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Network structure 
from a characterization 
of interactions in complex systems
Thorsten Rings1,2*, Timo Bröhl1,2 & Klaus Lehnertz1,2,3*

Many natural and man-made complex dynamical systems can be represented by networks with 
vertices representing system units and edges the coupling between vertices. If edges of such a 
structural network are inaccessible, a widely used approach is to identify them with interactions 
between vertices, thereby setting up a functional network. However, it is an unsolved issue if and 
to what extent important properties of a functional network on the global and the local scale match 
those of the corresponding structural network. We address this issue by deriving functional networks 
from characterizing interactions in paradigmatic oscillator networks with widely-used time-series-
analysis techniques for various factors that alter the collective network dynamics. Surprisingly, 
we find that particularly key constituents of functional networks—as identified with betweenness 
and eigenvector centrality—coincide with ground truth to a high degree, while global topological 
and spectral properties—clustering coefficient, average shortest path length, assortativity, and 
synchronizability—clearly deviate. We obtain similar concurrences for an empirical network. Our 
findings are of relevance for various scientific fields and call for conceptual and methodological 
refinements to further our understanding of the relationship between structure and function of 
complex dynamical systems.

Over the years, network theory has gained recognition as a powerful tool for investigating complex dynamical 
systems in diverse areas of science including physics, earth and climate sciences, sociology, quantitative finance, 
biology, and the  neurosciences1–12. Assuming that a system can be decomposed into subsystems or units, the sys-
tem then can be described by a network of vertices—representing the units—and edges—representing couplings 
between units. Such a network—in the following referred to as structural network—can then be investigated 
using methods from graph theory that reveal information about its organization by means of characterizing 
topological and spectral properties as well as key constituents.

In many natural and man-made complex dynamical systems, access to couplings might be limited or even 
impossible. It is assumed, that in such cases, the aforementioned description of a system via a network is still pos-
sible when considering network edges as interactions between units. In order to derive such a functional network, 
interactions need to be characterized. This can either be achieved by some active perturbation experiments or 
by estimating properties of interactions from passive observations of the units’ dynamics. This ansatz has been 
applied, e.g., in the study of (functional) brain  networks3, climate  networks4, 13, protein–protein  interactions14, 
gene  interactions15, plant–pollinator  interactions16, 17, food-webs18, or communication and social  networks19, 20.

Properties of interactions—strength, direction, and (under some restrictive prerequisites) even the functional 
form of interactions—can be derived by fitting parameters of appropriate models to data (often with perturbation 
approaches) and to extract interaction-related parameters from the fits. When lacking an appropriate model, 
another way to estimate properties of interactions is to make use of one of various bivariate time-series-analysis 
techniques (based on, e.g., statistics, synchronization theory, information theory, or statistical physics; for an 
overview see Refs.21–28) applied to time series data. Then, revealing the structural network from a functional 
network can be regarded an inverse problem, which might not have a unique solution.

Multiple previous studies investigated to what extent structural networks can be reconstructed from data 
when utilizing modeling  approaches29–52 or time-series-analysis  techniques53–63. Most studies evaluated whether 
the presence or absence of edges in the structural network could be correctly identified from properties of inter-
actions—usually by applying some threshold to these properties. Since there are by now no commonly accepted 
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criteria for how to choose a  threshold10, 64–67, most approaches evaluate correct identifications over a range of 
threshold values. Some modeling-based  studies30–32, 36, 39, 42, 48, 63 assessed correct identifications by the relative 
or absolute differences between estimated model parameters and parameters of some simulated networked 
dynamics.

Studies predominantly reported a high—but not perfect—success in identifying edges. However, since failure 
to correctly identify even a single edge can drastically alter the appearance of a structural network (topologically, 
the difference between, e.g., a line and a ring of coupled units is just one edge), it remains unclear if the studied 
structural networks and the ones derived from data had a similar organization. In light of functional networks 
being used to characterize systems in  nature68–73, this ambiguity (and possible concomitant dissimilarities) might 
prove problematical in various situations.

Addressing this issue, we investigate if and to what extent the organization of a structural network—represent-
ing a complex dynamical system—can be revealed from interactions estimated from time series of the system’s 
dynamics using the functional network ansatz. Specifically, we examine whether a functional network carries the 
same information about this organization in well-known aspects of  networks74 on different scales. These aspects 
can be characterized on the global scale with clustering coefficient, average shortest path length, assortativity, 
as well as synchronizability and on the local scale with vertex and edge centrality measures that allow one to 
identify the key constituents of a network.

For the purpose of our investigation, we simulate networks of coupled non-linear oscillators with depend-
ence on a number of factors (e.g., coupling strength, paradigmatic and empirical coupling topologies). We relate 
oscillators to vertices of a functional network and derive its edges with two widely used linear and non-linear 
estimators for the strength of interactions (maximum-lag cross  correlation75 and mutual  information76) between 
time series of the oscillators’ dynamics. We then examine how the aforementioned aspects of functional and 
structural networks coincide. We find that particularly local aspects of functional networks match ground truth 
to a high degree, while global aspects deviate.

Results
Simulation of complex dynamical systems. We simulate systems of V non-linear oscillators coupled 
onto networks with paradigmatic topologies (random, scale-free, and small-world; “Methods”). The equation of 
motion reads

where xi(t) denotes the state vector of the system’s i-th elementary unit. The function fi(xi(t)) represents the 
dynamics of a Rössler oscillator, ε denotes the global coupling strength, and g

(

xi(t), xj(t)
)

 is the coupling 
function.

The networks are undirected, binary, and connected, and we refer to them as structural networks ( G s ). They 
are represented by adjacency matrices A∈ {0, 1}V×V , where each vertex i is associated with an oscillator. An edge 
between vertices i and j exists if and only if the corresponding oscillators are coupled. These are represented by 
entries Aij = 1 and uncoupled oscillators by Aij = 0 . Note, that for ε = 0 all oscillators are practically uncoupled 
even if structural networks would indicate a coupling according to Aij = 1 . We exclude self-loops with Aii = 0 ∀i.

In order to prevent synchronization for weakly coupled and uncoupled oscillators, we draw natural frequen-
cies randomly from N(1,�ω) . For 20 realizations of each of the paradigmatic topologies, we generate time 
series of observables for various global coupling strengths ε and various frequency inhomogeneities �ω . In the 
following, we set V = 50 if not mentioned otherwise.

Deriving functional networks. From theses time series, we derive functional networks G f  represented by 
weight matrices W∈ R

V×V
+  , where each vertex corresponds to an oscillator and an edge represents the strength 

of interactions between pairs of oscillators. Simulating typical investigations of empirical data, we estimate the 
strength of interaction between pairs of oscillators (i, j) employing commonly used time-series-analysis tech-
niques. Maximum-lag cross correlation σ75 is a linear estimator for synchronization and mutual information µ
76 also quantifies non-linear dependencies (“Methods”). Both these estimators are known to reliably assess the 
coupling strength from time-series  data77. Both estimators are confined to the interval [0, 1], where 0 indicates 
no coupling. For σ = 1 the two oscillators are lag-synchronized, while µ = 1 indicates the theoretical limit of 
information about an oscillator’s dynamics that one gains by observing the other. This maximum amount of 
information is achieved for identical time series with uniformly distributed amplitudes. By assigning values of σ 
(or µ ) to the elements of the weight matrix W , we derive a fully connected, undirected, and weighted functional 
network. In the following, functional networks derived with maximum-lag cross correlation are denoted by G f

σ  
and those derived with mutual information by G f

µ  . An element Wij then represents an edge weight in G f  and 
corresponds to an estimate of the strength of interaction—which in turn reflects coupling strength—between 
oscillators i and j. We set Wii = 0 ∀i to exclude self-loops.

Coupling strength, coupling topology, and eigenfrequencies of oscillators are known to alter the collective 
dynamics of oscillator  networks1, 2, 78, 79. Nevertheless, it is a priori not clear, how these control parameters influ-
ence estimates of the strength of interactions. More importantly, it can be expected that these (and other) control 
parameters also influence topological and spectral aspects of functional networks. Aspects that relate to the role 
of constituents in a network (e.g., involvement in shortest paths) are presumably influenced as well.

In Fig. 1, we report the influence of the aforementioned control parameters on the estimated strength of 
interactions (i.e., the edge weights). For all coupling topologies, strengths of interactions increase, on average, 

(1)ẋi(t) = fi(xi(t))+ ε

V
∑

j �=i

Aijg
(

xi(t), xj(t)
)

,
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with increasing coupling strength. This dependence is more pronounced for small frequency inhomogeneities 
�ω . Within the chosen range of coupling strengths, an edge weight derived with maximum-cross correlation 
approaches its theoretical upper limit ( σ = 1 ) for large coupling strengths. In contrast, an edge weight derived 
with mutual information attains about two thirds of its upper limit ( µ = 1 ). Despite this difference, we can 
subdivide the parameter space ( ε , �ω ) into three regimes of comparable ranges of edge weights.

• Regime I comprises low coupling strengths ( ε � 0.003 for σ and ε � 0.005 for µ ) and the full range of 
frequency inhomogeneities �ω with low edge weights corresponding to weak strength of interactions 
( 0 ≤ η ≤ 0.1 maxε,�ω(η) ; η = �σ � resp. η = �µ� ). In this regime, edge weights within a network vary weakly. 
Increasing ε only weakly increases edge weights.

• Regime II comprises intermediate coupling strengths ( 0.003 � ε � 0.006 for σ and 0.005 � ε � 0.008 for 
µ ) and the full range of frequency inhomogeneities �ω with intermediate edge weights corresponding to 
intermediate strength of interactions ( 0.1 maxε,�ω(η) < η ≤ 0.9 maxε,�ω(η) ). Here, the variability of edge 
weights is an order of magnitude larger compared to the other regimes. A small increase in ε results, on aver-
age, in a strong increase of edge weights.

• Regime III comprises high coupling strengths ( ε � 0.006 for σ and ε � 0.008 for µ ) and the full range of 
frequency inhomogeneities for σ resp. large frequency inhomogeneities ( �ω � 0.075 ) for µ . The regime 
corresponds to large and mostly similar edge weights ( 0.9 maxε,�ω(η) < η ≤ maxε,�ω(η) ). On average, 
increasing ε only marginally increases edge weights.

In the following, we present our findings obtained from investigating all pairs of structural and functional 
networks from a given regime (see section Miscellaneous in “Methods” for the number of pairs per regime). We 
exclude only those pairs of G s and G f  for which the corresponding oscillators exhibited oscillation/amplitude 
 death80.

To begin with, we show in Fig. 2 exemplary weight matrices corresponding to functional networks from the 
regimes together with the respective distributions of vertex strengths. Vertex strength is the sum of weights of 
edges connected to a vertex. For low coupling strengths, weight matrices are dominated by small edge weights 
with only rare entries of large weights, and correspondingly the distributions of vertex strengths center around 
small values. For intermediate coupling strengths, clusters of small numbers of vertices can be identified in the 
weight matrices, and the widths of distributions of vertex strengths are increased and centered around larger 
values. For high coupling strengths, entries of weight matrices are largely homogeneous, which leads to a seeming 

Figure 1.  Average strength of interaction between oscillators (Eq. 2), “Methods” for various coupling 
topologies, coupling strengths ε , and frequency inhomogeneities �ω . Strength of interaction estimated with 
maximumlag cross correlation σ (a) and with mutual information µ (b). Averages ( 〈σ 〉 resp. 〈µ〉 ) derived from 
all non-redundant pairs of oscillators in a given network (size V = 50 ) and from 20 realizations of network 
dynamics. For each realization of a coupling topology, initial conditions of oscillators were chosen randomly 
near the attractor. Coupling topologies are of random (left), scale-free (middle), or small-world type (right). 
Coupling strength ε was varied from 0 to 0.01 in steps of 0.0002 and frequency inhomogeneity �ω (width of the 
normal distribution of natural frequencies) from 0.025 to 0.2 in steps of 0.025. Outlined areas mark different 
regimes of coupling strengths (regime I: low, regime II: intermediate, and regime III: high). Black-colored 
pixels indicate parameter settings for which we only observed oscillation/amplitude death. Note, that the latter 
phenomenon is observed for high-degree nodes in networks with scale-free topologies. When increasing 
(decreasing) network size while keeping edge density constant, the borders between the regimes shift to lower 
(higher) coupling strengths and the distances between borders shrink (enlarge). Similar results can be expected 
for other types of oscillator  dynamics77.
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correspondence between adjacency and weight matrices. The widths of distributions of vertex strengths are 
further increased and center around even larger values.

Evaluating concurrence between networks: from global to local scale. Comparing networks is 
often based on the use of distance  metrics81–86. Available metrices, however, place strong assumptions on proper-
ties of networks (e.g., equal number of nodes or edge densities). In order to facilitate evaluating a concurrence 
between structural networks G s and functional networks G f  , we here employ measures that allow one to char-
acterize different aspects of networks from the global to the local scale.

On the global scale, we make use of global clustering coefficient C, average shortest path length L, assortativity 
A, and synchronizability S (“Methods”). C, L, and A characterize topological and S spectral aspects of a network. 
Specifically, C measures the tendency of vertices to cluster together, and L measures the distance that, on average, 
has to be traversed to reach any vertex starting from any other vertex. Assortativity A quantifies the tendency 

Figure 2.  (a) Exemplary adjacency matrices of networks with paradigmatic coupling topologies. Matrix entries 
Aij = 1 are represented by white pixels and Aij = 0 by black pixels. (b) Weight matrices of corresponding 
functional networks with edge weights from the three regimes (top: regime I, middle: regime II, bottom: 
regime III). Coloring of matrix entries ranges from black ( Wij = 0 ) to white ( Wij = 1 ). The plots on the right 
side depict the associated degree resp. strength distributions (kernel density estimates). The degree of vertex 
i is defined as νi =

∑V
i �=j Aij and its strength as si =

∑V
i �=j Wij . Colors indicate coupling topologies (magenta: 

random, mustard: scale-free, and cyan: small-world). Weight matrices and strength distributions were derived 
with maximum lag-cross correlation (upper triangle of matrices; solid lines) and with mutual information 
(lower triangle of matrices; dashed lines).
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of vertices to be connected to other vertices that share (dis-)similar  properties87, 88 (here, vertex degree for G s 
resp. vertex strength for G f  ), while S assesses the stability of a system’s synchronized  state89, 90. We consider the 
relative difference between the respective global measures �M = (Mf −Ms)/|Ms| (M denotes a placeholder for 
the measures and |·| indicates the absolute value) from G s and G f  and assume the respective network aspects 
to be similar if �M vanishes ( |�M| < 5%).

On the local scale, we employ two centrality concepts to characterize the role of network constituents within 
the larger network (“Methods”). Betweenness centrality is a path-based concept and highlights a constituent 
as central if it acts as a bottleneck in a network. Eigenvector centrality is a degree-/strength-based concept and 
this centrality highlights a constituent as central if it is connected to other central constituents. Instead of con-
sidering differences between the centrality estimates of constituents from G s and G f  , we proceed differently. 
First, we estimate the correlation (Spearman’s ρ ) between the ranked centrality values—for a given centrality 
concept—from G s and from G f  . To this end, we map constituents in G f  to constituents in G s . Since vertices 
in the networks are identical, the mapping is unique. For the calculation of the rank order of edges in G f  , we 
omit the ones that have no counterpart in G s . Second, we estimate the length of the shortest path d between the 
most central (highest centrality value) constituents in G s and G f  . To this end, we calculate d as the number of 
edges along the shortest path in G s between the most central vertex in G s and the mapped one from G f  resp. 
as the number of vertices between the most central edge in G s and the mapped one from G f  . For the latter, 
we omit pairs of G s and G f  for which the considered edge from G f  has no corresponding partner in G s . For 
d = 0 , most central constituents from G s and G s coincide, while for d = 1 ( d = 2 ) most central constituents 
are nearest (next-nearest) neighbors in G s.

In the following sections, we report on the observed concurrences of network aspects between the structural 
and functional networks on different scales—from the global to the local one. We then evaluate the impact of 
uncertainties encountered in field applications on concurrences. Eventually, we extend our observations to an 
empirical network.

Concurrences of global network aspects. As regards the topological aspects of the structural and func-
tional networks, we observe the global clustering coefficients C of G f  to mostly exceed those of G s (see Fig. 3; 
for reference, global network aspects of G s are listed in Table 1a). This holds true for a wide range of average 
strength of interactions, independent of the employed estimator for the latter, and for all coupling topologies. 
The relative differences between the respective global clustering coefficients �C only vanishes for small-world 
coupling topologies with low coupling strengths (regime I) and when G f  is derived with σ , which indicates 
the respective structural and functional networks to share a similar tendency for vertices to cluster together. 
Likewise, the average shortest path length L is mostly shorter in G f  , which can be attributed to the fact that 
functional networks are fully connected, by construction. Assortativity values of G f  based on random coupling 
topologies match the range of values of the corresponding structural networks G s independent of strength of 
interactions and of estimator for the latter. In contrast, G f  based on scale-free coupling topologies tend to be 
more assortative than their, on average, disassortative structural counterparts, while the opposite holds true for 
small-world coupling topologies. Again, these relationships are independent of strength of interactions and of 
the estimator for the latter. We conjecture, that the reported similarities and dissimilarities between the topologi-

Figure 3.  Relative difference �M of global network aspects depending on average strength of interactions. M 
is a placeholder for measures of global network aspects: global clustering coefficient C, average shortest path 
length L, assortativity A, and synchronizability S. Relative differences are averages derived from 20 realizations 
of network dynamics, and colors indicate types of coupling topology (magenta: random, mustard: scale-free, 
and cyan: small-world). Average strength of interaction estimated with maximum-lag cross correlation ( 〈σ 〉 ; 
top) and mutual information ( 〈µ〉 ; bottom; cf. Fig. 1). Vertical lines indicate borders between regimes I and II 
and between regimes II and III. For �S , we additionally indicate with the transparency of dots the correlation 
between eigenvalue spectra of the structural and the functional networks’ Laplacian matrices: solid dots indicate 
a Pearson correlation coefficient of larger than 0.98 and faded dots illustrate a lower correlation coefficient.
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cal aspects of structural and functional networks can be traced back—to quite a large extent—to properties of the 
weight distribution of G f  such as the width and central value (cf. Fig. 2).

As regards the spectral aspect of the structural and functional networks (see Fig. 3, Table 1), we find synchro-
nizability S of G s to be smallest for random coupling topologies and to be higher for scale-free and small-world 
 topologies91, 92. For G f  , S is strongly influenced by coupling topology as well as strengths of  interaction89. For 
G

f
σ  , �S vanishes for small-world coupling topologies with intermediate coupling strengths (regime II). For G f

µ  , 
�S vanishes for some cases of random topologies with low and intermediate coupling strengths (regimes I and 
II). While we also find vanishing �S for other coupling topologies, in these cases the eigenvalue spectra of the 
Laplacian matrices of G s and G f  differ strongly (see Fig. 4), which does not allow for a reasonable comparison 
of the synchronizability values. In contrast, we often observe eigenvalue spectra of G s and G f  to be similar but 
with non-vanishing �S for the regimes of low and intermediate coupling strengths. Independent of the estima-
tor used to derive G f  and of coupling topology, S of G f  converges to 1 for high coupling strengths (regime III), 
which is a direct consequence of properties of the weight distribution of G f  : for �µ� → 1 resp. �µ� → 0.65 , all 
edge weights are identical (cf. Fig. 2) and the eigenvalue spectra of the functional networks’ Laplacian matrices 
are degenerate.

Overall, our findings indicate structural and functional networks to clearly differ in their global aspects 
investigated here. The observed coincidence of the global clustering coefficients seen in about one sixth of 
structural networks with small-world coupling topology and their corresponding functional networks when 
coupling strengths are low (see Table 1b and c) may be attributed to the choice of the rewiring probability (here 
psw = 0.1 ). Thus, this coincidence should not be taken as an indicator for an equal tendency of vertices to cluster 
together. We note, that we obtained similar findings for networks composed of V = 25 or V = 100 oscillators.

Concurrences of local network aspects. On the next smaller network scale, we investigate whether the 
ranking of network constituents in G f  is congruent with the one in G s (see Fig. 5). For the networks investi-
gated here, we do not observe congruent rankings of the respective constituents.

Nevertheless, with the path-based betweenness centrality (Fig. 5a), we find (statistically significant) lin-
ear relationships ( 0.3 < ρ < 0.8 ) between rankings of the networks’ vertices for low to intermediate coupling 
strengths ( G f

σ  : border between regimes I and II; G f
µ  : most of regime I; see also Table 2). These relationships are 

most pronounced and seen more often for networks with random and scale-free coupling topologies. As regards 
the networks’ edges (Fig. 5b), there are at best weak associations between rankings independent of coupling 
strength and topology.

With the strength-based eigenvector centrality (Fig. 5c), relationships are in general less pronounced than 
with betweenness centrality but extend over most of the range of coupling strengths for networks with random 
and scale-free coupling topologies. Relationships seen for the networks’ edges compare to the ones seen for the 
networks’ vertices (Fig. 5d).

We conjecture that the observed relationships between the rankings of the networks’ constituents can be 
traced back, at least to some extent, to the width of the distributions of vertex degrees being more narrow for 
small-world coupling topologies compared to the other ones (cf. Fig. 2; note, that the mean degree is identical for 
all topologies). A more narrow degree distribution results in a more comparable dynamics among oscillators even 

Table 1.  Global network aspects of structural networks (a) and relative frequency of vanishing relative 
differences of global network aspects for G f

σ  (b) and for G f
µ  (c). (a) Median and range (in brackets) of 

measures of global network aspects (global clustering coefficient C, average shortest path length L, assortativity 
A, and synchronizability S) from 20 realizations of paradigmatic coupling topologies (small-world, random, 
and scale-free). (b) and (c) Percentage of pairs of a structural and a functional network for which absolute 
values of relative difference vanish (i.e., |�M| < 5% ; M denotes a placeholder for measures of global network 
aspects). The pairs are broken down according to the regimes of low (I), of intermediate (II), and of high 
coupling strengths (III).

(a) C L A S

Random 0.16 (0.13, 0.21) 2.06 (2.05, 2.08) −0.04 (−0.15, 0.08) 7.21 (5.70, 21.98)

Scale-free 0.34 (0.31, 0.45) 2.05 (1.97, 2.08) −0.13 (−0.28,−0.06) 11.00 (9.27, 13.39)

Small-world 0.48 (0.44, 0.55) 2.41 (2.32, 2.60) −0.02 (−0.15, 0.84) 12.5 (10.6, 18.1)

(b)

|�C| < 5% |�L| < 5% |�A| < 5% |�S| < 5%

I II III I II III I II III I II III

Random 0 0 0 0.1 0 0 0.5 0.7 0.6 1.3 5.7 0.8

Scale-free 0.8 0 0 0 0 0 0 0 0 2.5 7.4 0

Small-world 16.9 1.1 0 0 0 0 1.9 1.5 1.2 9.3 2.0 0

(c)

|�C| < 5% |�L| < 5% |�A| < 5% |�S| < 5%

I II III I II III I II III I II III

Random 0 0 0 0.3 1.2 0 0.8 0.8 0.8 2.9 3.7 0

Scale-free 0 0 0 0.4 1.4 0 0 0 0 0.3 1.9 0

Small-world 0 0 0 0.1 0 0 1.7 1.2 0 0.1 0.2 0
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for lower coupling strengths. This renders a distinction between constituents in G f  (in the sense of centrality) 
more difficult, thus leading to an ambiguous ranking of vertex and edge centralities in G f .

The weak association seen for the path-based edge betweenness centralities from G s and G f  indicates 
that—given our scheme of comparison—edges forming shortest paths in the fully connected G f  may not have 
counterparts in the sparse G s . These surplus edges, nonetheless, modify the collection of shortest paths in G f  
and, consequentially, impact on the rankings of the other edges. This impact is less pronounced in case of the 
strength-based edge eigenvector centrality.

We note, that the observed relationships depend on the size of the networks being more pronounced for 
smaller networks ( V = 25 ) and slightly less pronounced for larger networks ( V = 100).

Concurrences of most central constituents. Eventually, we investigate whether the most central (i.e., 
rank 1) constituent of a functional network G f  coincides with the most central one of the corresponding struc-
tural network G s . Interestingly, for network vertices (see Fig. 6a), we find coincidences with both vertex cen-
trality measures for all coupling topologies and for all but predominantly for low strengths of interactions (with 
both estimators for the latter). Coincidences are most often (up to 39% ) encountered for scale-free coupling 
topologies, followed by random and small-world topologies, and even for these cases, coincidences are encoun-
tered more often than to be expected by chance ( 2% ). Of note, if most central vertices do not coincide, we pre-
dominantly find them to be nearest or next-nearest neighbors in G s (chance levels for nearest neighbors: 16% 
for all topologies; chance levels for for next-nearest neighbors: 61% for random topologies, 63% for scale-free 
topologies, and 34% for small-world topologies).

As regards network edges (see Fig. 6b), we observe that the most central edge in G f  has no corresponding 
partner in G s in, on average, 40% of pairs of G s and G f . This rate is smallest for G f

σ  based on scale-free coupling 
topologies and when edge centrality is estimated with betweenness centrality ( 18% ). It is highest for G f

µ  based 
on random coupling topologies with and when edge centrality is estimated with eigenvector centrality ( 58% ). 
In the remaining cases, the frequency of coincidences is strongly reduced, but nevertheless still exceeds chance 
level ( 0.5% ). Again, coincidences are seen more often for scale-free coupling topologies, followed by random 
and small-world topologies. On average, more than half of the non-coinciding most central edges are nearest 
or next-nearest neighbors in G s.

A smaller size of the networks ( V = 25 ) results in a comparable number of coincidences for both vertices 
and edges, while we observed a reduced number of coincidences for larger networks ( V = 100 ), that still exceed 
chance levels.

Figure 4.  Exemplary eigenvalue spectra of Laplacian matrices of structural networks ( G s ; left column) and 
of corresponding functional networks ( G f

σ  ; middle and right columns). Middle column: G s and G f
σ  have 

comparable synchronizability S (relative difference between eigenratios �S < 5% ). Right column: G s and G f
σ  

have comparable eigenvalue spectra (Pearson correlation coefficient > 0.98 ). Similar findings were achieved 
with mutual information.
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Impact of noise. With an eye on field applications and given the various degrees of observed similarities 
between aspects of structural and functional networks, we evaluate how uncertainties in deriving the functional 
networks impact on these similarities. To this end, we simulate uncertainties of increasing severity q by add-
ing Gaussian distributed white noise to the entries of the weight matrices. Noise amplitudes were drawn from 
the normal distribution N(0, ηq) , where η denotes the average strength of interaction ( η = �σ � resp. η = �µ� ; 
cf. Fig. 1; q ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.} ). In order to facilitate a comparison between noise-free and noisy 
weight matrices, we limited noisy weights to the range of weights observed for noise-free cases. In the following, 
we restrict investigations to the regimes of low and intermediate coupling strengths (regimes I and II), i.e., the 
regimes for which we observed highest similarities between aspects of G s and G f .

For both the topological and spectral network aspects, we generally find similarities seen for the noise-free 
cases to worsen with increasing the severity of uncertainty. Dissimilar cases remained dissimilar and uncertain-
ties did not positively affect these cases. As regards assortativity A, for functional networks based on small-world 

Figure 5.  Spearman’s rank correlation coefficient ρ of vertex (a,c) resp. edge (b,d) centrality values between 
structural and functional networks depending on average strengths of interaction (derived with either 
maximum-lag cross correlation σ or mutual information µ ). Rankings are based on either betweenness 
centrality (a,b) or eigenvector centrality (c,d). Vertical lines indicate borders between regimes I and II and 
between regimes II and III, and grey-shaded areas indicate critical values of ρ for a significance level of 
α = 0.05 (calculated from Student’s t-distribution93). Each data point is an average over 20 realizations with 
identical control parameter settings and randomized initial conditions near the attractors of the systems. Semi-
transparent black lines are moving averages of ρ derived from an equidistant binning of the range of average 
strength of interactions (20 bins; lines are for eye-guidance only).
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or scale-free coupling topologies A takes on values seen for random coupling topologies when increasing the 
severity of uncertainty.

We obtained comparable findings for the relationships between rankings of centralities of network constitu-
ents. Increasing the severity of uncertainty above one fifth of the average strengths of interactions obfuscates 
previous statistically significant relationships in the majority of cases.

Interestingly, on the level of most central network vertices but not edges, we find coincidences to be largely 
unaffected by the same range of uncertainties. This holds true particularly for strengths of interactions from 
regime I and if estimated with maximum-lag cross correlation. Coincidences remained in a similar range of 
uncertainties, however, for random and scale-free coupling topologies only if strengths of interactions were 
estimated with mutual information.

Empirical network. We use a small cell network of a P. pacificus  nematode94 as a structural network G s
emp 

and as before derive functional networks G f  from time series of oscillators coupled onto G s
emp . The network 

comprises V = 50 vertices and E = 141 edges (average vertex degree �ν� = 5.64 ) with a topology that deviates 
from the other employed topologies (cf. Figs. 2a, 7a): it is neither random nor entirely regular and has a large 
fraction of vertices with small vertex degree as well as rare vertices with a high vertex degree without exhibiting 
a scale-free degree distribution.

Notably, we observe oscillation/amplitude death for coupling strengths ε ≥ 0.0265 , which we assume to be 
caused by the specific topology (in combination with a preset frequency inhomogeneity of �ω = 0.125 ). This 
limits the maximum of the estimated strength of interactions to max(�σ �) = 0.29 resp. max(�µ�) = 0.18 (see 
Fig. 7b) and, consequently, we restrict our following investigations to the regimes of weak and intermediate 
coupling strengths (regimes I and II; “Methods”).

On the global scale, we again find topological and spectral aspects of functional networks to deviate from 
ground truth. The global clustering coefficient C of G s

emp ( C = 0.33 ) is exceeded by the ones of G f
σ  (on average, 

�C = 92% ) and of G f
µ  (on average, �C = 58% ). The average shortest path length L of G s

emp ( L = 2.47 ) either 
exceeds the one from G f

σ  (on average, �L = −70% ) or falls below the one from G f
µ  (on average, �L = 144% ). 

Regarding assortativity A, G s
emp is assortative ( A = 0.19 ; it exceeds the range of values [−0.21, 0.16] expected 

for random networks with the same number of vertices and edges), while assortativity values of G f
σ  and of 

G
f

µ  are smaller (on average, �A = −48% resp. �A = −67% ). The synchronizability S of G s
emp is unexpectedly 

large ( S = 48.9 ; see Table 1 for comparison) and is generally larger than the ones of G f
σ  and of G f

µ  (on average, 

Table 2.  Percentage of pairs of structural and functional networks for which the rank orders of vertex 
resp. edge centrality values are positively correlated (Spearman’s ρ ; p < 0.05). Rankings are based on either 
betweenness centrality or eigenvector centrality. Upper part: functional networks G f

σ  derived with maximum-
lag cross correlation; lower part: G f

µ  derived with mutual information . The pairs are broken down according 
to the regimes of low (I), of intermediate (II), and of high coupling strengths (III). We highlight cases in bold 
for which percentages exceed 66.6%.

G
f
σ

Betweenness centrality

Vertex Edge

I II III I II III

Random 73.6 44.5 0.1 58.7 19.4 10.4

Scale-free 86.4 80.9 0.2 75.7 48.9 0.8

Small-world 31.3 26.3 0.0 67.3 23.8 0.1

G
f
µ

Betweenness centrality

Vertex Edge

I II III I II III

Random 44.1 6.3 0.0 19.6 4.5 0.0

Scale-free 77.7 9.9 0.0 9.1 2.5 0.0

Small-world 8.6 9.6 0.0 16.6 1.6 0.0

G
f
σ

Eigenvector centrality

Vertex Edge

I II III I II III

Random 53.6 77.5 53.2 78.5 82.3 71.7

Scale-free 81.6 95.2 42.2 86.9 98.4 64.8

Small-world 22.2 41.1 16.7 52.5 60.3 46.4

G
f
µ

Eigenvector centrality

Vertex Edge

I II III I II III

Random 52.4 58.1 17.6 61.6 73.1 52.4

Scale-free 72.0 74.1 13.7 75.2 84.3 47.4

Small-world 22.3 33.4 3.2 49.0 48.1 39.4
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�S = −60.9% resp. �S = −89.7% ). We conjecture that this particularly large synchronizability is the reason, 
why we encounter oscillation/amplitude death for larger coupling strengths.

On the local scale, we find significant linear relationships of betweenness-centrality- and eigenvector-central-
ity-based rankings ( 0.3 < ρ < 0.92 ) of vertices between G s

emp and G f  for both low and intermediate coupling 
strengths (see Fig. 7c,d). For edges, there are again at best weak associations between these rankings. Overall, 
the relationships are largely independent of the estimators used to derive functional networks as well as of the 
centrality measure used to rank constituents, and they generally compare to the ones seen for structural networks 
of scale-free type.

Figure 6.  (a) Schematic of estimating the distance d between the most central constituents—here vertices—
from a structural network G s and from a functional network G f . The coloring of a vertex indicates the distance 
between the most central vertex in G s and the most central one from a given realization of G f mapped onto 
G

s . Coinciding most central constituents ( d = 0 ) are shown in black, most central constituents being nearest 
neighbors ( d = 1 ) in orange or being next-nearest neighbors ( d = 2 ) in pink. More distant central constituents 
are colored dark blue ( d = 3 ) or lightblue ( d ≥ 4 ). (b,c) Stacked histograms of the relative frequency of distances 
between the most central vertex (b)/edge (c) from G f and the most central constituent from the corresponding 
G

s depending on average strength of interactions. Coloring as in (a). Hatched bars indicate functional networks 
G

f , for which a most central constituent could not be identified unambiguously. Black vertical lines between 
the bars indicate borders between regimes I and II and between regimes II and III.
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The most central constituents of G f  coincide with the most central ones of G s
emp either more frequently 

( ≈ 50% of pairs G s
emp and G f

σ  for low coupling strengths when vertices are ranked with betweenness centrality; 
see Fig. 7d) or less frequently (other cases) than observed for the paradigmatic coupling topologies (cf. Fig. 6).

Non-coinciding most central vertices and edges of G f
σ  resp. G f

µ  are also predominantly nearest or next-
nearest neighbors to the most central ones from G s

emp.

Discussion
Knowledge about the organization of a structural network representing a complex dynamical system is criti-
cally important to gain deeper understanding of the system’s dynamics, thereby providing improved means for 
prediction and control. In many natural and man-made systems, however, access to this organization is usually 
limited due to various reason. In these cases, an alternative approach is to resort to analyzing interactions between 
system units to draw conclusions about the organization of a structural network. Despite some progress in this 
active field of research, there are still problems that evade from a satisfactory solution and it remains unclear if 
and, particularly, to what extent this organization can be revealed.

To tackle this issue, we simulated oscillator networks with preset (paradigmatic and empirical) coupling 
topologies—i.e., structural networks—and derived functional networks from interactions estimated from time 
series of the oscillators’ dynamics under idealized conditions. We then evaluated to which extent topological 
and spectral aspects (global scale) as well as key constituents (local scale) of functional networks carry the same 
information as structural networks.

Figure 7.  Concurrences of local aspects between an empirical structural network G s
emp (cell network of 

P.  pacificus94) and functional networks G f derived from time series of oscillators coupled onto G s
emp . (a) 

Adjacency matrix of G s
emp . (b) Average strength of interaction between oscillators for various coupling 

strengths ε . Strength of interactions estimated with maximum-lag cross correlation σ (brown triangles) and 
with mutual information µ (red dots). Each data point is an average over 20 realizations with identical control 
parameter settings and randomized initial conditions. Coupling strength was varied from 0 to 0.05 in steps of 
0.00125 (cf. Fig. 1; frequency inhomogeneity �ω = 0.125 ). Hatched area indicates range of coupling strengths 
for which oscillation/amplitude death occurred. (c) Spearman’s rank correlation coefficient ρ of vertex (top) and 
edge (bottom) centrality values between G s

emp and G f depending on average strength of interaction ( σ : brown 
triangles; µ : red dots). Otherwise, same as Fig. 5. (d) Relative frequency of distances between the most central 
vertex (top) and edge (bottom) from G f and the most central constituent from G s

emp depending on average 
strength of interaction. Otherwise, same as Fig. 6b,c.
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On the global scale, we observed topological aspects of functional networks—clustering, properties of shortest 
paths, and assortativity—to strongly deviate from ground truth. Possible information about the structural net-
works’ topological organization was largely obfuscated by different edge densities (complete vs. sparse networks) 
as well as by excessive clustering of vertices in functional networks. This deviation was mostly independent of 
properties of the coupling, of properties of the oscillators’ eigendynamics, and of uncertainties in deriving func-
tional networks from data. We observed exceptions for assortativity of random coupling topologies but these 
were to be expected. Problematically, topological aspects have been repeatedly used to characterize natural and 
man-made systems in the  past68–73 and have already been shown to be sensitive to a number of influencing fac-
tors, such as, e.g., constraints on the  spatial95–97 and  temporal98 sampling of a system.

Spectral aspects based on Laplacian matrices of functional networks, on the other hand, often conformed 
to the ones of structural networks when taking the matrices’ full eigenvalue spectra into account. Yet, typically, 
only synchronizability (the ratio of largest and smallest non-vanishing eigenvalue) is  investigated99–101 due to its 
direct interpretation as an indicator for the stability of a networked dynamical system’s synchronized  state89, 90. 
Synchronizability of functional networks, however, was only rarely similar to the ones of structural networks. 
Future research might also consider the often disregarded full eigenvalue spectrum of the Laplacian matrix to 
provide deeper insights into the dynamics of a complex  system102.

On the local scale, we observed aspects of functional networks to frequently conform to ground truth. This 
was particularly true for key constituents, namely most central vertices and edges. The contribution of vertices 
to the networks’ shortest paths were similar between functional and structural networks (significant rank cor-
relation between betweenness centrality values) for weak to intermediate coupling strengths. We also observed 
rankings of eigenvector centralities for vertices and edges to be correlated for an even wider range of coupling 
strengths. These relationships point to a backbone-like structure in the functional networks which resembles the 
structural networks to a high degree. However, congruencies differed strongly for different coupling topologies: 
the more narrow the degree distribution of the structural networks (most narrow for small-world topologies 
and widest for scale-free topologies), the weaker was the observed congruence. Large uncertainties in deriving 
functional networks from data lessened these congruencies.

Besides coupling strength and coupling topology, other influencing factors impacted only weakly on possible 
relationships between global and local scale aspects of functional networks and ground truth. Concerning the 
estimator for the strength of interaction to derive functional networks, relationships were, on average, slightly 
weaker for mutual information in comparison to those for maximum-lag cross correlation. This minor difference 
can most probably be related to the only weak non-linearity and (linear) diffusive couplings of the employed oscil-
lators for which the estimators have different  sensitivities77. Consequently, congruencies between structural and 
functional networks might also differ with other types of oscillators, but in general we expect similar  findings77.

Regarding network size, there was a tendency for local aspects of smaller functional networks to conform 
more strongly to ground truth than larger networks. On the one hand, this might be related to the fact that for 
smaller networks there are less network constituents and, consequently, fewer chances to falsely assign centrality 
ranks—or to misidentify a key constituent—in functional networks. On the other hand, we introduced more 
(less) couplings between oscillators with larger (smaller) network sizes since we kept the edge density in the 
structural networks constant. Given our choice of other control parameters of the couplings, this might result in 
different dynamics among oscillators. Together, this hinders a thorough evaluation of the impact of the network 
size on the extent to which local aspects of the organization of a structural network can be revealed with the 
functional network ansatz. Such an evaluation would need to be carried out in future studies.

Summarizing our findings, local aspects of the organization of structural networks—representing complex 
dynamical systems—could be revealed from interactions estimated from time series of the systems’ dynamics 
to a large extent for various conditions, while global aspects could not. A comparison of our findings with those 
from related  studies29–63 is only possible to a limited degree since studies largely focused on identifying edges 
of structural networks. Given that many of theses studies reported non-perfect degrees of success in this task, 
it is to be expected that functional and structural networks do not coincide in all aspects. Indeed, our results 
for the global scale corroborate this expectation. Surprisingly, however, local aspects—such as the contribution 
of vertices to shortest paths and the ranking of highest-rated network constituents—still showed high accord-
ances between functional and structural networks. Detailed knowledge about such local aspects might be more 
informative than global aspects, particularly for field-data analysis.

We conjecture that further improvements can be achieved with surrogate approaches for functional net-
works. While such approaches are typically based on the preservation of degree or strength distributions of 
 networks103–110,future development of surrogate networks designed to preserve more complex aspects of net-
works (such as the constituents’ contributions to shortest paths and the eigenspectra of the networks’ Laplacian 
 matrices111) might substantially improve the characterization of a structural network’s organization. Similarly, 
further improvements might be achieved by refining time-series-analysis techniques. While there are techniques 
designed to weaken the adverse effect of indirect interactions (e.g., excessive clustering of vertices or transitivity) 
in characterizing properties of pairwise  interactions112–120, their effectiveness was reported to be limited for larger 
 systems121. Recent research into, e.g., higher-order  interactions122–124 and dynamical interaction  mechanisms125, 126 
might stimulate the development of more appropriate time-series-analysis techniques.

With our investigations, we evaluated how well local and global aspects of structural networks can be revealed 
from properties of interactions, which are derived from time series data. By considering the mesocopic  scale127–133 
as well as time-dependent changes of  networks134–136, future studies could add to our understanding of the rela-
tionship between structure and function of complex dynamical systems.
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Methods
Oscillator networks. We generate time series of observables from V Rössler  oscillators137, 138 diffusively 
coupled onto networks with complex coupling topologies

where the oscillators’ natural frequencies ωi are drawn from a normal distribution N(1,�ω) with a mean of 1 and 
standard deviation �ω . For reference, �ω is termed frequency inhomogeneity. Control parameters are chosen 
so that the Rössler oscillators exhibit chaotic motion if uncoupled. We increase global coupling strength ε from 
0 to 0.01 in steps of 0.0002 and frequency inhomogeneity �ω from 0.025 to 0.2 in steps of 0.025. A∈ {0, 1}V×V 
denotes the adjacency matrix representing the structural network. Aij = 1 if and only if oscillators i and j are 
coupled, and 0 otherwise. On average, each oscillator is directly connected to �ν� = 1

V

∑V
i,j Aij oscillators ( 〈ν〉 

denotes the mean degree). For our investigations, �ν� = 8 for networks of V = 50 vertices and E = 400 edges. 
For other sizes ( V = 25,V = 100 ), we keep the edges density constant (i.e., �ν�/(V − 1) = const. ) and change 
the range of coupling strengths while keeping the range of frequency inhomogeneity. For V = 25 , we increase ε 
from 0 to 0.04 in steps of 0.0008, and for V = 100 , we increased ε from 0 to 0.0025 in steps of 0.00005.

Coupling topologies are of

• random  type139; probability for an edge to exist pr = 0.033 . We require E = �ν�V/2;
• scale-free  type140; preferential attachment with initial number of vertices m0 = �ν� + 1 and growth parameter 

of m = �ν�/2;
• small-world  type141; each vertex is connected to 〈ν〉 nearest neighbors with cyclic boundary conditions; edge 

rewiring with probability psw = 0.1.

With initial condition near the attractor, Eq. (2) is integrated with the Runge-Kutta-Fehlberg method with an 
adaptive step size and a sampling interval of 1. After discarding 2 · 104 transients, we collect time series ui(t) , 
i = 1, . . . ,V  , of the x-component of oscillators for t = 1, . . . ,T , where T = 2 · 104 is the number of time steps. 
Time series contain at least 2000 oscillations of the slowest oscillator.

Estimators for strength of interactions. Maximum-lag cross correlation. The (normalized) maxi-
mum-lag cross-correlation function between two normalized (zero mean and unit variance) time series ui(t) 
and uj(t) can be defined  as77

using the linear cross-correlation function

and where τ denotes the time lag. σij is confined to the interval [0, 1] with high values indicating that the two 
time series have a similar course in time (though possibly shifted by τ ) while dissimilar time series will result 
in values close to zero.

Mutual information. An estimator for the mutual information between two normalized (zero mean and unit 
variance) time series ui(t) and uj(t)

which is based on equidistant binning, can be defined  as76, 77

where κk ( κl ) approximates the probability pui (k′) ( puj (l′) ) by the relative frequencies of occurrence of values of 
ui ( uj ) in bin k (l) of the equidistantly partitioned range of ui ( ul ). Similarly, κk,l approximates the joint probability 
p(ui ,uj)(k

′, l′) . We normalize µij with respect to the maximum value that can be achieved for identical systems and 
given the time series’ length T and the number of bins Q (we here use Q = 40 bins). µij is thus confined to the 

(2)
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interval [0, 1] with high values indicating that the two time series have a similar course in time while dissimilar 
time series will result in values close to zero.

Global network aspects. In the following, the subscript s resp. f  indicates measures used for our (binary) 
structural networks resp. (weighted) functional networks.

Global clustering coefficient. The global clustering coefficient measures the tendency of vertices to cluster 
together. For binary networks consisting of V vertices, we follow Ref.141 and define the global clustering coef-
ficient as:

where U(i) is the number of triangles of three mutually connected vertices including vertex i, and νi is the degree 
of vertex i ( νi =

∑V
j=1 Aij , where Aij are elements of the adjacency matrix).

Following Refs.142  and104, the global clustering coefficient of a weighted network can be defined as:

where W is the weight matrix of the network, whose entries Wij are the edge weights.
To further facilitate the comparison between the binary structural networks and the weighted functional 

networks, we also normalize the global clustering coefficient C′
f  for weighted networks by the mean edge weight 

W= 2
V(V−1)

∑V
i

∑V
j=i+1 Wij:

Average shortest path length. The average shortest path length measures the typical separation between two 
vertices. For binary networks, the length ψij of a shortest path between a pair of vertices (i, j) is the minimum 
number of edges that have to be traversed to reach vertex j when starting at vertex i. The average shortest path 
length can then be defined as:

For a weighted network, one can define the length of an edge as the inverse of the weight of that edge. If we 
exclude the path from one vertex to itself from the mean, the average shortest path length can be defined  as104:

where P l
ij :=

{

P ∈ {1, . . . ,V}l
∣

∣

∣
P1 = i, Pl = j

}

 is the set of all paths that traverse l edges from vertex i to j and 
W

−1
ij = ∞ if and only if Wij = 0.

To further facilitate the comparison between the binary structural networks and the weighted functional 
networks, we scale the average shortest path length L′ for weighted networks by the mean edge weight:

Assortativity. Assortativity A quantifies whether vertices preferentially connect to vertices with a similar degree 
for binary  networks87, 88 or with a similar strength for weighted networks. For binary networks, A is defined as 
the correlation coefficient over all pairs of degrees {(νi , νj)|Aij = 1, 1 ≤ (i, j) ≤ V} of the vertices:

with Dm =
∑V

i=1 ν
m
i  and νi is the vertex degree of vertex i.

For weighted networks, we follow Ref.143 and define A as the correlation coefficient over all pairs of strengths 
{(si , sj), 1 ≤ (i, j) ≤ V} of the vertices:
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where ζk ( ζ ′k ) is the k-th element of the collection of the first (second) entry of all ordered pair of vertex strengths 
{(si , sj)|1 ≤ (i, j) ≤ V} . The strength of vertex i is defined as si =

∑V
j Wij . ζ  and ζ ′ are the collection’s respective 

means. Positive (negative) values of As resp. of Af  indicate an assortative (disassortative) network.

Synchronizability. The stability of the globally synchronized state of a network of coupled oscillators can be 
characterized by the eigenratio S = �V/�2

89, 90. �V denotes the largest eigenvalue of the Laplacian matrix L of 
the network ( Lij = νiδij −Aij for binary networks and Lij = siδij −Wij for weighted  networks90, 144, where δ 
is the Kronecker delta and si denotes the strength of vertex i). �2 denotes the second smallest eigenvalue of the 
Laplacian (the smallest being 0). Given some vertex dynamics, the higher S the less stable is the synchronized 
state of the network. This interpretation crucially depends on the definition of S (note that other definitions can 
be found in the literature, e.g., S = �2/�V).

Centralities of vertices and edges. For our investigations, we utilize the concepts of betweenness and 
eigenvector centrality since corresponding centrality measures are available for both vertices and  edges133. 
Betweenness centrality is based on shortest paths, which requires the definition of “length” ψij of a path between 
vertices i and j or between edges i and j. The length ψij of a shortest path P between vertices i and j in a binary 
network is the number of edges along this path, and we utilize the same definition for the length ψij of P between 
edges i and j. For i and j being connected to a same vertex/edge, we define ψij := 0 . In case of a weighted net-
work, we relate the length ψij of P between vertices/edges i and j to the sum of the inverse weights of edges along 
this path. In case of adjacent edges, i.e., edges connected by a single vertex, we again define ψij := 0 . We denote 
the set of V vertices (E edges) in a network as V ( E).

Betweenness centrality, Betweenness centrality CB highlights a constituent as central if it acts as bottleneck in 
a network. Vertex betweenness centrality (of vertex i) can be defined  as145–148

where 
{

i, j, k
}

∈ V , and qjk(i) is the number of shortest paths between vertices j and k running through vertex 
i. Gjk is the total number of shortest paths between vertices j and k.

Edge betweenness centrality (of edge i) can be defined  as149, 150

where i ∈ E , 
{

j, k
}

∈ V , qjk(i) is the number of shortest paths between vertices j and k running through edge i, 
and Gjk is the total number of shortest paths between vertices j and k.

Eigenvector centrality. Eigenvector centrality CE is a degree-/strength-based concept and this centrality high-
lights a constituent as central if it is connected to other central constituents. Vertex eigenvector centrality (of 
vertex i) is defined as the i-th entry of the eigenvector �v corresponding to the dominant eigenvalue �′max of matrix 
�151, which we derive from the eigenvector equation ��v = �

′�v using the power iteration method

with {k, l} ∈ V . Here, � denotes the adjacency matrix A∈ {0, 1}V×V of a binary network, with Aij = 1 if there 
is an edge between vertices i and j, and 0 otherwise. In case of a weighted network, � denotes the weight 
matrix W∈ R

V×V
+  , with Wij denoting the weight of an edge between vertices i and j. We define Aii := 0 ∀ i and 

Wii := 0 ∀ i with i ∈ V to exclude self-loops.
Edge eigenvector centrality (of edge i) is defined  as133

with 
{

i, j
}

∈ E . Here, �′ denotes the edge adjacency matrix A(e) ∈ {0, 1}E×E of a binary network, with A(e)
ij = 1 

if edges i and j are connected to a same vertex, and 0 otherwise. In case of a weighted network, �′ denotes the 
edge weight matrix W(e) ∈ R

E×E
+  whose entries W(e)

ij  are assigned the average weight of edges i and j if these edges 
are connected to a same vertex, and 0 otherwise. As above, we define A(e)

ii := 0∀ i and W(e)
ii := 0∀ i with i ∈ E.

Af =

∑V(V−1)/2
k=1 (ζk − ζ )(ζ ′k − ζ ′)

√

∑V(V−1)/2
k=1 (ζk − ζ )

√

∑V(V−1)/2
k=1 (ζ ′k − ζ ′)

,

(7)C
B
v (i) =

2

(V − 1)(V − 2)

∑

i �=j �=k

qjk(i)

Gjk
,

(8)C
B
e (i) =

2

V(V − 1)

∑

j �=k

qjk(i)

Gjk
,

(9)C
E
v (i) =

1

�′max

∑

j

�ij C
E
v (j),

(10)C
E
e (i) =

1

�′max

∑

j

�′
ij C

E
e (j),
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Miscellaneous. The following table reports the number of pairs of structural and functional networks for 
each type of coupling topology, regime of coupling strengths (I, II, and III), and estimator of strength of interac-
tion ( σ and µ ). 

σ µ

I II III I II III

Random 1671 2769 1910 3159 2668 523

Scale-free 1984 2427 1722 3838 1563 732

Small-world 1808 1889 2090 2531 2055 1201

Empirical 117 294 0 64 347 0

Data availability
The original contributions presented in the study are included in the article, further inquiries can be directed 
to the corresponding author.
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