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A compact evolved antenna for 5G 
communications
I. Marasco1,2,4*, G. Niro1,2,4, V. M. Mastronardi2,3, F. Rizzi2, A. D’Orazio1, M. De Vittorio2,3,4 & 
M. Grande1,4

Flexible and bendable electronics are gaining a lot of interest in these last years. In this scenario, 
compact antennas on flexible substrates represent a strategical technological step to pave the way 
to a new class of wearable systems. A crucial issue to overcome is represented by the poor radiation 
properties of compact antennas, especially in the case of flexible and thin substrates. In this paper, 
we propose an innovative design of a miniaturized evolved patch antenna whose radiation properties 
have been enhanced with a Split Ring Resonator (SRR) placed between the top and the ground plane. 
The antenna has been realized on a flexible and biocompatible substrate polyethylene naphthalate 
(PEN) of 250 μm by means of a new fabrication protocol that involves a three-layer 3D-inkjet printing 
and an alignment step. The antenna has been characterized in terms of the scattering parameter  S11 
and the radiation pattern showing a good agreement between simulations and measurements.

With the advent of 5G and new 6G network infrastructures, flexible and bendable IoT devices are becoming 
increasingly  popular1,2. In this regard, the conception of wearable and bendable antennas is a crucial issue to 
 overcome3,4. Scientific efforts concerned the design of miniature flexible antennas to cope with modern require-
ments such as wearability.

Due to the high demand coming from the market, rapid prototyping and cost-effective technologies for 
antenna fabrication are becoming crucial and, hence, multiple technologies have to be combined to achieve 
the very strict goals required by antenna design. From one side, the footprint of the antenna can be reduced 
increasing the operating  frequency5. However, the higher is the transmission frequency the more probable is the 
insurgence of disturbing phenomena such as multipath fading and  attenuation6. The second alternative is antenna 
miniaturization. This technique aims to decrease the resonance of antennas by increasing its electrical length, 
so with the same geometrical dimension antennas can radiate at a lower frequency. The main drawbacks of this 
strategy are the degrading of the radiation properties and bandwidth reduction. In addition to compact foot-
prints, optimal radiation properties are needed. These requirements increase the difficulty of the design procedure 
since the geometry of the antenna must be efficiently optimized, typically and especially on very thin substrates.

In this context, artificial intelligence (AI) comes to aid. AI algorithms have been used for years to solve a 
huge variety of optimization problems, including antennas design. Among other methods, the genetic algorithm 
(GA) is one of the most used approaches regarding different electromagnetic problems such as  photonics7 and 
 antennas8–11.

The genetic algorithm generates a set of trivial solutions, i.e. antenna geometries, which evolves step by step 
until the best solution is reached. Antennas generated according to this approach are said to be  evolved12.  Miitra13 
was one of the first authors to exploit this line of research.  Reference8 reports a tutorial about GA applied to this 
kind of applications while  reference9 details the design of antennas employing GA and the Method of Moments 
(MoM).  In10, the GA is applied to miniaturize a patch antenna for cardiac pacemakers operating at 402–405 MHz. 
The coding scheme used to treat the problem consists of subdividing the patch into smaller sub-patches. Each 
sub-patch can be either metal or air. The same approach has also been used  in11, where the genetic algorithm 
has been applied to a patch antenna shifting its resonance from 4.8 GHz to 2.16 GHz.

It has been demonstrated that the design of antennas by means of genetic algorithms is a good choice; how-
ever, only the miniaturization cannot be pushed far without suffering from low radiation efficiencies.

An approach used for improving this feature is the introduction of metamaterials. Each material in nature 
is composed of atoms and their properties and spatial orientations affect its electrical behavior. The idea behind 
the metamaterials is the logical expansion of this concept at a macroscopic scale. By creating an array of single 
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cell having specific properties it is possible to generate tailored electrical and magnetic characteristics of the 
entire structure.

Metamaterials are applied to a huge variety of fields and one of the most promising regards the enhancement 
of radiation properties of small antennas.

Split Ring Resonators (SRRs) represent an optimal solution since their planar geometry and easy integration 
simplifies the fabrication  process14. In particular, SRRs can be used to realized Artificial Magnetic Conductor 
(AMC) layers having effective permeability near to zero, i.e. Zero Index metamaterials (ZIMs). Recent studies 
employ ZIMs to improve the radiation properties of antennas by placing such supermaterials between the top 
layer of the antenna and the ground  plane15–22. In this case, the ZIM acts as a very precise mirror that does not 
introduce phase variations in the reflected electromagnetic waves, improving the radiation characteristics of 
the ground plane on the bottom of the antenna. A problem arising from the use of metamaterials is that the 
inclusion of a superstrate adds a metallic layer to the stack composing the antenna, hence an alignment process 
must be performed.

A very attractive technological process for the fabrication of flexible antennas even of multilayers  stacks23,24, 
is the ink-jet  printing25, as it is the most economical, the fastest, and the cleanest solution. By this technique, the 
antennas are realized by depositing conductive inks through hundreds of nozzles which are mechanically con-
trolled. Despite its optimal characteristics, this method does face some issues: the quality of the prints depends 
on the viscosity and the size of the droplet of the conductive  ink25.

In addition, in the case of multilayers antennas fabricated on commercial substrates not direct printable, 
the alignment step becomes difficult. This happens because it is necessary to perform two different printing 
processes on both faces of the same dielectric. This last case can be the case of metamaterial antennas designed 
on stretchable substrates.

In26 an example of a flexible antenna enhanced with a metamaterial has been reported. The antenna is com-
posed of a polyimide substrate with a top radiating element placed on a second substrate with a 3 × 3 array of 
metamaterial structures and a ground plane at the bottom. However, in this case, a precise alignment is not 
strictly necessary since the superstate needs only the metallization of its bottom surface. Moreover, the two layers 
are not fully integrated but are just placed on each other.

As a consequence, even though in literature there exist a huge number of antennas realized using GA, meta-
materials and inkjet printing, to the best of our knowledge, an antenna that exploits these three technologies 
jointly has not been reported yet.

The biggest issue to overcome is the lack of the rapid prototyping fabrication techniques on flexible substrates 
of a process characterized by multilayer printing with an optimal alignment between all the parts composing 
the antenna. In this work, we propose a flexible multilayer ink-jet printed evolved antenna. The stack is com-
posed of five layers (three metallic and two dielectric). The radiative layer (i.e. top layer) is designed by using a 
genetic algorithm in order to miniaturize its footprint. The gain is enhanced by a split ring resonator which acts 
as a metamaterial and, at the bottom, the ground plane is placed to minimize the back radiation. The working 
frequency is in the sub-6 GHz band of the 5G spectrum, in particular, around 4 GHz.

The metallic layers are fabricated by means of a multi-material 3D printer which requires a precise alignment 
process on a 250 μm Polyethilene Naphtalate (PEN) substrate. The dielectric layers are attached to each other by 
a Polydimethylsiloxane (PDMS) adhesive interlayer of 40 μm.

Finally, the antenna has been characterized in terms of the  S11 parameter and 2D radiation patterns by means 
of VNA. The paper is organized as follows: in “Genetic algorithm” we described briefly the principal steps of the 
GA, in “Antenna design and Split ring resonator”, the antenna design is reported, in “Fabrication” the fabrica-
tion steps are described, in “Characterization” the characterization of the prototype is detailed and, finally, in 
“Conclusion” conclusions are presented.

Genetic algorithm
The Genetic Algorithm first formalized  in27 is a robust global optimization method based on Darwinian laws. 
The process starts from an initial random binary population (parents) that evolves iteratively towards the opti-
mal solution under the selective influence of a cost function. The genetic algorithm works through eight main 
steps, as shown in Fig. 1.

(1) Encoding the problem is schematized as a function of general parameters. A single parameter is treated 
as a gene. Generally, binary values are preferable to be used for the genes. Their arrangement (i.e. all the genes) 
forms the chromosome which describes the partial solution.

(2) Initialization the initial population is generated. The set of trivial solution is composed of random 
chromosomes.

(3) Evaluation of the population at this step, the fitness function is applied to all the elements of the popula-
tion. At the end of this process, a direct correspondence between each chromosome and its relative fitness value 
is obtained, which quantifies the proximity of the trivial to the real solution of the problem.

(4) Chromosomes rank and selection process the chromosomes are grouped two by two. The selection can be 
performed randomly or by considering their fitness values.

(5) Crossover from each couple of chromosomes, the offsprings are generated. The descendants are created 
by mutual recombination of the genes of the initial chromosomes forming a new set of gene values starting from 
the parents.

(6) Mutation the set of trivial solutions is perturbated by the insertion of random variations which can speed 
up the convergence of the algorithm. Mutations can be applied to a single gene or multiple chromosomes and are 
strictly dependent on the nature of the problem. In general, the presence of mutations avoids stalling the solver 
in local minimum, however, a rate too high can degrade the performance.
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(7) Reordering the fitness function is evaluated as in step 3, on the new offspring. The population is then 
rearranged by eliminating the chromosomes with the worst fitness values.

(8) Loop statement the best fitness value is compared to the threshold value and if the condition is matched 
the algorithm stops, while otherwise the entire process is repeated from step 3.

Antenna design
Figure 2a reports the structure of the evolved antenna.

Figure 1.  Flowchart of the Genetic Algorithm.

Figure 2.  Sketches of the proposed antenna: (a) Exploded representation of the multilayer antenna, (b) top-
view of the evolved patch antenna. Software used: Rhino 6, https:// www. rhino 3d. com/ it/.

https://www.rhino3d.com/it/
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The antenna is composed of 5 layers: from the top, the patch radiating element (level 1) which is on a dielectric 
substrate (level 2), then the metamaterial split ring resonator (level 3) placed on a second dielectric substrate 
(level 4) and the ground plane (level 5).

The dielectric substrates, made of PEN, have a thickness of 125 µm, a dielectric constant of 2.9 and a loss 
tangent equal to 0.005. PEN presents very good properties as a substrate for flexible electronics: it is a transpar-
ent and low-cost material. It is also characterized by a very high heat shrinkage coefficient and good resistance 
to acids and  basis28,29.

Evolved patch antenna miniaturization. The miniaturization is carried out starting from a classical 
patch antenna operating at 6 GHz with a bandwidth of 50 MHz and a gain equal to 5.8 dBi. The classical patch 
antenna can be realized by using the algorithm detailed in Ref.30. However, it is not possible to control and engi-
neer the bandwidth or the gain of the device but only the geometrical parameters. Conversely, our optimization 
problem can be treated using a binary coding scheme, hence, the genetic algorithm is the most straightforward 
to be implemented. The geometrical parameters of the antenna (Fig. 2b) used in the simulation are listed in 
Table 1.

The simulations have been performed considering the substrate as a loss-free dielectric layer having thick-
ness equal to 125 µm.

The genetic algorithm implemented to miniaturize the antenna consists of the main steps described below.
(1) Encoding the encoding scheme used consists of subdividing the patch antenna into 32 pixels. A single pixel 

is treated as a gene and is encoded with a binary value, 1 if it is a metal pixel (yellow), 0 if it made of air (blue), 
as shown in Fig. 1b. Each pixel has a square form and an edge length of 2 µm.

(2) Initialization the starting elements are generated randomly. The population size is strictly linked to the 
nature of the problem and its degrees of freedom. By considering a huge population, it could be possible to obtain 
better results but at the cost of higher computational times; on the contrary, by using a small size for the popula-
tion the execution speeds up but the optimizer may get stacked in local minima. To minimize the convergence 
time avoiding the insurgence of partial solutions, the possible elements of the population can be restricted to 
delete pointless individuals. In this case, since the radiation efficiency is directly linked to the size of the radiating 
area, each element of the population must be made of metal in a percentage greater than 60%.

(3) Evaluation of the population the value of the cost function ( C
(

fR
)

 ) of each antenna is evaluated by calculat-
ing the resonance  fR and the corresponding impedance value Z(fR), by means of a finite difference time domain 
(FDTD) solver using the Eq. (1):

where  fc is the objective frequency equal to 4 GHz, δ represents the tolerance to the resonant frequency and 
Z(fR) is the value of the impedance assumed by the patch at its resonance. The exponential term assumes lower 
values when the resonance  fR is near to the objective frequency. In addition, this function takes into account the 
impedance of the resonant peaks in order to discard antennas having a value of the real part of the impedance 
far from 50 Ω.

(4) Chromosomes rank and selection process the elements of the population are then grouped two by two 
using a roulette selection process. The probability associated with the selection of the single element πi follows 
a Boltzmann distribution, hence is evaluated by means of Eq. (2):

where  ci is the value of the fitness function of the ith element of the population and β is a normalization factor 
equal to β =

1

N

∑

N

i=1
ci.

Elements characterized by a lower cost function, hence nearer to the final solution, result more attractive 
than the others; however, it is worth stressing that by using this selection process the probability of selecting the 
worse elements is not deprecated at all.

(5) Crossover two offsprings are then generated from each group by a single point cross-over.
(6) Mutation occasionally, a mutation event has occurred with a probability equal to 1%. The mutation cor-

responds to a variation of a single gene of an element of the population.

(1)C
(

fR
)

=

{

∣

∣50− Re
{

Z(fR)
}∣

∣e
−(fc−fR)

fc fc − δ < f < fc + δ

1000 otherwhise

(2)πi = e−βci

Table 1.  Geometrical parameter of the considered patch antenna.

Parameter Value (mm)

W 16.88

L 13.77

Fi 5.26

Wf 3.19

Wg 32

Lg 32
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(7) Reordering the cost function is evaluated for each element of the new population. The elements are then 
reordered in an ascendent order with respect to their costs. The latest elements are discarded, and the best value 
is compared with the threshold value of the algorithm to decide on the convergence of the solution.

(8) Loop statement the process is repeated starting from step 3 until the condition on the threshold is reached.
In our implementation, the algorithm converged after 12 iterations giving as result an evolved patch antenna 

with a footprint of 16.88 × 13.76  mm2 resonating at around 3.89 GHz with an  S11 dip of − 24.47 dB and a band-
width of about 14 MHz.

The realized gain at the resonant frequency is equal to -0.647 dBi. The reduction of the dimensions of the 
antenna and, more important, of the ground plane always leads to worse radiation properties; to improve the 
antenna radiation pattern a mu-negative metamaterial composed of a square split ring resonator has been added 
between the top and the ground  plane31.

Split ring resonator
The square split ring resonator is composed of two concentric etched split rings separated by a gap and having 
their apertures placed in the opposite direction (Fig. 3a).

The SRR behaves like an LC circuit as shown in Fig. 3b32. The value of the inductance LRING of each ring can 
be expressed as in Eq. (3):

D represents the gap between two rings, W is the ring thickness, R2 and R1 are the outer and inner radius of 
the rings, respectively.

As regards the capacitance, CRING represents the capacitance of the single ring while CGAP  the capacitance 
between the rings, respectively. CRING can be defined as in the following expression, Eq. (4)

where t is the thickness of the ring and G the aperture of the ring.
Finally, CGAP can be expressed as in Eq. (5):

A is an equilibrium constant.
By considering the geometrical parameters of the SRR, the resonant frequency f0 can be evaluated as in 

Eq. (6):

In this work, the geometry of the square split ring resonator has been properly designed to increase the gain 
at the working frequency of the antenna.

The geometrical dimensions of the square SRR are listed in Table 2.
After this procedure, the entire structure is composed of 5 layers as shown in Fig. 2a.
The results of the simulations are shown in Fig. 4.

(3)LRING =
µ0D

W
[R2+ R1]

(4)CRING =
ε0εr tW

G

(5)CGAP =
Aε0εrW(2R2+ 2R1− G)

2D

(6)f0 =
1

2π
√
LRING(CRING + CGAP)

≈
1

2π
√
LRINGCRING

Figure 3.  (a) Geometry and (b) equivalent circuit, of the SRR.
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In Fig. 4a the trend of  S11 parameter is shown; there is a dip of − 14.2 dB at 3.984 GHz with a bandwidth of 
about 15 MHz. The narrow-band could be increased by redesigning the cost-function of our algorithm or con-
sidering a circular  patch33. In Fig. 4b,c two different perspective of the 3D realized gain of the patch antenna at 
the resonant frequency are reported. The maximum value is equal to 1.89 dBi.

In Fig. 4d,e the radiation pattern in the E-plane and H-plane are reported, respectively. In particular, for the 
E-plane ( φ = 0

◦ ) the main lobe magnitude is equal to 1.89 dBi and the main lobe direction is equal to 3.0° with 
an angular width (3 dB) equals to 93.2°. Whereas the H-plane ( φ = 90

◦ ) the main lobe magnitude is equal to 
1.88 dBi and the main lobe direction is equal to 0° with an angular width (3 dB) equals to 92°.

It is worth stressing that with the insertion of the dielectric layer with an SRR, it is possible to observe an 
increase of the gain from –0.647 dBi to 1.89 dBi without modifying the footprint of the patch antenna. The 
directivity is equal to 6.48 dBi at the resonant frequency.

Table 3 shows a comparison between the 6 GHz starting patch antenna, the 4 GHz evolved one and the 4 GHz 
classical patch antenna.

The Genetic Algorithm allows to retain the starting patch antenna footprint (17 × 14  mm2) at a lower work-
ing frequency of 3.96 GHz. In comparison with a classical patch antenna at the same frequency (whose physical 
dimension are 27 × 22  mm2), we got a reduction in size of 60%. Besides, the evolved patch antenna presents a 
reduction in terms of gain and bandwidth, in line with the behaviour of miniaturized and electrically small 
 antennas34.

Fabrication
The designed antenna has been fabricated by means of NanoDimesion’s DragonFly LDM™ 3D printer.

During the fabrication process, a material jetting of conductive ink through hundreds of nozzles has been 
performed. In particular, the metallic parts are made of AgCite, which is an Ag nanoparticles-based ink. All the 
process has been realized at a temperature of 140 °C necessary for the ink curing and sintering. The starting point 
of the print process is a complex 2D schematic of the device that is imported as a Gerber file and then converted 
into a layer-by-layer print instruction for multi-material 3D printer. Figure 5 exploits the fabrications steps.

More in detail, at the first stage the patch has been printed and then, a backside automated alignment follows 
for SRR printing on the bottom side. In parallel, the ground plane is printed near to the self-aligned SRR (Fig. 5a). 
The radiating elements have a thickness equal to 35 µm; as a technological constraint, the metal thickness should 
be at least equal to 17 µm to guarantee perfect electrical conductivity. In Fig. 5b, the alignment step realized on 
PEN substrate is reported. The two dielectric layers are cut by means of a laser cutter (Universal Laser System 
vls2.30) and then are joined with an adhesive interlayer of around 40 µm of Polydimethylsiloxane (PDMS), as 
reported in Fig. 5c. It is worth pointing out that the choice of this elastomer guarantees the flexibility of the 
antenna. Finally, Fig. 5d,e show the fabricated prototype.

Characterization
The antenna has been characterized in terms of the scattering parameter  S11 and the radiation pattern.

The return loss has been measured by means of a Vector Network Analyzer (VNA, Anritsu MS46122B).
Figure 6a shows a comparison between the trends of the simulated (blue curve) and the measured (red curve) 

scattering parameter  S11.
In particular, it is possible to see a dip of − 14.2 dB at 3.984 GHz and a dip of -13.41 dB at 3.962 GHz for the 

simulated and the measured evolved patch antenna, respectively. There is a shift of few tens of MHz due to the 
introduction of a SMA connector which introduces a static capacitance, therefore increasing the electrical length 
of the  device35. Both curves present a dip around 4 GHz, the desired operating frequency, where the realized 
gain is equal to -0.8 dBi for the simulated antenna and -1.5 dBi for the fabricated one, when the losses are taken 
into account. Figure 6b,c show the measured 3D radiation patterns that are in agreement with the simulated 
ones (Fig. 4b,c). 2D polar plots and 3D radiation diagram were measured by means of the combination of an 
anechoic chamber (StarLab from Satimo) and a home-made setup. In Fig. 6d,e the measured radiation patterns 
for E-plane and H-plane are reported. For the planes ϕ = 0° and ϕ = 90°, there is a very good agreement between 
simulations (Fig. 4d,e) and measurements (Fig. 6d,e). Figure 6f shows the gain around the resonant frequency 
equal to 3.9 GHz: as it can be inferred by the plot, there is a good agreement between the numerical and experi-
mental results. As regards the efficiency shown in Fig. 6g, it is possible to note a higher value of the simulated 
one with respect to the measured one at the resonant frequency. It is worth stressing that this mismatch is due to 
multiple factors such as: the soldering of the connector, the presence of solvent mixed with the conductive part 
used in the 3D printing process and finally, the losses of the substrate at the resonant frequency that has been 
extrapolated from the lower frequencies value tabulated in the PEN datasheet (1 kHz-1 GHz) [Teonex Q51].

Table 2.  Geometrical parameters of the square SRR.

Parameter Value (mm)

R1 4.5

R2 3

W 1

D 0.5
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Figure 4.  (a) Simulated  S11 parameter of the multilayer antenna, (b) front perspective and (c) side perspective 
of 3D radiation patterns at 3.985 GHz; simulated polar plot for the plane (d) ϕ = 0° and (e) ϕ = 90°. Software 
used: figure a Matlab R2020a; (b–d) CST Microwave Studio 2021. https:// it. mathw orks. com/, https:// www. 3ds. 
com/ produ cts- servi ces/ simul ia/ produ cts/ cst- studio- suite/.

https://it.mathworks.com/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
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Conclusion
A multi-layer 3D-printed metamaterial-based evolved patch antenna has been presented. The genetic algorithm 
has proven to be a powerful method to optimize antenna miniaturization and the radiation properties have 
been improved with the insertion of the split-ring resonator. The fabrication protocol turns out to be very fast 
and capable of realizing antennas with a precise alignment step between the layers. The measurements of the  S11 
parameter and the radiation patterns are in agreement with the simulations. The main resonance of the fabri-
cated prototype is in the sub-6 GHz of 5G spectrum, showing a dip of  S11 parameter of − 27.41 dB at 3.962 GHz, 
with a bandwidth of 14.7 MHz. In case directivity and gain need to be enhanced, an array configuration of this 
patch can be implemented. We believe that the proposed approach could be a valid choice for the realization of 
compact, flexible and wearable IoT devices.

Table 3.  Comparison between a classical and the evolved patch antenna.

Classical patch antenna Evolved patch antenna

Working frequency 6 GHz 3.96 GHz

Electrical length 0.34�× 0.28� 0.22�× 0.18�

Bandwidth 50 MHz 15 MHz

Gain 5.8 dBi 1.89 dBi

Physical dimensions 17× 14mm
2

17× 14mm
2

Figure 5.  (a) Steps of the 3D printing process, (b) result of the alignment between patch and SRR and printed 
ground planes, (c) representation of the multilayer antenna with the interlayer of PDMS, (d) flat and (e) bent 
fabricated prototype with SMA connector. Software used: Rhino 6.
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Figure 6.  (a) Simulated (blue curve) and measured (red curve)  S11 parameter of the multilayer antenna, 
measured (b) front perspective and (c) side perspective 3D radiation patterns; polar plot at (d) ϕ = 0° and (e) 
ϕ = 90° at 4 GHz; simulated (blue curve) and measured (red curve) (f) gain and (g) efficiency of the evolved 
patch antenna. Software used: proprietary software by Starlab from Satimo 18 GHz anechoic chamber, https:// 
www. mvg- world. com/ en/ produ cts/ anten na- measu rement/ multi- probe- syste ms/ starl ab.

https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/starlab
https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/starlab
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Data availability
All the data supporting the results of this study can be found within the article or upon request from the cor-
responding authors.
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