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Robust model selection using 
the out‑of‑bag bootstrap in linear 
regression
Fazli Rabbi1, Alamgir Khalil1, Ilyas Khan2*, Muqrin A. Almuqrin3*, Umair Khalil4 & 
Mulugeta Andualem5*

Outlying observations have a large influence on the linear model selection process. In this article, we 
present a novel approach to robust model selection in linear regression to accommodate the situations 
where outliers are present in the data. The model selection criterion is based on two components, 
the robust conditional expected prediction loss, and a robust goodness-of-fit with a penalty term. 
We estimate the conditional expected prediction loss by using the out-of-bag stratified bootstrap 
approach. In the presence of outliers, the stratified bootstrap ensures that we obtain bootstrap 
samples that are similar to the original sample data. Furthermore, to control the undue effect of 
outliers, we use the robust MM-estimator and a bounded loss function in the proposed criterion. 
Specifically, we observe that instead of minimizing the penalized loss function or the conditional 
expected prediction loss separately, it is better to minimize them simultaneously. The simulation 
and real-data based studies confirm the consistent and satisfactory behavior of our bootstrap model 
selection procedure in the presence of response outliers and covariate outliers.

A variety of models are used in statistical modeling. Often the focus is to identify the single best model, which 
describes the data well while being parsimonious. The model selection procedure involves fitting a set of compet-
ing models and then selecting the best model by comparing the values of their goodness-of-fit statistics, their 
prediction loss, or both of these two. Several studies on model selection procedures have concluded that these 
methods depend on maximum likelihood-type or least squares approaches1–6 and are possibly affected by the 
presence of outlying observations in the data. Robust model selection methods aim to work well in situations 
when some of the observations are outliers and/or the error distribution is not normal. Several robust model 
selection procedures have been proposed in the literature. To cope with these problems in model selection, 
different approaches are proposed. Some of them are based on robust modifications of well-known standard 
criteria such as Akaike information criterion or Mallows’ Cp criterion, or on various resampling techniques, like 
bootstrap or cross-validation7–18. The main objective of this research work is to propose a modified version of19 
for model selection in the presence of outliers.

Suppose that we have a column vector of n responses Y= (y1, y2,..., yn)
T, and X is an n× p design matrix. 

Let α denote any subset of size pα from { 1 , 2 , . . . , p} , and let Xα is an n× pα matrix. Let xTαi denote the i th row 
vector of the design matrix Xα . Then the linear regression model corresponding to model α is given by

where Xα and εαi = (εα1, εα2,..., εαn)
T are independent, and the errors εαi are assumed to have location 0 and 

scale 1, βα is an unknown pα-vector of regression coefficients. Let A represent a collection of candidate models. 
The interest here is to select a model α from A based on the specified properties of the corresponding fit. To fit 
the linear regression model, the MM-estimator of20 was adopted, which combines excellent robustness properties 
along with high efficiency in the absence of outliers in the data. In model selection, three aspects are generally 
considered i.e., specifying an estimator, fitting models by using the specified estimator and finally, the fitted 
models are compared. Furthermore, for each of the models α the approach can be extended by considering 

(1)yi= xTαiβα+εαi , i = 1, 2, ...,n
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various types of estimators like LS-estimator, M-estimator, and MM-estimator etc. The models are indexed by 
α ∈ A and estimate βα by the estimator β̂α.

The following two minimal requirements for a good model are discussed by19:

	 (i)	 it has the capability to fit the sample data y and X reasonably well, and
	 (ii)	 it has the ability to predict future observations with great accuracy.

The ability of a model to fit the sample data y and X is measured by applying a penalized loss function and 
the expected prediction loss is used to measure the ability to predict future observations. It has been found in 
the literature that bootstrapping a robust estimator encounters some difficulties in the presence of outliers. For 
robust regression, an m-out-of-n paired bootstrap approach is proposed by12. Their study findings revealed that 
implementing the bootstrap procedure directly to a data set containing outliers, generally, fails due to two rea-
sons: (1) The use of ρ(x) = x2 , which is non-robust against outliers, and (2) the bootstrap samples may contain 
a high proportion of outliers as compared to the original data set. Müller and Welsh19 addressed both of these 
issues by using stratified bootstrap with appropriate choice of ρ(.) in the presence of outliers. Their approach 
ensured that one can obtain bootstrap samples that are similar to the sample data. According to their approach, 
bootstrap samples are constructed in such a manner that the residuals distribution for each bootstrap sample 
will reflect the relatively same residuals distribution observed in the original data. Their strategy seems to solve 
the issue well in practice.

Our objective in this paper is to pursue the investigation in19 and make some refinements, by utilizing the 
concept of out-of-bag bootstrap to develop a robust model selection criterion which deals with outliers and 
heavy tailed error distributions. The out-of-bag (OOB) observations are those which are not part of the bootstrap 
sample. These OOB observations can be used for estimating the prediction error, yielding the so-called OOB 
error. This type of error is often claimed to be an unbiased estimator for the true error rate21,22.

The rest of the paper is organized as follows: We discuss the existing robust model selection criteria in “Robust 
model selection criteria” section. Section “The proposed robust model selection criterion” describes a proposed 
robust model selection criterion. We show the performance of our modified robust criterion via simulation 
studies in “Simulation studies” section. We present a data examplein “Data example (Stack loss data)” section 
and conclude with a short discussion in “Conclusion” section.

Robust model selection criteria
In this section, we discuss the existing robust model selection criteria based on robust expected prediction loss. 
Consider a vector of n responses yi= (y1, y2,..., yn)

T and the design matrix X = (x1, x2,..., xn)
T . The conditional 

expected prediction loss of a model α for a given non- negative loss function ρ(.) is calculated by

where β̂α is the estimator of βα , z = (z1, z2,..., zn)
T is a vector of future responses at X, independent of y, and 

σ is the measure of spread for a given data. Initially, this type of prediction loss was introduced by5 as a model 
selection criterion by using a loss function ρ(x) = x2

2  in the least squares regression.
To select a model α from a set A,19 proposed the following criterion function

Following5,19 estimated the unknown distribution of the data by usingan m-out-of-n stratified bootstrap 
procedure, whereas the penalized in-sample term in (3) is estimated directly. The estimated selection criteria 
functions are given by

where β̂∗
α,m is the bootstrap estimate of β̂α , E∗ denotes expectation with respect to the bootstrap distribution 

and m is the number of distinct observations in the bootstrap sample which satisfies the conditions given by

The criterion function in (4) was modified by18 using the following steps:

	 (i)	 calculate and order the residuals,
	 (ii)	 set the number of strata S at between 3 and 8 depending on the sample size n,
	 (iii)	 set stratum boundaries of the residuals,
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	 (iv)	 allocate observations into different strata so that observations in the extreme tail are kept in lower or 
upper tail strata and other strata comprising the remaining observations,

	 (v)	 sample rows of (y,X) independently with replacement from each stratum so that total bootstrap sample 
of size is m (≤ n),

	 (vi)	 construct the estimator β̂∗
α,m from data obtained in step (v),

	 (vii)	 calculate the criterion function MPE∗
m,n (α) from n-m observations i.e., m observations used to obtain β̂∗

α,m 
are not included when calculating MPE∗

m,n (α),
	(viii)	 repeat the steps (vi) and (vii) K independent times and then estimate the modified robust expected 

prediction loss by

where β̂∗
α,m is the bootstrap estimate of β̂α , E∗ denotes expectation with respect to the bootstrap distribu-

tion and m is the number of distinct observations in the bootstrap sample used to obtain β̂∗
α,m and [-m] 

means that the m observations are excluded from total observations when calculating MPE∗
m,n (α) . Here 

the focus is on the model α ∈ A that minimizes MPE
m,n(α) , MPPE

m,n (α) or MPE∗
m,n (α) i.e.

The proposed robust model selection criterion
In this section, we propose a robust model selection procedure based on two components, a robust penalized 
loss function, and a modified robust expected prediction loss.

We estimate the penalized in-sample term in the criterion function by

where δ(n) denotes a function of sample size n. The two restrictions on function δ(n) are that δ(n) → ∞  and 
δ(n)
n → 0 as n → ∞ . The two restrictions on δ (n) are imposed to penalize complexity, which expresses a prefer-

ence for smaller and simpler models. These conditions are satisfied by the choice δ(n) = log (n) . We combine 
(6) and (10) to estimate the robust criterion function by

where β̂∗
α,m is the bootstrap estimate of β̂α , E∗ denotes expectation with respect to the bootstrap distribution and 

m is the number of distinct observations in the bootstrap sample. An important issue is “how large should the 
number of bootstrap replications K in our proposed criterion. There is no hard and fast rule for the number of 
bootstrap replications. However, for estimation of standard error, it is usually in the range of 25–25023. The first 
term in criterion function (11) measures the relationship between the observed sample data y and X; the second 
term penalizes complexity (i.e., preference for smaller models), while the ability to predict future observations 
is measured by the last term. To use (11), we have to specify ρ(.) and σ . The robustness viewpoint is adopted for 
the purpose of fitting the core of the data and predicting core observations, rather than fitting and predicting 
the tails having atypical observations. So a bounded ρ function is selected. Here, trimming is preferred, so that 
for sufficiently large |x| the ρ(x) function is constant.

As in11,14,18,19, the simplest ρ function is given by

which is quadratic near the origin and becomes constant when it is away from the origin. As in19, we use b = 2. 
To measure spread σ , we use the full model αf  , because for residuals spread, a large model can produce a valid 
measure. For simplicity, we measure σ by the median absolute deviation (MAD) from the median multiplied 
by 1.483 and is given by

where ei= yi − xTαf iβ̂αf , ej= yj −T
αf j

β̂αf and β̂α is the estimator for βα.
Among the models being considered, we select a model α ∈ A that minimizes MPPE∗
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The optimal m depends on the true model. As in14,19, one should use n/4 ≤  m ≤ n/2 for moderate n 
(50 ≤  n ≤ 200). If n is small, m is small and the parameter estimators do not converge for some bootstrap sam-
ples; but if n is large, m may be smaller than a fourth of n. Choosing the number of strata S at between 3 and 8, 
depending on the sample size n24.

The penalized loss function in the proposed criterion function, given in (10), is just like a robust version of 
AIC proposed by25,26. But the main difference is due to the ρ function and the estimator in our criterion. The 
penalized in-sample term in (11) is similar to the robust version of3. Furthermore, for ρ(x) = (x2), the penalized 
in-sample term was reduced to3 criterion.

Simulation studies
To assess and compare the finite sample performance of our proposed method with the existent model selection 
methods, we carried out two simulation studies, that is, one for contamination free dataset in a simulation setting 
1 and the other for the contaminated data set in a simulation setting 2.

Simulation setting 1.  The finite-sample performance of our proposed criterion is compared with existing 
model selection procedures via real dataset and simulated data set.

The Gunst and Mason data.  To compare the finite sample performance of our proposed method with the exist-
ent model selection methods through the real dataset, we use the following regression mode

where ui are iid standard normal errors;X0 is the column of 1’s; and the values of X1,X2,X3 and X4 are taken from 
the solid waste data of27, as in5,12,13,18,19. We compare the estimator α̂∗

m,n [expressed in (13)], with αm,n [expressed 
in (7)], α̃m,n [expressed in (8)], α̂m,n [expressed in (9)] and robust BIC ⌣αn [expressed in (14)],

In the zero contamination case, the least squares estimator is used to fit the regression models. The penalty 
term δ(n) = log(n) is used in all simulations. The estimated selection probabilities for α̂∗

m,n,αm,n,α̃m,n and ⌣αn based 
on the LS estimator and ρ(x) = x2 are mentioned in Table 1, whereas the estimated selection probabilities based 

(13)α̂∗
m,n = argmin

α∈A
MPPE∗

m,n (α)

Yi= β0Xi0+β1Xi1+β2Xi2+β3Xi3+β4Xi4+ui , i = 1, 2, ..., 40

(14)
⌣
αn = argmin

α∈A
MP

n(α)

Table 1.   Estimated selection probabilities of αm,n , α̃m,n , α̂m,n and α̂∗
m,n based on the least squares estimator 

and ρ(x2). The (*) indicates the optimal model. Significant values are in bold.

True βT Model

m = 15 m = 20 m = 25
⌣
α40α15,40 α̂15,40 α̃15,40 α̂∗

15,40 α20,40 α̂20,40 α̃20,40 α̂∗
20,40 α25,40 α̂25,40 α̃25,40 α̂∗

25,40

(2,0,0,4,0)

1,4* 0.943 0.972 0.928 0.958 0.875 0.943 0.876 0.925 0.770 0.903 0.814 0.896 0.835

1,4,5 0.010 0.006 0.013 0.009 0.024 0.014 0.030 0.018 0.042 0.023 0.038 0.027 0.046

1,3,4 0.019 0.010 0.021 0.011 0.050 0.014 0.044 0.023 0.100 0.038 0.075 0.039 0.046

1,2,4 0.028 0.012 0.036 0.022 0.046 0.029 0.046 0.032 0.069 0.034 0.060 0.036 0.057

1,3,4,5 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.005 0.001 0.004 0.001 0.004

1,2,4,5 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.004 0.000 0.005 0.000 0.009

1,2,3,4 0.000 0.000 0.001 0.000 0.003 0.000 0.002 0.000 0.008 0.001 0.004 0.001 0.003

1,2,3,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000

(2,0,0,4,8)

1,4,5* 0.965 0.978 0.955 0.972 0.907 0.948 0.914 0.939 0.838 0.910 0.866 0.914 0.877

1,3,4,5 0.013 0.007 0.021 0.010 0.043 0.019 0.039 0.025 0.077 0.041 0.063 0.040 0.054

1,2,4,5 0.022 0.015 0.024 0.018 0.048 0.031 0.045 0.035 0.071 0.045 0.060 0.043 0.063

1,2,3,4,5 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.001 0.014 0.004 0.011 0.003 0.006

(2,9,0,4,8)

1,4,5 0.013 0.022 0.005 0.007 0.002 0.012 0.001 0.003 0.000 0.000 0.000 0.003 0.000

1,2,5 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,3,4,5 0.001 0.003 0.001 0.001 0.004 0.005 0.001 0.003 0.004 0.005 0.001 0.003 0.001

1,2,4,5* 0.976 0.966 0.979 0.984 0.956 0.966 0.958 0.971 0.916 0.942 0.930 0.949 0.934

1,2,3,4,5 0.009 0.007 0.015 0.008 0.038 0.017 0.040 0.023 0.080 0.044 0.069 0.045 0.065

(2,9,6,4,8)

1,3,4,5 0.071 0.097 0.027 0.049 0.015 0.032 0.006 0.012 0.008 0.018 0.002 0.008 0.001

1,2,4,5 0.010 0.020 0.006 0.009 0.000 0.003 0.000 0.000 0.001 0.003 0.000 0.001 0.000

1,2,3,5 0.011 0.014 0.000 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2,3,4,5* 0.908 0.869 0.967 0.939 0.985 0.964 0.994 0.988 0.991 0.979 0.998 0.991 0.999
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on the LS estimator and ρ(x) = min(x2, b2) are given in Table 2. The results given in Tables 1 and 2 are based 
on L = 1000 simulations and K = 100 bootstrap samples for m = 15, 20, 25.

The simulation resultspresented in Tables 1 and 2 are summarized as follows:

•	 The performance of the modified model selection procedure using the least squares estimator is comparable 
to the existing methods αm,n , α̃m,n , α̂m,n and the BIC(⌣αn).

•	 The proposed selection criterion outperforms the existent procedures in both cases, i.e., either using the 
squared loss function ρ(x) = x2 or the robust loss function ρ(x) = min(x2, b2).

•	 For the full model, if bootstrap sample size m increases, the estimated selection probabilities also increase. 
For example, in the case of m = 15, the correct percent is 93.9%, whereas, for m = 25, the correct percent is 
99.1%.

•	 Moreover, model selection based on the robust loss function is superior to the squared loss function. For 
instance, in the case when the optimal model has all the predictors, then the modified model selection pro-
cedure α̂∗

15,40 using the squared loss function selects the optimal model 93.9% of the time, which is less than 
the 99.2% obtained by using a robust loss function.

•	 Furthermore, the modified selection criterion α̂∗
m,n is less dependent on bootstrap sample size m as compared 

to the existent criteria αm,n and α̃m,n.

Simulated data and model selection consistency.  To show model selection consistency and performance of the 
proposed criterion on simulated data, the following regression model with p = 5 is considered.

where εi is generated from standard normal distribution, the regression variables are generated from N(0, 1), 
and added an intercept column of 1’s to produce the design matrix X . To generate the response variable yi , we 
use Eq. (15).

The true data generating models are:

•	 β1 = (1, 0, 0, 1, 0) , i.e. the model had one nonzero variable,
•	 β2 = (1, 0, 0, 1, 1) , i.e. the model had two nonzero variables,
•	 β3 = (1, 1, 0, 1, 1) , i.e. the model had three nonzero variables and

The estimated selection probabilities for α̂∗
m,n , α̃m,n , α̂m,n and αm,n are calculated for m = 24 and 

n = 40,80,120,160, based on L = 1000 simulations with bootstrap replications of K = 50 and are tabulated in Table 3.

(15)yi = xTi β + εi , i = 1, 2, ..., n

Table 2.   Estimated selection probabilities of αm,n , α̃m,n , α̂m,n and α̂∗
m,n based on the least squares estimator and 

ρ(x) = min(x2, b2). The results are based on 1000 Monte Carlo simulations and K = 100 bootstrap replications. 
Significant values are in bold.

True βT Model

m = 15 m = 20 m = 25
⌣
α40α15,40 α̂15,40 α̃15,40 α̂∗

15,40 α20,40 α̂20,40 α̃20,40 α̂∗
20,40 α25,40 α̂25,40 α̃25,40 α̂∗

25,40

(2,0,0,4,0)

1,4* 0.897 0.971 0.879 0.929 0.800 0.927 0.832 0.902 0.672 0.846 0.781 0.885 0.839

1,4,5 0.028 0.010 0.028 0.021 0.053 0.021 0.045 0.028 0.077 0.046 0.056 0.032 0.043

1,3,4 0.029 0.010 0.029 0.018 0.071 0.018 0.057 0.027 0.116 0.054 0.076 0.037 0.047

1,2,4 0.042 0.009 0.042 0.029 0.060 0.031 0.054 0.039 0.094 0.046 0.065 0.039 0.055

1,3,4,5 0.001 0.000 0.001 0.001 0.006 0.001 0.004 0.001 0.013 0.003 0.007 0.002 0.004

1,2,4,5 0.002 0.000 0.002 0.002 0.005 0.002 0.006 0.002 0.011 0.002 0.009 0.004 0.009

1,2,3,4 0.001 0.000 0.001 0.000 0.005 0.000 0.002 0.001 0.012 0.003 0.006 0.001 0.003

1,2,3,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000

(2,0,0,4,8)

1,4,5* 0.934 0.981 0.918 0.957 0.860 0.951 0.875 0.933 0.781 0.893 0.835 0.909 0.878

1,3,4,5 0.023 0.010 0.032 0.017 0.065 0.021 0.057 0.029 0.098 0.052 0.075 0.040 0.055

1,2,4,5 0.043 0.009 0.050 0.026 0.068 0.028 0.061 0.038 0.100 0.049 0.077 0.050 0.061

1,2,3,4,5 0.000 0.000 0.000 0.000 0.007 0.000 0.007 0.000 0.021 0.006 0.013 0.001 0.006

(2,9,0,4,8)

1,4,5 0.000 0.005 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.002

1,3,4,5 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001

1,2,4,5* 0.979 0.989 0.972 0982 0.932 0.972 0.933 0.968 0.875 0.939 0.910 0.951 0.933

1,2,3,4,5 0.021 0.006 0.027 0.017 0.068 0.027 0.066 0.031 0.125 0.059 0.089 0.047 0.064

(2,9,6,4,8)

1,3,4,5 0.008 0.036 0.001 0.007 0.002 0.010 0.001 0.005 0.000 0.005 0.001 0.001 0.001

1,2,4,5 0.001 0.004 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

1,2,3,5 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2,3,4,5* 0.991 0.959 0.999 0.992 0.998 0.989 0.999 0.995 1.000 0.994 0.999 0.999 0.999
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From the simulation results presented in Table 3, we see that our proposed criterion is comparatively consist-
ent procedure for model selection in linear regression problems.

Simulation setting 2.  Simulated data from uniform distribution.  In this subsection, the finite-sample 
performance of our modified criterion is compared with existing model selection procedures in the presence of 
outliers. The sample data is generated from the following model

where the design matrix X has columns generated as uniform on [− 1, 1]. The following six different error dis-
tributions are considered:

	 i.	 ∈1 is [3/8] outliers (i.e., [5/8]from a standard normal and [3/8] from a normal with µ = 30− 2− 2x1 and 
σ = 1);

	 ii.	 ∈2 is [1/4] outliers (i.e., [3/4] from a standard normal and [1/4] from a normal with µ = 30− 2− 2x1 and 
σ = 1);

	 iii.	 ∈3 is [1/8] outliers (i.e., [7/8] from a standard normal and [1/8] from a normal with µ = 30− 2− 2x1 and 
σ = 1);

	 iv.	 ∈4 , the Gaussian distribution with μ = 0 and σ = 1;
	 v.	 ∈5 , the Cauchy distribution;
	 vi.	 ∈6 , the slash distribution(i.e. ∈6∼ Z/U  where Z ∼ N(0, 1) and U ∼ U(0, 1))

In Table 4, the following possible models are considered:

•	 Model (1) means, a model with intercept only;
•	 Model (1, 2) means a model having intercept and X1;
•	 Model (1, 3) means a model having intercept and X2;
•	 Model (1, 2, 3) means the full model.

Following19, the MM-estimator of20 is used to fit the robust regression models. For this purpose, the rlm ( ) 
function in R is used for estimating the regression parameters. Furthermore, the LS estimates are computed for 
comparison with MM-estimates. As mentioned by28, when the proportion of extreme observations in some of the 
bootstrap samples is higher than in the original sample, then the bootstrap distribution may provide a very poor 
estimator of the distribution of the MM-estimates. To deal with this numerical instability, we use the stratified 
bootstrap with equal-sized strata. In this approach, bootstrap samples are constructed so that the distribution of 
the residuals in each bootstrap sample reflects the one observed in the original data set. The selection probabilities 
based on L = 1000 simulations with bootstrap replications of K = 100 are given in Table 4.

yi = 2+ 2xi1 + 0xi2+ ∈i i = 1, 2, ..., 64

Table 3.   Selection probabilities of α̂∗
m,n , α̃m,n,α̂m,n and αm,n  based on LS-estimator and ρ(x) = min(x2, b2)

. The results are based on L = 1000 MC simulations and K = 50 bootstrap replications. Significant values are in 
bold.

True Model

m = 24, n = 40 m = 24, n = 80 m = 24, n = 120 m = 24, n = 160

α24,40 α̂24,40 α̃24,40 α̂∗
24,40 α24,80 α̂24,80 α̃24,80 α̂∗

24,80 α24,120 α̂24,120 α̃24,120 α̂∗
24,120 α24,160 α̂24,160 α̃24,160 α̂∗

24,160

(1,0,0,1,0)

1 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,4* 0.405 0.731 0.672 0.785 0.752 0.886 0.851 0.897 0.893 0.953 0.923 0.948 0.953 0.978 0.954 0.969

1,4,5 0.158 0.088 0.104 0.071 0.065 0.034 0.039 0.030 0.038 0.016 0.031 0.017 0.012 0.007 0.012 0.010

1,3,4 0.132 0.073 0.080 0.063 0.084 0.036 0.052 0.032 0.036 0.016 0.026 0.018 0.017 0.008 0.015 0.010

1,2,4 0.172 0.087 0.102 0.069 0.071 0.040 0.046 0.036 0.029 0.014 0.018 0.015 0.016 0.007 0.019 0.011

1,3,4,5 0.041 0.006 0.016 0.004 0.003 0.001 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2,4,5 0.048 0.008 0.014 0.004 0.015 0.002 0.009 0.003 0.002 0.000 0.001 0.001 0.001 0.000 0.000 0.000

1,2,3,4 0.025 0.004 0.010 0.002 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000

1,2,3,4,5 0.019 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(1,0,0,1,1)

1,5 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,4 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,4,5* 0.566 0.821 0.784 0.865 0.828 0.939 0.896 0.938 0.930 0.971 0.950 0.969 0.975 0.990 0.968 0.984

1,3,4,5 0.175 0.080 0.092 0.064 0.079 0.025 0.049 0.026 0.035 0.014 0.027 0.016 0.011 0.007 0.016 0.007

1,2,4,5 0.206 0.093 0.114 0.066 0.085 0.035 0.053 0.036 0.033 0.014 0.022 0.014 0.013 0.003 0.016 0.009

1,2,3,4,5 0.053 0.004 0.010 0.003 0.008 0.001 0.002 0.000 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000

(1,1,0,1,1)
1,2,4,5* 0.779 0.921 0.894 0.938 0.922 0.971 0.953 0.973 0.965 0.983 0.975 0.982 0.991 0.994 0.987 0.991

1,2,3,4,5 0.221 0.079 0.106 0.062 0.078 0.029 0.047 0.027 0.035 0.017 0.025 0.018 0.009 0.006 0.013 0.009
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From the simulation results presented in Table 4, it is clear that the modified selection procedure using the 
robust ρ(.) function and MM-estimator is robust in the presence of highly contaminated data. For example, the 
percent correct is 73.8% for un-stratified bootstrap, whereas the percent correct is 99.7% for stratified boot-
strap under the contaminated normal situation ∈1 . For all error distributions, the modified robust criterion 
outperforms the existence criteria. The simulation studies suggest that when errors are non-normal, then using 
robust regression is superior to using LS, but in the case of normal errors, robust regression is inferior to LS. 
Furthermore, in the presence of outliers and heavy-tailed error distributions, the modified robust criterion 
using MM-estimator outperforms LS-estimator by a large margin. For example, under ∈5 error distribution, for 
MM-estimator the percent correct is 96.9%, whereas, the percent correct is 13.4% for LS-estimator. These results 
demonstrate that the modified robust procedure has good robustness characteristics with contaminated normal 
and heavy-tailed distributions, whereas the LS procedure performs very poorly in both cases. This clearly proves 
the lack of robustness of the LS procedure in the presence of outliers and heavy-tailed distributions. An excellent 
amount of improvement is obtained in the bootstrap model selection procedure by using the combined criterion 
as observed in the above simulation study.

Modified solid waste data of Gunst and Mason.  To evaluate the performance of our proposed robust model 
selection method, we modified the Gunst and Mason data by planting 10% and 20% outliers. The response vec-
tor is generated as

where X0 is the column of 1’s; and the values of X1,X2,X3 and X4 are taken from the solid waste data of26. To 
create high-leverage points, we replace the first four to eight observations of each regressor variable value by 20. 
The true generating model has two non-zero predictors, i.e. βT= (2, 0, 0, 4, 8) and we choose the following five 
different error distributions to represent various deviations from normality:

	 i.	 ∈1 is 10% wild (i.e., 90% from a standard normal and 10% from a normal with, µ = 0 and σ = 0.7);
	 ii.	 ∈2 is 20% wild (i.e., 80% from a standard normal and 20% from a normal with , µ = 0 and σ = 5 ) ;
	 iii.	 ∈3.is t(3) (i.e., t-distribution with 3 degrees of freedom);
	 iv.	 ∈4 , is standard normal;

Yi= β0Xi0+β1Xi1+β2Xi2+β3Xi3+β4Xi4 + εi , i = 1, 2, ..., 40

Table 4.   Estimated selection probabilities of α24,64 , α̂24,64 , α̃24,64 and α̂∗
24,64 based on MM-estimator and 

LS-estimator. The outputs are based on 1000 MCsimulations and K = 100 bootstrap replications. The 
ρ(x) = min(x2, 22) is used for all selection criteria. Significant values are in bold.

Errors Model

MM-estimator LS-estimator

Simple bootstrap Stratified bootstrap Simple bootstrap

α24,64 α̂24,64 α̃24,64 α̂∗
24,64

αS8
24,64 α̂S8

24,64
α̃S8
24,64

α̂∗S8
24,64

α24,64 α̂24,64 α̃24,64 α̂∗
24,64

∈1

1 0.368 0.392 0.267 0.257 0.000 0.000 0.001 0.001 0.756 1.000 1.000 1.000

1,3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 0.000 0.000 0.000

1,2* 0.290 0.362 0.722 0.738 0.916 0.968 0.997 0.997 0.000 0.000 0.000 0.000

1,2,3 0.342 0.246 0.011 0.005 0.084 0.032 0.002 0.002 0.000 0.000 0.000 0.000

∈2

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 1.000 1.000 1.000

1,3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2* 0.935 0.968 0.983 0.986 0.886 0.958 0.978 0.984 0.001 0.000 0.000 0.000

1,2,3 0.065 0.032 0.017 0.014 0.0114 0.042 0.022 0.016 0.000 0.000 0.000 0.000

∈3

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000

1,3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2* 0.894 0.952 0.947 0.963 0.869 0.946 0.943 0.960 0.000 0.000 0.000 0.000

1,2,3 0.106 0.048 0.053 0.037 0.131 0.054 0.057 0.040 0.000 0.000 0.000 0.000

∈4

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2* 0.891 0.961 0.933 0.956 0.859 0.939 0.919 0.948 0.869 0.949 0.929 0.958

1,2,3 0.109 0.039 0.067 0.044 0.141 0.061 0.081 0.052 0.131 0.051 0.071 0.042

∈5

1 0.008 0.016 0.012 0.018 0.005 0.013 0.010 0.013 0.770 0.823 0.841 0.866

1,3 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000

1,2* 0.954 0.974 0.961 0.973 0.929 0.966 0.952 0.969 0.227 0.175 0.159 0.134

1,2,3 0.038 0.010 0.027 0.009 0.065 0.021 0.038 0.018 0.002 0.001 0.000 0.000

∈6

1 0.062 0.139 0.081 0.124 0.042 0.093 0.067 0.099 0.828 0.882 0.909 0.921

1,3 0.004 0.005 0.004 0.003 0.008 0.005 0.004 0.004 0.005 0.002 0.001 0.001

1,2* 0.885 0.842 0.882 0.855 0.879 0.878 0.892 0.875 0.164 0.116 0.090 0.078

1,2,3 0.049 0.014 0.033 0.018 0.071 0.024 0.037 0.022 0.003 0.000 0.000 0.000
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	 v.	 ∈5 , is Cauchy distribution with location = 0 and scale = 1.

The selection probabilities of αm,n , α̂m,n , α̃m,n and α̂∗
m,n on the basis of stratified bootstrap with the MM 

estimator are computed. The selection probabilities based on L = 1000 simulations with bootstrap replications 
of K = 50 are given in Table 5.

Table 5 demonstrates the simulation results with 10% and 20% of outliers in the covariates and five different 
error distributions as discussed in the simulation setting. If we look at the results, we see that the performance 
of our robust procedure is very good for ∈4 amongst all error distributions while it does not perform very well 
for ∈5 in the presence of x-outliers. The selection probabilities for error distribution ∈3 are similar to that of ∈4 . 
Furthermore, the selection probabilities are good for distribution ∈1 (10% symmetric wild case) as compared 
to contamination type ∈2 (20% symmetric wild case). Overall, the selection probabilities for each of the criteria 
decrease when the percentage of both x- and y-outliers goes up. Moreover, selection probabilities in the presence 
of response outliers and covariate outliers, the performance of our proposed model selection criterion based 
on MM-estimation is comparable to the existing criteria even when the contamination level changes from i.e., 
10% to 20%.

Table 5.   Estimated selection probabilities of αm,n , α̃m,n , α̂m,n and α̂∗
m,n based on MM estimator. The results are 

based on 1000 Monte Carlo simulations and K = 50 bootstrap replications. Significant values are in bold.

Errors True βT Model

10% X-outliers 20% X-outliers

α16,40 α̂16,40 α̃16,40 α̂∗
16,40

α16,40 α̂16,40 α̃16,40 α̂∗
16,40

∈1 (2,0,0,4,8)

1,5 0.002 0.004 0.002 0.002 0.008 0.034 0.007 0.018

1,4,5* 0.912 0.966 0.902 0.940 0.823 0.883 0.824 0.876

1,3,5 0.005 0.006 0.008 0.008 0.034 0.035 0.036 0.033

1,2,5 0.002 0.004 0.003 0.003 0.011 0.016 0.013 0.015

1,3,4,5 0.036 0.008 0.034 0.019 0.051 0.018 0.052 0.027

1,2,4,5 0.041 0.012 0.045 0.026 0.062 0.014 0.048 0.026

1,2,3,4,5 0.002 0.000 0.006 0.002 0.011 0.000 0.020 0.005

∈2 (2,0,0,4,8)

1,5 0.008 0.032 0.017 0.027 0.018 0.093 0.029 0.056

1,4,5* 0.606 0.793 0.684 0.781 0.531 0.714 0.642 0.717

1,3,5 0.021 0.030 0.033 0.033 0.034 0.039 0.038 0.046

1,2,5 0.013 0.028 0.016 0.021 0.019 0.017 0.021 0.022

1,3,4,5 0.091 0.027 0.072 0.041 0.110 0.039 0.085 0.046

1,2,4,5 0.255 0.089 0.170 0.94 0.282 0.098 0.179 0.109

1,2,3,4,5 0.006 0.001 0.008 0.003 0.004 0.000 0.001 0.001

∈3 (2,0,0,4,8)

1,5 0.004 0.021 0.003 0.007 0.026 0.077 0.027 0.055

1,4 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001

1,4,5* 0.887 0.929 0.886 0.920 0.807 0.815 0.817 0.824

1,3,5 0.015 0.022 0.019 0.021 0.052 0.053 0.057 0.052

1,2,5 0.010 0.012 0.013 0.017 0.032 0.028 0.031 0.030

1,3,4,5 0.045 0.012 0.042 0.018 0.042 0.013 0.030 0.017

1,2,4,5 0.036 0.0.03 0.032 0.014 0.039 0.012 0.034 0.018

1,2,3,4,5 0.003 0.001 0.005 0.003 0.002 0.001 0.003 0.003

∈4 (2,0,0,4,8)

1,5 0.001 0.004 0.001 0.002 0.005 0.019 0.008 0.015

1,4,5* 0.921 0.965 0.913 0.948 0.863 0.904 0.859 0.897

1,3,5 0.005 0.007 0.003 0.005 0.029 0.035 0.032 0.032

1,2,5 0.003 0.005 0.005 0.004 0.012 0.012 0.009 0.010

1,3,4,5 0.039 0.011 0.034 0.021 0.046 0.017 0.040 0.022

1,2,4,5 0.029 0.008 0.039 0.019 0.038 0.011 0.039 0.020

1,2,3,4,5 0.002 0.000 0.005 0.000 0.007 0.001 0.013 0.003

∈5 (2,0,0,4,8)

1,5 0.045 0114 0.050 0.081 0.162 0.274 0.162 0.251

1.4 0.001 0.002 0.001 0.001 0.007 0.018 0.009 0.011

1,4,5* 0.839 0.820 0.842 0.843 0.670 0.611 0.692 0.637

1,3,5 0.046 0.034 0.044 0.035 0.055 0.041 0.056 0.046

1,2,5 0.020 0.022 0.019 0.022 0.045 0.042 0.037 0.033

1,3,4,5 0.026 0.004 0.017 0.009 0.024 0.009 0.016 0.008

1,2,4,5 0.018 0.003 0.020 0.008 0.0028 0.005 0.019 0.013

1,2,3,5 0.002 0.000 0.003 0.000 0.007 0.000 0.007 0.000

1,2,3,4,5 0.003 0.001 0.002 0.001 0.002 0.000 0.002 0.001
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Data example (Stack loss data)
In this section, we analyze the Stack loss data presented by29. This dataset consists of three explanatory variables, 
and it contains four outliers,namely observations 1, 3, 4, and 21.The response is the Stack loss (y) observed on 
n = 21 observations. The explanatory variables are theFlow of cooling air (X1), Cooling Water Temperature (X2), 
and Concentration of acid (X3).We applied our robust method α̂∗

m,n , the existing methods, and the traditional 
methods on the data. Table 5 presents a summary of selected best models.

Table 6 shows the classical methodsselect the full model, whereas robust criteria agreed with the importance 
of the two variables, X1 and X2.The best model according to our criterion includes X1 and X2.

Conclusion
In this article, we have presented a novel procedure for robust model selection in linear regression. The crite-
rion is a modification to the bootstrap model selection method based on robust estimator proposed by19. The 
simulation results reveal that the performance of model selection is improved when using the OOB error in the 
present studies. Moreover, the undue effect of outliers is controlled by using both a robust MM-estimator and 
a bounded loss function in the proposed criterion. The proposed model selection criterion can maintain their 
robust properties in the presence of response outliers and covariate outliers. The proposed criterion is compared 
with other robust model selection criteria described in previous literature.

We observed that in the presence of outliers and heavy-tailed error distributions, the MM-estimator out-
performed the least squares estimator by a large margin. This clearly proved the lack of robustness of the least 
squares procedure in the presence of outliers and in heavy-tailed distributions. Furthermore, when errors are 
non-normal, then robust regression is found superior to least squares, but in the case of normal errors, robust 
regression is found inferior to least squares.

From simulation-based and real-data based results, we conclude that our modified robust model selection 
procedure is consistent and works well in situations where outliers are present in the data. As observed in our 
simulation study, an excellent amount of improvement is gained by minimizing the combined criterion, rather 
than minimizing the penalized loss function or the modified conditional expected prediction loss separately. 
Furthermore, our robust model selection criterion will perform better when the data generating model is small.
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