broad perspective, the level of network observation has a direct impact on com-
munity detection, where the loss of nodes through sampling techniques impairs the identification of functional 
communities and partial observation can obscure true community identification.

Discussion
Biological systems are complex because they contain many individual components that are interconnected at 
different organizational scales. At the scale of cells, genes can be represented as biological networks (i.e., graphs) 
for the purpose of understanding the organization, structure and collective gene function for biological processes. 
However, complete biological network information is seldom available due to biological and technical limitations. 
Hence, partial network observation poses a problem in downstream community detection analysis where basic 
network science algorithms assume complete network information. Problems related to observability are not 
easily overcome, as they relate to technical limitations encountered when balancing high-throughput, large-scale, 
and accurate data collection of biological systems. To mitigate this limitation, we propose that using a subset of 
extensively studied proteins, whose biological function is documented, to guide community detection, we can still 
identify biologically functional communities from partially observed networks. Here, we introduced geometric 
topology-based network analysis for community detection and addressed the challenge of missing observations 
by incorporating nodal side information to improve the community detection performance.

Network geometry analysis has recently gained traction in network science, and offers new theoretical insights 
into the fundamental principles of complex systems based on their multiple scales of organization and informa-
tion  exchange66. In this work, we exploited the ORC-based community detection algorithm, which iteratively 
divides the network into communities by removing the edge with the most negative curvature based on the 
hypothesis that negative edge curvatures act as bridges between functional  communities27. We further guided 
community detection by incorporating biological information in the form of functional gene annotation (i.e., 
nodal side information) to assist in edge removal criteria. We evaluated the community detection performance 
based on two ORC-based network community partitions: ORC final partition (ORC), and maximum modularity 
partition (ORC MM). From implementation, the ORC partition results in the finest-grained community partition 
while the ORC MM results in merged and larger communities. Synthetic network results without the aid of side 
information showed that ORC performed better at lower network observability ( ≤ 0.4 ) than ORC MM, and vice 
versa for higher network observability ( ≥ 0.4 , Fig. 2b,c). One possible reason for this is that for high network 
observability, ORC is penalized for dividing the ground truth community further into smaller constituent com-
munities while for low network observability, the ORC MM is penalized for merging nodes from different ground 
truth memberships into one large community. As for the Arabidopsis PPI networks, the ORC final partition 
performed better compared to ORC MM in finding the building blocks such as smaller-sized communities and 
single-function modules, which are important in understanding the biological functions of the communities 
(Fig. 3e,f). For different application areas, finding the larger high-level subdivision of the network will be more 
relevant, and the ORC MM partition can be a more appropriate option.

In contrast to performing the basic community detection without side information, our results from both 
synthetic and real-world Arabidopsis PPI networks indicate that the ORC-based community detection coupled 
with side information improves community detection based on classification performance for the tested datasets 
(Figs. 2b,c, 3f, 4f) and baseline ( AI-1MAIN ) community comparison (Tables 1,  2) regardless of network size. The 
inclusion of side information affects ORC and the ORC MM implementation in a different manner. For ORC, 
the side information tends to merge small communities with shared functions into larger shared communities. 
This is observed especially in the synthetic networks and PhIMAIN network where the ORC+SI identified signifi-
cantly more single-function phytohormone communities. For the largest Arabidopsis ( AI-1MAIN ) PPI network, 
the ORC+SI provides the best balance between high overlap ratio and minimum variation compared with the 
baseline AI-1MAIN communities. For ORC MM, the side information tends to break down the large communities 
into smaller communities as observed in PhIMAIN and PhIFULL networks. However, the choice of side informa-
tion is very important. Wrong side information that does not correlate with ground truth community partition 
can negatively impact the community detection performance (Supplementary Fig. S6). This analysis shows 
that while the direct use of side information improves community detection performance, careful attention is 
required to ensure correct side information. To address this, the side information should be carefully curated 
based on high-confidence functional annotation from prior literature as ground-truth information. Alternatively, 
non-deterministic usage of side information is a possible extension to further improve the community detection 
performance without relying on a strong correlation assumption between side information and ground truth 
partition. This can be via weight adjustments of the probability mass distribution in the Wasserstein’s distance 
calculation. Additionally, side information together with a network generator inference  framework67 can be used 
to aid reconstruction of the missing  network68 due to partial observability.

Application of community detection on the three Arabidopsis protein networks reveals that the level of partial 
observation impacts the variation of presence and absence of a protein and its observed interactions with other 
proteins in a given network. This variation in turn impacts the detection of functional modules and motifs. As 
a case study, we focused on the comparison of the auxin communities across three datasets identified by ORC 
coupled with side information. Although the partially observed levels impact the protein community members 
and local auxin community structures across the three datasets, we observed its core protein network (denoted 
as auxin-1 sub-community, Figs. 5h,  6d,e) are conserved despite the variation of protein network sizes. Such 
stable local network content and structure suggest the partial observed protein networks due to the sampling 
approach do not impact the main auxin proteins and their relationships. Auxin is essential for plant cell growth 
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by affecting cell division and cellular expansion, and it is also a general coordinator with multiple functions that 
interacts with several other phytohormone molecules to regulate plant growth and development by contributing 
to cell differentiation and  specification69,70. The global interaction relationship of auxin proteins might be one of 
the reasons that results in the conserved structure. The varied protein members in communities from different 
datasets usually contain proteins involved in extensively interacting with other phytohormone pathways, post-
translational modifications, and protein  degradations58,71–74. For example, the interplay between COP9 signalo-
some and ubiquitin E3 ligase actively participates in phytohormone signaling pathways, including hormone 
perception and de-repression, through controlling over ubiquitin-proteasome-mediated protein degradation. 
The ORC+SI in this study identified two auxin sub-communities, auxin-1 with lateral root formation function 
and auxin-2 with photomorphogenesis function, that are associated with a hub protein CSN5A, a sub-unit of the 
COP9 signalosome (Fig. 5g)55,56,58,75. The biological functions of the two detected auxin communities by ORC-
based algorithms are consistent with previous single-gene-mutant experiments. The protein members in auxin 
communities identified in this study can guide higher-order-mutants’ experiments for groups who are interested 
in auxin functions in plants. Furthermore, in planta validation of protein–protein interaction is required prior 
forward genetic experiments.

In summary, the ORC-based community detection coupled with side information can help identify biological 
meaningful modules from protein interaction networks regardless of size and complexity. While partial network 
observability significantly affects the content and structure of the network and hence the resulting detected 
communities, incorporation of the prior protein functional annotations as side information improves the ORC-
based community detection performance, especially discovering potentially novel members and relationships 
associated to a community. Taken together, network geometric topology and side information can be exploited 
to understand the hierarchical organization of complex biological networks by detecting functional modules, 
discovering of novel molecules and interactions within a module, and revealing novel modules and their rela-
tionships. The new local network structure and communities reported here using the three Arabidopsis protein 
networks represent new hypotheses to be tested in future work. Additionally, areas of future exploration include 
the relaxation of the assumption on the strong correlation between side information and ground truth partition, 
further improvement of the community detection performance by considering non-deterministic methods of 
using side information, and reconstruction of partially observed networks based on side information and a 
network generator inference framework.

Methods
Synthetic network construction. We generated the synthetic networks using the Stochastic Block Model 
(SBM), which is a generative model for random graphs with planted community  structures41. The planted com-
munity structures are considered as ground truth community assignments used for evaluating the performance 
of community detection methods. The generated synthetic networks contain a pre-defined number of communi-
ties of varying chosen sizes and intra- and inter-community edge linking probabilities. The complete network is 
denoted by G(V, E) with V denoting the set of nodes and E denoting the set of edges. The network size is n = |V | 
which is the total number of nodes. The intra- and inter-community edge linking probabilities are denoted by pin 
and pout , respectively. The observed network, denoted as Gobs(Vobs ,Eobs) , is a subgraph of G where only a subset 
of nodes nobs are observable. For the synthetic network experiment, we randomly sample a percentage of the 
total nodes as observable starting at 10% observability. We re-run the test for increasing values of observability 
percentages up to the full 100% observability, i.e., nobs = [0.1, 0.2, . . . , 1] × n . Similarly, we also generate a subset 
of nodes ns randomly selected from the observed nodes in nobs in which the community ground truth labels are 
pre-defined. We define this set of observed nodes with known community labels (or a priori side information) as 
S, with ns = |S| denoting the number of nodes with known side information. In these experiments, we also vary 
the size of S and evaluate the ORCCI performance. We test this for ns = [0, 0.1, . . . , 1] × nobs . The performance 
is quantified by the normalized mutual information (NMI) which is a common metric use to evaluate commu-
nity detection performance.

For the synthetic network experiment, we ran the community detection on an SBM model of 1000 nodes with 
10 pre-defined ground truth communities of varying sizes [150, 125, 125, 110, 100, 100, 90, 75, 75, 50]. Figure 2a 
shows the network visualization with color-coded ground-truth labels. We perform the community detection 
and evaluate the performance for all combinations of network observability sizes nobs and side information sizes 
ns . Finally, we repeat the experiments on all 20 different instances of the SBM generated network using the same 
network configuration.

Ollivier-Ricci curvature. The proposed community detection algorithm utilizes the coarse geometry topo-
logical concept of the Ollivier-Ricci  curvature20,76 to graphs or  networks77. The notion of curvature is a measure 
of the amount by which a geometric object deviates from being flat (Euclidean plane). The idea of Ricci curva-
ture, on the other hand, is a notion of curvature to a discrete triangulated surface (coarse geometry) or graphs. 
In the graph/network context, the ball around x is the set of neighbors of x (same for y). Similarly, the idea is to 
find the optimal way to transfer the ball of mass from the vertex x to y.

ORCCI community detection and side information. Algorithm 1 shows the implementation of the 
proposed community detection augmented with side information. The main idea is the recursive removal of the 
most negatively curved edge in the network while keeping in mind not to remove the “known” edges based on 
the a priori side information. Note that this a priori side information is assumed to be carefully curated from 
high-confidence functional annotation from prior literature. The algorithm performance will be limited if the 
side information is not correlated with the hidden community structure.
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Complexity. The time complexity of the proposed ORC-based community detection algorithm boils down 
to the calculation of the edge ORC of the network. The time complexity to compute the ORC for each edge is 
essentially the Wasserstein distance computation complexity based on linear programming. Practical run time 
complexity using network (transportation) simplex  algorithm78 was shown to be super-cubic. Interior-point or 
Orlin’s algorithms have complexity of O(V3 logV) , with V as the total number of vertices in the Wasserstein 
distance sub-problem79,80 (note that V depends on twice the average degree of the network typically with V ≪ N 
and V ≪ E ). In the worst case, cycling through each network edge and re-calculating all existing affected edges 
lead to O((EV) · V3 logV) . Strategies can be utilized to improve the computation complexity of the proposed 
algorithm either via a wavelet EMD  approximation79 of the Wasserstein distance or an ORC bounds  analysis81. 
The Wasserstein distance computation can be improved from O(V3 logV) to O(V) via the wavelet EMD approx-
imation leading to an overall time complexity of O(EV2) for the proposed algorithm.

Arabidopsis protein interactome networks. We apply the ORCCI-based community detection meth-
ods to the real-world biological protein networks to discover functional motifs and modules. This can allow us to 
better understand the protein dynamics and evolution and potentially discover novel insights. We choose three 
publicly available protein interaction networks that map the pairwise physical associations between proteins in 
the chosen model plant Arabidopsis thaliana (Arabidopsis)47. Arabidopsis, as a model organism in plant biol-
ogy, has a large number of genes within its genome that are functionally identified and characterized by classical 
molecular and genetic approaches. For example, several databases such as TAIR are available with gene func-
tional annotation and several of mutation lines uncovering the genotype-phenotype relationships. This makes it 
a gold-standard platform to explore the biological  networks82.

We choose the three protein interaction data sets for the following reasons: (a) the datasets share a core set of 
proteins that are involved in phytohormone signaling associated pathways, and (b) the datasets vary in network 
sizes. For example, the Arabidopsis phytohormone interactome main ( PhIMAIN ) network with 273 nodes and 
phytohormone interactome full ( PhIFULL ) network with 926 nodes serve as the small and medium data sets in 
this  study47 (see Supplemental Tables 1, 2). Both Arabidopsis protein networks are derived from the same study 
that focuses on the phytohormone signalling pathways which integrate external stimuli or internal cues to regu-
late plant biological processes such as growth, development, and response to stress. Arabidopsis Interactome 
version 1 “main screen” ( AI-1MAIN

54, 2661 nodes) is the genome-wide protein network that allows us to observe 
the local networks and generate systems-level hypothesis (Supplemental Table 3). Topological analysis reveals 
that the three networks exhibit a hierarchical network structure, which integrates a scale-free topology with an 
inherent modular structure that the sparsely connected sub-networks are connected to highly clustered neigh-
bourhoods by a few of hub  nodes5 (Figs. 3a, 4a, 5a). The hierarchical organization of the three protein networks 
indicates both the relationship between two proteins and the communications among sub-networks, including 
the functional motifs and modules.

Based on the primary topological structure analysis, we perform the ORC-based community detection cou-
pled with a priori node side information on the three Arabidopsis protein networks to identify functional motifs 
and modules. We compare our proposed method, the ORC-based community detection evaluated at the final 
partition (ORC) and maximum modularity partition (ORC MM), and the baseline method, the betweenness 
centrality method (Btwns) used in Ref.47 for the PhIMAIN network analysis. We quantify the accuracy of differ-
ent community detection methods by comparing the biological functions of the predicted communities to the 
ground truth of the biological function and sub-cellular locations of proteins retained in the corresponding 
community. The conserved core set of nodes and varied sizes among the three Arabidopsis protein networks 
allow us to apply the proposed community detection method and evaluate how varied levels of observability 
and side information influence the prediction of functional motifs and modules in biological networks with 
increased size and complexity.
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Protein–protein interaction datasets and gold standards. In contrast to the ground-truth data used 
as gold standards for verifying the community detection in the synthetic networks, there is rarely a straight-
forward ground-truth for biological networks or modules. To evaluate the performance of different commu-
nity detection methods on the protein–protein network, we collected the meta-data for individual proteins 
that involve in eight phytohormone pathways. We considered several compensate gold standards derived from 
the gene set analysis, including the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway  analysis45 
and Database for Annotation, Visualization and Integrated Discovery (DAVID)52, gene ontology enrichment 
 analysis46,53, and gene description analysis.

Code availability
Codes available at: https:// github. com/ jcsia/ orcci.
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