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Enhancing wind direction 
prediction of South Africa wind 
energy hotspots with Bayesian 
mixture modeling
Najmeh Nakhaei Rad1,2*, Andriette Bekker1 & Mohammad Arashi1,3

Wind energy production depends not only on wind speed but also on wind direction. Thus, predicting 
and estimating the wind direction for sites accurately will enhance measuring the wind energy 
potential. The uncertain nature of wind direction can be presented through probability distributions 
and Bayesian analysis can improve the modeling of the wind direction using the contribution of the 
prior knowledge to update the empirical shreds of evidence. This must align with the nature of the 
empirical evidence as to whether the data are skew or multimodal or not. So far mixtures of von 
Mises within the directional statistics domain, are used for modeling wind direction to capture the 
multimodality nature present in the data. In this paper, due to the skewed and multimodal patterns 
of wind direction on different sites of the locations understudy, a mixture of multimodal skewed 
von Mises is proposed for wind direction. Furthermore, a Bayesian analysis is presented to take 
into account the uncertainty inherent in the proposed wind direction model. A simulation study is 
conducted to evaluate the performance of the proposed Bayesian model. This proposed model is 
fitted to datasets of wind direction of Marion island and two wind farms in South Africa and show 
the superiority of the approach. The posterior predictive distribution is applied to forecast the wind 
direction on a wind farm. It is concluded that the proposed model offers an accurate prediction by 
means of credible intervals. The mean wind direction of Marion island in 2017 obtained from 1079 
observations was 5.0242 (in radian) while using our proposed method the predicted mean wind 
direction and its corresponding 95% credible interval based on 100 generated samples from the 
posterior predictive distribution are obtained 5.0171 and (4.7442, 5.2900). Therefore, our results 
open a new approach for accurate prediction of wind direction implementing a Bayesian approach via 
mixture of skew circular distributions.

The future of the energy industry lies in clean power that minimizes or entirely removes pollutants from the 
process of power generation. The perfect clean energy mix occurs where green energy, derived from natural 
sources, meets renewable energy from sources that are constantly being replenished. Wind energy is one of the 
most important sustainable forms of this ideal clean energy and one of the fastest-growing energy sources. A 
sophisticated knowledge, based on statistical analysis, of wind characteristics is crucial for the future harness-
ing of this important renewable energy resource. Wind power is developing as a renewable energy source in a 
number of countries and it will be increasingly important to find an effective and predictable way of integrating 
this intermittent but environmentally friendly power source into the existing electrical grid system.

In South Africa, there is an increasing transition towards an environmentally sustainable, climate-change 
resilient, low-carbon economy. In October 2020, the South African Wind Energy Association (SAWEA) reported 
that wind technology has already attracted R209.7 billion in investment for the development of projects in South 
Africa. In fact wind power comprises a larger share of the planned renewable energy investments to date. It is 
estimated by 2030 that 22.7% of the required electricity in South Africa, namely 17742 MW, will be generated 
from wind energy. In terms of job creation, the 22 wind Independent Power Producers (IPPs) that have success-
fully reached commercial operations to date, have created 2723 jobs for South African citizens.
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Wind as an energy source is only practical in areas that have strong and steady winds. South Africa’s climatol-
ogy allows for significant wind energy production especially along the coastal areas of the Eastern and Western 
Capes. The first large-scale wind farm in South Africa became operational in 2014 and based on the SAWEA 
report, there are 33 wind farms: 22 fully operational and 11 in construction. In this paper, we will study the wind 
direction of two operational wind farms in South Africa: (1) Jeffreys Bay (Humansdorp), located in the Eastern 
Cape; (2) Noupoort located in the Northern Cape. In addition, we will investigate the wind direction data from 
Marion Island, part of the Western Cape Province which possesses excellent potential for wind studies.

Unlike conventional energy resources that are available at any time, wind speed and wind direction need 
to be forecasted in advance in order to estimate production and plan its contribution to a nation’s grid system. 
As the use of wind power increases, accurate forecasts are essential to maximize output from the wind farms. 
This includes the most important decision of all, the location of a wind farm and the placement of its turbines1.

The location of an industrial-scale wind farm, defined as a cluster of wind turbines used to produce elec-
tricity, is of paramount importance. Measuring the farm-specific wind characteristics including mean wind 
speed, wind speed distribution (diurnal, seasonal, annual patterns), distribution of wind direction, short-term 
fluctuations, long-term fluctuations and wind shear profile are essential for determining the location of farm 
and turbines. This can strongly influence the performance of the wind turbines and thus the power generated 
by the wind farms2. Moreover, interactions among multiple turbines change the power generation efficiency of 
turbines. Specifically, the wakes from upwind turbines can greatly affect the power production of downstream 
turbines, and this effect depends strongly on the wind direction3. Generally, downstream turbines produce less 
power compared to upwind turbines, but changes in wind direction can cause heterogeneity in the power curve 
of each turbine such that some upstream turbines can become downstream turbines4. Porté-Agel et al.5 presented 
a study about the effects of wind direction on turbine wakes and power losses at a large wind farm. Castellani 
et al.6 showed how the alignment of wind turbines to wind direction affects efficiency (see also Kazacoks et al.7 
and Gomez and Lundquist8).

Predicting wind speed and wind direction are crucial to choose the location of wind farm and the placement 
of its turbines and also to estimate wind power production. To the best of the authors’ knowledge none of the 
existing literature follows a directional statistics approach for prediction of the wind direction. The interested 
reader is referred to some contributions in which several approaches have been proposed for forecasting wind 
direction. El-Fouly et al.20 suggested a linear time-series-based model for prediction of wind speed and direc-
tion. Garcia-Planas and Gongadze21 constructed a predictive model for wind speed and direction based on linear 
Markov chains under linear algebra point of view (see also Zeng et al.22, Fan et al.23, Zheng et al.24, Chen et al.25, 
Liu et al.26, Giangregorio et al.27, Wang et al.28). Note however that this paper approaches skew directional models 
from the Bayesian statistical angle.

Circular statistics can be applied to obtain the distribution of wind direction while Weibull, gamma, normal, 
Rayleigh, log-normal, inverse Gaussian, logistic distributions are some common models for the wind speed 
(see Deep et al.9 and Gugliani et al.10). For example, mixtures of von Mises (VM) distributions have been widely 
applied to model wind direction for different locations10–17. Gugliani et al.18 have applied Kato and Jones circular 
distribution19 to model wind direction.

However, wind datasets usually exhibit skew and multimodal patterns while most of the well-known circular 
distributions are symmetric such as the von Mises. Therefore in this paper, the application of skewed multimodal 
distributions is investigated for modeling the wind direction of South Africa hotspots from Bayesian viewpoint. 
The k sine-skewed von Mises (SSVM) distribution29 and mixtures of SSVM are ideal candidates to model wind 
direction data exhibiting both skewness and multimodality behaviour. Due to the fact that the likelihood-based 
inference and also the expectation maximization (EM) algorithm techniques for mixture models can be com-
putationally complicated, a Bayesian approach can overcome such computational difficulties. It provides more 
accurate results for small datasets. Bayesian inference is conditional on the data and is exact, without reliance on 
asymptotic approximations. The Bayesian predictive posterior function can be used to forecast the wind direction.

Two important contributions of a Bayesian stochastic model are as follows:
(1) Inclusion of uncertainty about the parameters of the wind direction distribution results in using a more 

practical predictive distribution for the wind direction. This implies the predictive distribution is more disperse 
than the probability distributions when the uncertainty about the parameters is neglected. (2) The prior distri-
butions of the parameters can represent the heterogeneity of the distributions of the wind direction over a wind 
farm. The wind direction distributions for various turbines on a farm may belong to the same family, such as 
the skew-von Mises, but the model parameters of each turbine may be different randomly according to some 
probability distributions. The Bayesian predictive distribution aggregates the non-homogeneous distributions 
into a single distribution that captures the variation among the probability distributions of the wind directions 
at the turbines’ locations on a wind farm.

There is a vast literature on the Bayesian approach for symmetric directional data specifically, Bayesian analy-
sis using the symmetric von Mises and von Mises-Fisher distributions30–39. The von Mises-Fisher mixture model 
is implemented by Taghia et al.40 and Roge et al.41. Mulder et al.42 provided a Bayesian inference for mixtures of 
von Mises distributions using the reversible jump Markov chain Monte Carlo (MCMC) sampler and focused on 
noninformative priors. From the preceding it follows there is a gap in the literature that inspired us to propose 
novel Bayesian analysis of skew directional wind data. Recently Nakhaei Rad et al.43,44 provided Bayesian analysis 
for skew von Mises-Fisher distribution and skew Wrapped Cauchy mixture model.

In “Site location and wind data”, we provide details of the datasets that are analyzed in this paper. “Materials 
and methods” revisited the k sine-skewed von Mises distribution and the maximum likelihood estimates (MLEs) 
of the mixture of SSVM parameters. The Bayesian inference of the mixture of SSVM is also presented, followed 
by the posterior predictive distribution to forecast the wind direction. In “Evaluation and results”, a simulation 
study is conducted to show the performance of the proposed Bayesian approach. Finally, SSVM and mixture of 
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SSVM are fitted to these datasets for different values of k together with their competitor, namely the mixture of 
von Mises distributions.

Site location and wind data
The first dataset (A) shows the wind direction of Marion island which is recorded daily at 08:00, 14:00 and 20:00 
South Africa standard time (SAST) (relates to the main synoptic hours). Marion Island is part of South Africa 
with a climate that is highly oceanic in nature, coupled with the influence of passing frontal weather systems. In 
fact, the geographic location of Marion Island, lying directly in the path of eastward moving depressions all year 
round make it an excellent location for meteorological studies. Powerful regional winds, colloquially known as 
the ‘Roaring Forties’, so called as they have found between the latitudes of 40◦ and 50◦ in the Southern Hemi-
sphere, blow almost every day in a north-westerly direction. The exceptional research potential of Marion Island 
for wind studies, as well the rate and impacts of climate change, is demonstrated by the presence of a permanent 
meteorological research station on the island. This station was established as early as 1948, and run by the South 
African National Antarctic Programme (see Fig. 1).

The second dataset (B) reflects the wind direction of Jeffreys Bay wind farm, recorded every 10 min at 60 
m height. Jeffreys Bay is one of the biggest wind farms in South Africa spanning 3700 hectares with a 138 MW 
capacity. This site’s optimal wind conditions, relatively flat topography, minimal environmental constraints and 
its close proximity to the Eskom (electricity supply commission of South Africa) grid line, make it an ideal wind 
energy resource (see Fig. 2, left).

The last dataset (C) shows wind direction of Noupoort wind farm comprising 7500 hectares and providing 
a 80 MW capacity, recorded every 10 min at 20 m height. This site is significant because of the excellent wind 
conditions, its proximity to national roads for wind turbine transportation, the favourable construction condi-
tions, municipality and local stakeholder support and the straightforward electrical connection into the Eskom 
grid (see Fig. 2, right). Figure 3 shows the map of South Africa with the locations of Marion island, Jeffreys Bay 
and Noupoort wind farms and rose plots of the wind direction in these regions.

Table 1 shows the descriptive information about the datasets. The results in Table 1, confirm skewness pres-
ence in these datasets. Also the Boxplots and kernel density plots of these datasets in Fig. 4. The Boxplots empha-
size that these wind direction datasets reveal skew patterns and the kernel density plots confirm multimodal 
patterns. kernel density estimate is a smoothed version of the histogram which is a useful alternative to the 
histogram for continuous data. Unlike the histogram, the kernel technique produces a smooth estimate of the 
density function, uses all sample points’ locations and more convincingly suggests multimodality.

Materials and methods
Sine‑skewed von Mises distribution.  Most of the distributions on the unit circle share the common fea-
ture of being symmetric about their location µ ∈ [−π ,π) . However, since the assumption that data is symmetric 
is often rejected, Ref.29 introduced the k sine-skewed von Mises distribution with density function

where I0(.) is the modified Bessel function of the first kind of order 0, µ ∈ [−π ,π) is the location parameter, 
τ > 0 is the concentration parameter, −1 ≤ � ≤ 1 is the skewness parameter and k is a positive integer. � > 0 

(1)fSSVM(θ;µ, τ , �) =
1

2πI0(τ )
exp(τ cos(θ − µ))(1+ � sin(k(θ − µ))),

Figure 1.   Marion island (created by the University of Pretoria) and meteorological research station on the 
island (provided by Antarctic Legacy of South Africa http://​www.​antar​cticl​egacy.​org and https://​blogs.​sun.​ac.​za).

http://www.antarcticlegacy.org
https://blogs.sun.ac.za
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Figure 2.   Jeffreys Bay (Humansdorp) wind farm https://​jeffr​eysba​ywind​farm.​co.​za (left) and Noupoort wind 
farm https://​noupo​ortwi​nd.​co.​za (right).

Figure 3.   Map of South Africa with the locations of Marion island, Jeffreys Bay and Noupoort wind farms and 
rose plots of the wind direction (created by R programming language version 4.1.3 https://​www.r-​proje​ct.​org).

https://jeffreysbaywindfarm.co.za
https://noupoortwind.co.za
https://www.r-project.org
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leads to left skewed distributions and � < 0 provides right skewed distributions. The symmetric von Mises dis-
tribution is retrieved if � = 0 . For k ≥ 2 , (1) has a multimodal form but for k = 1 it can be both unimodal and 
bimodal. Figure 5 shows plots of SSVM density functions (see (1)) for µ = 0 , τ = 0.5 , � = −0.8,−0.2, 0.5, 1 
and k = 1, 2 . As can be seen with k = 2 bimodal distributions follows. A mixture of SSVM distributions with 
M ∈ Z

+ components is expressed as

where µ = (µ1, . . . ,µM) , τ = (τ1, . . . , τM) and � = (�1, . . . , �M) are vectors of parameters, τj > 0 , µj ∈ [−π ,π) 
and �j ∈ [−1, 1] . w = (w1, . . . ,wM) is a vector of the weights containing the relative size of each component in 
the total sample satisfy the constraints 0 ≤ wj ≤ 1 and 

∑M
j=1 wj = 1.

Algorithm 145 can be used to generate a sample from the SSVM distribution in (1).

(2)fM(θ;w,µ, τ , �) =

M
∑

j=1

wjfSSVM(θ;µj , τj , �j),

Table 1.   Descriptive statistics for the wind direction data.

Id Location Begin End Duration (days) n Mean Variance Mean resultant length Skewness Kurtosis

A Marion 01-Jan-2017 31-Dec-2017 365 1079 5.0242 0.4376 0.5624 0.4039 0.9686

B Jeffreys Bay 01-Jan-2019 31-Jan-2019 31 4464 4.3498 0.7720 0.2279 0.5051 0.8084

C Noupoort 01-Feb-2019 29-Feb-2019 29 4032 2.3351 0.7923 0.2076 −  0.1160 0.7220
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Figure 4.   Boxplots and kernel density plots of the wind direction datasets A-C from Marion island, Jeffreys Bay 
and Noupoort wind farms.
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Parameter estimation.  In this section, first, the MLEs of parameters for a mixture of SSVM is presented, 
followed by a Bayesian inference when all the weight, location, concentration and skewness parameters (w , µ , 
τ , �) are unknown.

Maximum likelihood estimation.  The log-likelihood function of a mixture of SSVM in (2), can be represented 
as follows:

By setting the partial derivatives of (3) with respect to ( w,µ, τ , � ) to zero, the MLEs of (w,µ, τ , �) can be obtained. 
Since no closed-form expressions exist, numerical methods should be used to obtain the estimates. The DEop-
tim package46 in R software which is based on the Differential Evolution (DE) algorithm47 is used to obtain the 
MLEs. Differential evolution is a heuristic evolutionary method for global optimization that is effective in many 
problems of interest in science and technology and its significant performance as a global optimization algo-
rithm on continuous numerical minimization problems has been extensively studied48. DEoptim has made this 
algorithm possible to easily apply in the R language and environment. DEoptim relies on repeated evaluation of 
the objective function in order to move the population toward a global minimum46.

Bayes estimation.  Let θ = (θ1, θ2, . . . , θn) be a random sample of size n from a mixture of SSVM (see (2)). It 
should be noted that the number of components M is considered as a known parameter. Suppose the latent 
variable d = (d1, . . . , dn) allocates the component that θ is sampled from. The probability of being attributed to 
component j is given by

Therefore, for i = 1, . . . , n and j = 1, . . . ,M

(3)l(w,µ, τ , �|θ) =

n
�

i=1

log





M
�

j=1

wjfSSVM(θi;µj , τj , �j)



.

P(di = j|w) = wj .

f (θi|di = j) = fSSVM(θi;µj , τj , �j).
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Figure 5.   Density functions of the SSVM for τ = 0.5 , µ = 0 , � = −0.8,−0.2, 0.5, 1 and k = 1 (left) and k = 2 
(right).
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It implies that conditional on di , θi is an independent observation from its respective component j that makes the 
inference easier because the problem reduces to inference for a single SSVM component. Therefore, conditional 
on d , the likelihood function can be expressed as

Subsequently, we measure the uncertainty in the parameters with the following prior distributions for (w,µ, τ , �) . 
If the sample size is small, or available data provides only indirect information about the parameters of interest, 
the prior distribution becomes more important49. Ghaderinezhad et al.50 implemented the Wasserstein impact 
measure (WIM) as a measure of quantifying prior impact. It helps us to choose between two or more given priors. 
Nakhaei Rad et al.44 by using the WIM measure demonstrated that the combination of the von Mises, gamma and 
truncated normal distributions decreases the execution time in the Gibbs sampling algorithm. Thus, providing 
accurate parameter estimates for the skew Fisher-von Mises distribution51 as well.

Therefore, consider independent von Mises and gamma distributions with parameters (µ0, τ 0) and (α,β) as 
priors for µ and τ , respectively:

where τ0j ,αj ,βj > 0 , µ0j ∈ [−π ,π) and j = 1, 2, . . . ,M.
For the skewness parameter � , the truncated normal distribution on [−1, 1] is proposed with parameters ξ 

and σ 2:

where ξj ∈ R , σj > 0 , j = 1, 2, . . . ,M , φ(.) is the density function of standard normal distribution and �(.) is its 
cumulative distribution function.

For the weight parameter w , the Dirichlet distribution with parameter c is considered as prior:

where cj > 0 for j = 1, . . . ,M and B(c) =
∏M

j=1 Ŵ(cj)

Ŵ

(

∑M
j=1 cj

) . Thus the marginal distribution of wj is Beta(cj ,
∑M

i=1 ci − cj)
52.

Subsequently, the posterior distribution is:

with π(w,µ, τ , �) from (5), (6) and (7). The full conditionals of parameters (w,µ, τ , �, d) for using in the Gibbs 
algorithm follow from (8). Therefore the Gibbs sampler is as follows (see Algorithm 2):

For θ = (θ1, θ2, . . . , θn) , a set of observations and ̟ = (w,µ, τ , �) , the posterior predictive distribution for 
a new data point θnew and dnew (the corresponding latent switch variable associated with θnew ) is:

(4)L(µ, τ , �|θ , d) =

n
∏

i=1

fSSVM(θi;µdi , τdi , �di ).

(5)π(µj , τj;µ0j , τ0j ,αj ,βj) ∝ exp(τ0j cos(µj − µ0j))τ
αj−1

j exp(−βjτj),

(6)π(�j; ξj , σj) =
1

σj

φ

(

�j−ξj
σj

)

�

(

1−ξj
σj

)

−�

(

−1−ξj
σj

) , �j ∈ [−1, 1].

(7)π(w; c) =
1

B(c)

M
∏

j=1

w
cj−1

j ,

(8)π(w,µ, τ , �|θ) ∝ π(w,µ, τ , �)L(w,µ, τ , �|θ),

π(θnew|θ) =
∑

dnew

∫

̟

f (θnew|dnew ,µ, τ , �)p(dnew|w)π(̟ |θ)d̟ ,
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where θnew is independent of the sample data θ . Sometimes the form of π(θnew|θ) can be derived directly, 
but it is often easier to sample from π(θnew|θ) using Monte Carlo methods. For generating an iid sample 
(θ

(1)
new , θ

(2)
new , . . . , θ

(n)
new) from π(θnew|θ) Algorithm 3 is followed:

Model selection criteria.  Model selection is an important part of any statistical analysis and many tools for 
selecting the “best model” have been suggested in the literature. Here, three different criteria are applied to evalu-
ate the models. Suppose ̟  is the vector of parameters with k elements, l(̟ |θ) is the log-likelihood function and 
n is the sample size. The Akaike information criterion (AIC)53 and the Bayesian information criterion (BIC)54 as 
penalized-likelihood criteria are given by

As can be seen, BIC penalizes parameters more heavily than AIC. Spiegelhalter et al.55 proposed the deviance 
information criterion (DIC), as

where D(̟ ) = −2l(̟ |θ) , ̟  is the posterior mean of ̟  and D(.) is the average of D(.) over the samples of ̟  . 
DIC is usually applied in Bayesian model selection problems where the posterior distribution has been obtained 
by MCMC simulation.

Evaluation and results
Simulation.  In this section, to assess the performance of the proposed Bayesian approach a simu-
lation study was conducted to estimate the parameters of SSVM in (1) and mixture of SSVM in (2). SSVM 
with parameters µ = 3, τ = 2, � = 0.5 and prior parameters µ0 = 0, τ0 = 0.01,α = 4,β = 2, ξ = 0.5 , 
σ = 0.01 and a mixture of SSVM with two components ( M = 2 ) with parameters 
w = 0.8,µ1 = 3, τ1 = 0.2, �1 = 0.75,µ2 = 3.14, τ2 = 0.6, �2 = −0.3 and prior parameters µ01 = 3 , τ01 = 0.1 , 
α1 = 4 , β1 = 2 , ξ1 = 0.9 , σ1 = 0.15 , c1 = 1 and µ02 = 0 , τ02 = 0.1 , α2 = 6 , β2 = 2 , ξ2 = −1 , σ2 = 1.0 , c2 = 1 
were considered. Samples of sizes n = 50, 100, 500 were generated from the posterior distribution in (8) for 
each model, using Gibbs sampling in Algorithm 2. The Bayes estimates of parameters were obtained based on 
the squared error and absolute error loss functions. The posterior mean and the posterior median are the Bayes 
estimators under the squared error and absolute error loss functions, respectively. In order to obtain the Bayes 
estimates of the parameters, the mean and median of the generated samples from the posterior distribution (8) 
were calculated along with some other descriptive statistics. The results, including the sample mean, standard 
deviation (sd) and quartiles (Q1, median, and Q3) of the posterior distribution are summarized in Tables 2 and 
3. As can be seen the differences between true values of the parameters and the posterior sample mean and the 
posterior sample median are minimal. Therefore, the proposed Bayesian approach provides accurate estimates 
for the parameters. The traceplots of the generated samples from the posteriors and the compare-partial plots56 
are shown in Fig. 6 for the mixture of SSVM. A traceplot is used for evaluating convergence which shows the 
time series of the sampling process from the posterior distribution. It is expected to get a traceplot that looks 
completely random. A compare-partial plot provides overlapped kernel density plots related to the last part 

AIC = −2l(̟ |θ)+ 2k,

BIC = −2l(̟ |θ)+ k log n.

DIC = 2D(̟ )− D(̟ ),

Table 2.   Bayes estimates of parameters of SSVM with prior parameters, µ0 = 0, τ0 = 0.01,α = 4,β = 2, ξ = 0.5 
and σ = 0.01.

Parameter Actual value Mean SD Q1 Median Q3

n = 500

µ 3.00 2.9634 0.2267 2.7158 2.9990 3.2771

τ 2.00 1.9826 0.4958 1.1513 1.9568 3.0635

� 0.50 0.4915 0.0084 0.4858 0.4919 0.5012

n = 100

µ 3.00 3.1094 0.0443 2.9982 3.1180 3.1753

τ 2.00 2.0177 0.3556 1.3373 2.0351 2.6634

� 0.50 0.4836 0.0240 0.4592 0.4712 0.5342

n = 50

µ 3.00 3.1925 0.0380 3.0926 3.1954 3.2491

τ 2.00 1.9310 0.2712 1.3405 1.9381 2.4485

� 0.50 0.5214 0.0220 0.4669 0.5306 0.5390
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of the chain (the last 10 values, in green) and the whole chain (in black). The overlapped kernel densities are 
expected to be similar. It means the initial and final parts of the chain should to be sampling in the same target 
posterior distribution. These plots in Fig. 6 confirm the convergence of the chains and show that the Gibbs sam-
pler recovers the values that actually generate the dataset.

To evaluate the accuracy of the obtained Bayes estimates, the mean squared errors (MSE) of the estimates under 
squared error and absolute error loss functions for the mixture of SSVM with two components ( M = 2 ) with 
parameters which are mentioned above were obtained for different sample sizes n = 10, 25, 50, 100, 200, 300, 500 
with 100 repetitions. The results in Fig. 7 show that by increasing n, MSE decreases and also, the MSEs of the 
estimates for absolute error loss function are less than squared error loss function because outliers have a smaller 
effect on the median.

Real data.  To demonstrate the performance of the SSVM for the wind direction data for South African hot-
spots, three real skewed datasets as discussed in “Site location and wind data” (see Table 1) were analyzed. Due 
to the multimodal pattern of the datasets observed in Fig. 4, the following distributions were assumed:

•	 mixtures of von Mises distributions with M = 2, 3, 4 components,
•	 SSVM with k = 2,
•	 mixtures of SSVM with k = 1 and M = 2 components,
•	 mixtures of SSVM with k = 2 and M = 2 components.

The MLEs of parameters (µ, τ , �, p) were obtained by using the DEoptim package in R. The results including 
MLEs and corresponding log-likelihood, AIC and BIC are reported in Table 4. A model with the maximum 
log-likelihood and minimum values of AIC and BIC provides better fit for the data. Therefore, for dataset A, the 
mixture of SSVM with k = 1 provides the best fit. Mixture of SSVM with k = 2 and the mixture of von Mises 
with M = 2 are the second and third best models, respectively. For datasets B and C, the mixture of SSVM with 
k = 2 provides the best fit and the mixture of von Mises with M = 4 is the second best model. In all of these 
datasets, the difference in the AIC and BIC values of the mixture of SSVM in comparison to the mixture of von 
Mises are remarkable. Furthermore, the mixture of SSVM with smaller value of M, outperformed the mixture 
of von Mises. The kernel density plots of the datasets and the fitted curves consisting of the best mixture of von 
Mises and mixture of SSVM for k = 1, 2 are shown in Fig. 8.

To demonstrate the performance of the proposed Bayesian approach, a mixture of two SSVM distributions 
is fitted to dataset A for k = 1 , and to dataset B and C with k = 2 . A sample of size n = 500 was generated from 
the posterior distribution in (8) for each model, using the Gibbs sampling outlined in Algorithm 2. The Bayes 
estimates of the parameters were obtained based on the squared error, absolute error and zero-one loss functions. 
For our purpose, the posterior mean, posterior median and posterior mode were calculated from the generated 

Table 3.   Bayes estimates of parameters of a mixture of SSVM with prior parameters, µ01 = 3 , τ01 = 0.1 , 
α1 = 4 , β1 = 2 , ξ1 = 0.9 , σ1 = 0.15 , c1 = 1 and µ02 = 0 , τ02 = 0.1 , α2 = 6 , β2 = 2 , ξ2 = −1 , σ2 = 1.0 , c2 = 1.

Parameter Actual value Mean SD Q1 Median Q3

n = 500

w 0.80 0.8135 0.0172 0.7820 0.8132 0.8453

µ1 3.00 3.0803 0.0685 2.9469 3.0810 3.2094

τ1 0.20 0.2357 0.0710 0.0996 0.2352 0.3673

�1 0.75 0.7817 0.0005 0.7806 0.7817 0.7829

µ2 3.14 3.1413 0.0100 3.1223 3.1412 3.1654

τ2 0.60 0.5925 0.1354 0.3143 0.5969 0.8621

�2 −0.30 −0.3017 0.0022 −0.3067 −0.3017 −0.2965

n = 100

w 0.80 0.8419 0.0334 0.7775 0.8395 0.9014

µ1 3.00 3.1114 0.0516 3.0224 3.1101 3.2243

τ1 0.20 0.1945 0.0554 0.0977 0.1871 0.3186

�1 0.75 0.7316 0.0028 0.7269 0.7314 0.7373

µ2 3.14 3.1413 0.0058 3.1322 3.1427 3.1579

τ2 0.60 0.5964 0.1206 0.3761 0.5998 0.8152

�2 −0.30 −0.3326 0.0038 −0.3410 −0.3320 −0.3266

n = 50

w 0.80 0.8351 0.0487 0.7383 0.8360 0.9212

µ1 3.00 3.2101 0.0789 3.1226 3.2164 3.3998

τ1 0.20 0.1903 0.0665 0.0847 0.1912 0.3147

�1 0.75 0.7320 0.0032 0.7270 0.7314 0.7378

µ2 3.14 3.1420 0.0033 3.1342 3.1418 3.1489

τ2 0.60 0.6164 0.1145 0.3946 0.6158 0.7955

�2 −0.30 −0.3321 0.0033 −0.3390 −0.3321 −0.3274
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Figure 6.   Traceplots and estimated posterior density plots of generated samples for (w,µ1, τ1, �1,µ2, τ2, �2) in 
Table 3 for n = 500.
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samples as the Bayes estimates of parameters under the different mentioned loss functions. The results including 
the Bayes estimates of the parameters and corresponding DIC are reported in Table 5. A model with minimum 
value of DIC has better fit for the data. The mentioned models above with parameters estimated based on the 
absolute error loss function provide more accurate fit for the datasets. The kernel density plots of the datasets 
and the fitted curves are shown in Fig. 9.

In Table 6, using Algorithm 3, the predicted means of wind direction were obtained, based on absolute error 
loss function, for n = 20, 50, 100 . Also, 95% credible intervals are derived. We focused on the assumption of 
absolute error loss function as a result of the performance observed in Table 5. As can be seen, by increasing n, 
the mean value of the predictive wind direction distributions are getting closer to the mean value of the datasets. 

Table 4.   Maximum likelihood estimates and corresponding log-likelihood, AIC and BIC for datasets. The best 
model is indicated in bold.

Data Model τ̂ µ̂ �̂ ŵ Log-likelihood AIC BIC

A

Mixture of VM  
( M = 2)

0.8264 4.6437 – 0.6388
−1524.7750 3059.5490 3084.4680

13.4279 5.2866 – 0.3612

Mixture of VM 
( M = 3)

1.6861 4.0380 – 0.2852

−2241.4770 4498.9530 4538.823011.7538 2.2718 – 0.4200

0.6421 5.6606 – 0.2948

Mixture of VM  
( M = 4)

1.6430 4.0014 – 0.3179

−1522.9620 3067.9240 3122.7460
9.2575 5.1609 – 0.1863

0.7727 6.0288 – 0.2365

13.9738 5.3294 – 0.2591

Mixture of SSVM  
( k = 1,M = 2)

0.5490 3.4434 0.8831 0.4291
−1248.6560 2511.3130 2546.2000

5.9863 5.2451 0.0447 0.5709

SSVM ( k = 2) 1.3283 4.8196 0.4113 – −1575.1960 3156.3930 3171.3440

Mixture of SSVM  
( k = 2,M = 2)

0.7644 4.4362 0.5208 0.5974
−1437.3610 2888.7220 2923.6090

11.8642 5.2842 0.1428 0.4026

B

Mixture of VM  
( M = 2)

3.9011 4.5829 – 0.6284
−6392.3200 12794.6400 12826.6600

4.1262 1.6053 – 0.3716

Mixture of VM  
( M = 3)

0.6536 1.8472 – 0.2602

−6066.5200 12149.0400 12200.27006.8578 4.6102 – 0.5356

37.5722 1.6121 – 0.2042

Mixture of VM  
( M = 4)

1.2487 1.5608 – 0.2000

−6060.9610 12143.9200 12214.3600
39.7624 1.6653 – 0.1962

1.5231 4.1872 – 0.1187

7.5915 4.6293 – 0.4851

Mixture of SSVM  
( k = 1,M = 2)

3.7053 1.6860 0.4816 0.3799
−6295.287 12604.5700 12649.4000

4.2219 4.5949 − 0.7337 0.6201

GSSVM ( k = 2) 0.4141 3.8738 0.6329 – −6441.0300 12888.0600 12907.2700

Mixture of SSVM  
( k = 2,M = 2)

1.2525 2.1711 − 0.8901 0.4731
−5372.1610 10758.3200 10803.1500

7.3277 4.6315 − 0.2355 0.5269

C

Mixture of VM  
( M = 2)

0.9550 5.3272 – 0.5384
−6238.2750 12486.5500 12518.0600

10.1064 2.2563 – 0.4616

Mixture of VM  
( M = 3)

2.4565 5.3344 – 0.2757

−6203.316 12422.6300 12473.05000.1095 2.3723 – 0.3075

12.3062 2.2591 – 0.4168

Mixture of VM  
( M = 4)

1.8131 5.3286 – 0.4136

−6187.3030 12396.6100 12465.9300
1.3339 2.2543 – 0.1532

24.8131 2.2987 – 0.2757

3.0057 2.1467 – 0.1573

Mixture of SSVM  
( k = 1,M = 2)

0.8520 5.0994 − 0.2553 0.5582
−6220.1690 12454.3400 12498.4500

10.9951 2.2543 0.7743 0.4418

SSVM ( k = 2) 0.3378 2.9753 − 0.7547 – −6529.6970 13065.3900 13084.3000

Mixture of SSVM  
( k = 2,M = 2)

0.4357 4.6249 0.7508 0.6137
−5584.4470 11182.8900 1127.0100

14.8628 2.2538 0.0835 0.3863
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In addition, the length of the credible intervals is short. Therefore, our approach provides accurate prediction 
of wind direction.

Conclusion
In this paper, due to the skew and multimodal patterns of wind direction datasets from South Africa, a skew and 
multimodal mixture model, namely mixture of sine-skewed von Mises distributions is proposed for modeling 
wind direction. Our proposed model outperforms mixtures of von Mises distributions (with larger number of 
components) which is extensively used in literature to model wind direction. Due to the difficulties in estimating 
parameters for mixture models using maximum likelihood method, a Bayesian approach is implemented for 
estimating the parameters of a mixture of sine-skewed von Mises distributions using a Gibbs sampler. The results 
show this approach provides accurate estimates for parameters. In addition the posterior predictive distribu-
tion can be applied for wind direction prediction (see Table 6) which provides accurate forecasts. Future work 

A

N = 1079   Bandwidth = 85.61  Unit = radians

0

π

2

π

3π
2

+

kernel density
VM (M=2)
SSVM (k=1,M=2)
SSVM (k=2,M=2)

B

N = 4464   Bandwidth = 49.99  Unit = radians

0

π

2

π

3π
2

+

kernel density
VM (M=4)
SSVM (k=1,M=2)
SSVM (k=2,M=2)

C

N = 4032   Bandwidth = 99.97  Unit = radians

0

π

2

π

3π
2

+

kernel density
VM (M=4)
SSVM (k=1,M=2)
SSVM (k=2,M=2)

Figure 8.   Kernel density plots of datasets and fitted curves based on MLEs.

Table 5.   Bayes estimates of parameters under different loss functions and corresponding DIC for datasets. The 
best model is indicated in bold.

Data Model Loss function τ̂1 µ̂1 �̂1 τ̂2 µ̂2 �̂2 ŵ DIC

A Mixture of SSVM  
( k = 1,M = 2)

Squared error 0.4609 3.4528 0.7013 6.1235 5.2314 0.3395 0.5002 3086.42

Absolute error 0.4368 3.4715 0.6973 6.0937 5.2244 0.3398 0.4997 3086.15

Zero-one 0.3274 3.4560 0.5831 5.8139 5.1360 0.3334 0.4881 3087.48

B Mixture of SSVM  
( k = 2,M = 2)

Squared error 1.5323 2.0121 − 0.8772 7.4175 4.6898 − 0.2405 0.4997 12839.28

Absolute error 1.5743 2.0463 − 0.8969 7.3480 4.6784 − 0.2303 0.4996 12837.10

Zero-one 1.5048 1.9889 − 0.9049 7.3433 4.6634 − 0.1981 0.5046 12885.87

C Mixture of SSVM  
( k = 2,M = 2)

Squared error 0.4832 4.6294 0.7985 14.8946 2.2955 0.0995 0.6087 12796.50

Absolute error 0.4038 4.6262 0.7794 14.6273 2.3348 0.0898 0.6122 12795.83

Zero-one 0.4014 4.6227 0.7811 15.5572 2.3375 0.0829 0.6044 12812.50
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Figure 9.   Kernel density plots of datasets and fitted curves based on Bayes estimates.
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may consist of implementing the models of Bekker et al.57 and Kato and Jones19 and investigating the impact of 
other prior choices50. One can use our proposal to improve the wind energy potential as described and detailed 
in Arashi et al.58.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 20 February 2022; Accepted: 6 June 2022

References
	 1.	 Lahouar, A. & Ben Hadj Slama, J. Wind speed and direction prediction for wind farms using support vector regression. In 2014 

5th International Renewable Energy Congress (IREC), 1–6. https://​doi.​org/​10.​1109/​IREC.​2014.​68269​32 (2014).
	 2.	 Huang, S. et al. Hierarchical optimal control for synthetic inertial response of wind farm based on alternating direction method 

of multipliers. IEEE Trans. Sustain. Energy 12, 25–35. https://​doi.​org/​10.​1109/​TSTE.​2019.​29635​49 (2021).
	 3.	 Lerner, J., Grundmeyer, M. & Garvert, M. The importance of wind forecasting. Renew. Energy Focus 10, 64–66. https://​doi.​org/​10.​

1016/​S1755-​0084(09)​70092-4 (2009).
	 4.	 You, M., Liu, B., Byon, E., Huang, S. & Jin, J. Direction-dependent power curve modeling for multiple interacting wind turbines. 

IEEE Trans. Power Syst. 33, 1725–1733. https://​doi.​org/​10.​1109/​TPWRS.​2017.​27375​29 (2018).
	 5.	 Porté-Agel, F., Ting Wu, Y. & Chen, C. A numerical study of the effects of wind direction on turbine wakes and power losses in a 

large wind farm. Energies 6, 5297–5313. https://​doi.​org/​10.​3390/​EN610​5297 (2013).
	 6.	 Castellani, F. et al. How wind turbines alignment to wind direction affects efficiency? A case study through scada data mining. 

Energy Proced. 75, 697–703. https://​doi.​org/​10.​1016/j.​egypro.​2015.​07.​495 (2015).
	 7.	 Kazacoks, R., Amos, L. & Leithead, W. Effect of wind flow direction on the loads at wind farm. Energy Proced.https://​doi.​org/​10.​

1088/​1742-​6596/​1356/1/​012005 (2019).
	 8.	 Gomez, M. S. & Lundquist, J. The effect of wind direction shear on turbine performance in a wind farm in central IOWA. Wind 

Energy Sci. Discuss.https://​doi.​org/​10.​5194/​wes-​2019-​22 (2019).
	 9.	 Deep, S., Sarkar, A., Ghawat, M. & Rajak, M. K. Estimation of the wind energy potential for coastal locations in India using the 

Weibull model. Renew. Energy 161, 319–339. https://​doi.​org/​10.​1016/j.​renene.​2020.​07.​054 (2020).
	10.	 Gugliani, G., Sarkar, A., Mandal, S. & Agrawal, V. Location wise comparison of mixture distributions for assessment of wind power 

potential: A parametric study. Int. J. Green Energy 14, 737–753. https://​doi.​org/​10.​1080/​15435​075.​2017.​13278​65 (2017).
	11.	 Carta, J., Ramírez, P. & Velázquez, S. A review of wind speed probability distributions used in wind energy analysis: Case studies 

in the canary islands. Renew. Sustain. Energy Rev. 13, 933–955. https://​doi.​org/​10.​1016/j.​rser.​2008.​05.​005 (2009).
	12.	 Carta, J. A., Bueno, C. & Ramírez, P. Statistical modelling of directional wind speeds using mixtures of von mises distributions: 

Case study. Energy Convers. Manage. 49, 897–907. https://​doi.​org/​10.​1016/j.​encon​man.​2007.​10.​017 (2008).
	13.	 Qin, X., Zhang, J. & Yan, X. A new circular distribution and its application to wind data. J. Math. Res. 2, 12. https://​doi.​org/​10.​

5539/​jmr.​v2n3p​12 (2010).
	14.	 Gatto, R. & Jammalamadaka, S. R. The generalized von mises distribution. Stat. Methodol. 4, 341–353. https://​doi.​org/​10.​1016/j.​

stamet.​2006.​11.​003 (2007).
	15.	 Masseran, N., Razali, A., Ibrahim, K. & Latif, M. Fitting a mixture of von mises distributions in order to model data on wind 

direction in peninsular Malaysia. Energy Convers. Manage. 72, 94–102. https://​doi.​org/​10.​1016/j.​encon​man.​2012.​11.​025 (2013).
	16.	 Belu, R. & Koracin, D. Statistical and spectral analysis of wind characteristics relevant to wind energy assessment using tower 

measurements in complex terrain. J. Wind Energyhttps://​doi.​org/​10.​1155/​2013/​739162 (2013).
	17.	 Quill, R., Sharples, J. J., Wagenbrenner, N. S., Sidhu, L. A. & Forthofer, J. M. Modeling wind direction distributions using a diag-

nostic model in the context of probabilistic fire spread prediction. Front. Mech. Eng. 5, 5. https://​doi.​org/​10.​3389/​fmech.​2019.​
00005 (2019).

	18.	 Gugliani, G., Sarkar, A., Ley, C. & Mandal, S. New methods to assess wind resources in terms of wind speed, load, power and 
direction. Renew. Energy 129, 168–182. https://​doi.​org/​10.​1016/j.​renene.​2018.​05.​088 (2018).

	19.	 Kato, S. & Jones, M. A tractable and interpretable four-parameter family of unimodal distributions on the circle. Biometrika 102, 
181–190. https://​doi.​org/​10.​1093/​biomet/​asu059 (2015).

	20.	 El-Fouly, T. H. M., El-Saadany, E. F. & Salama, M. M. A. One day ahead prediction of wind speed and direction. IEEE Trans. Energy 
Convers. 23, 191–201. https://​doi.​org/​10.​1109/​TEC.​2007.​905069 (2008).

	21.	 Garcia-Planas, M. I. & Gongadze, T. Wind profile prediction using linear markov chains: A linear algebra approach. IEEE Latin 
Am. Trans. 16, 536–541. https://​doi.​org/​10.​1109/​TLA.​2018.​83274​10 (2018).

	22.	 Zeng, Y., Zhou, H., Lai, Y. & Wen, B. Wind-direction mapping with a modified wind spreading function by broad-beam high-
frequency radar. IEEE Geosci. Remote Sens. Lett. 15, 679–683. https://​doi.​org/​10.​1109/​LGRS.​2018.​28095​58 (2018).

Table 6.   Predicted wind direction based on absolute error loss function for different values of n.

Data Mean Model n Predicted mean 95% Credible interval

A 5.0242 SSVM ( k = 1,M = 2)

20 4.8754 4.4275,5.3233)

50 5.1249 4.4611,5.3887)

100 5.0171 (4.7442,5.2900)

B 4.3498 SSVM ( k = 2,M = 2)

20 4.4918 (3.6417,5.3419)

50 4.4652 (3.9834,4.9470)

100 4.3580 (3.8963,4.8198)

C 2.3351 SSVM ( k = 2,M = 2)

20 2.5216 (1.7277,3.3154)

50 2.2784 (1.7142,2.8426)

100 2.3726 (1.9737,2.7714)

https://doi.org/10.1109/IREC.2014.6826932
https://doi.org/10.1109/TSTE.2019.2963549
https://doi.org/10.1016/S1755-0084(09)70092-4
https://doi.org/10.1016/S1755-0084(09)70092-4
https://doi.org/10.1109/TPWRS.2017.2737529
https://doi.org/10.3390/EN6105297
https://doi.org/10.1016/j.egypro.2015.07.495
https://doi.org/10.1088/1742-6596/1356/1/012005
https://doi.org/10.1088/1742-6596/1356/1/012005
https://doi.org/10.5194/wes-2019-22
https://doi.org/10.1016/j.renene.2020.07.054
https://doi.org/10.1080/15435075.2017.1327865
https://doi.org/10.1016/j.rser.2008.05.005
https://doi.org/10.1016/j.enconman.2007.10.017
https://doi.org/10.5539/jmr.v2n3p12
https://doi.org/10.5539/jmr.v2n3p12
https://doi.org/10.1016/j.stamet.2006.11.003
https://doi.org/10.1016/j.stamet.2006.11.003
https://doi.org/10.1016/j.enconman.2012.11.025
https://doi.org/10.1155/2013/739162
https://doi.org/10.3389/fmech.2019.00005
https://doi.org/10.3389/fmech.2019.00005
https://doi.org/10.1016/j.renene.2018.05.088
https://doi.org/10.1093/biomet/asu059
https://doi.org/10.1109/TEC.2007.905069
https://doi.org/10.1109/TLA.2018.8327410
https://doi.org/10.1109/LGRS.2018.2809558


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11442  | https://doi.org/10.1038/s41598-022-14383-8

www.nature.com/scientificreports/

	23.	 Fan, S. et al. Estimation of wind direction in tropical cyclones using c-band dual-polarization synthetic aperture radar. IEEE Trans. 
Geosci. Remote Sens. 58, 1450–1462. https://​doi.​org/​10.​1109/​TGRS.​2019.​29468​85 (2020).

	24.	 Zheng, G. et al. Development of a gray-level co-occurrence matrix-based texture orientation estimation method and its application 
in sea surface wind direction retrieval from sar imagery. IEEE Trans. Geosci. Remote Sens. 56, 5244–5260. https://​doi.​org/​10.​1109/​
TGRS.​2018.​28127​78 (2018).

	25.	 Chen, X., Huang, W. & Haller, M. C. A novel scheme for extracting sea surface wind information from rain-contaminated x-band 
marine radar images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 5220–5234. https://​doi.​org/​10.​1109/​JSTARS.​2021.​30789​
02 (2021).

	26.	 Liu, X., Huang, W. & Gill, E. W. Wind direction estimation from rain-contaminated marine radar data using the ensemble empiri-
cal mode decomposition method. IEEE Trans. Geosci. Remote Sens. 55, 1833–1841. https://​doi.​org/​10.​1109/​TGRS.​2016.​26350​78 
(2017).

	27.	 Giangregorio, G., Galdi, C. & Bisceglie, M. D. Wind direction estimation by deconvolution of gnss delay-doppler maps: A simu-
lation analysis. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 2409–2418. https://​doi.​org/​10.​1109/​JSTARS.​2020.​29864​48 
(2020).

	28.	 Wang, J., Xiong, X., Li, Z., Wang, W. & Zhu, J. Wind forecast-based probabilistic early warning method of wind swing discharge 
for ohtls. IEEE Trans. Power Deliv. 31, 2169–2178. https://​doi.​org/​10.​1109/​TPWRD.​2016.​25195​99 (2016).

	29.	 Abe, T. & Pewsey, A. Sine-skewed circular distributions. Stat. Pap. 52, 683–707. https://​doi.​org/​10.​1007/​s00362-​009-​0277-x (2011).
	30.	 Bagchi, P. Empirical Bayes estimation in directional data. J. Appl. Stat. 21, 317–326. https://​doi.​org/​10.​1080/​75758​3874 (1994).
	31.	 Bagchi, P. & Guttman, I. Theoretical considerations of the multivariate von mises-fisher distribution. J. Appl. Stat. 15, 149–169. 

https://​doi.​org/​10.​1080/​02664​76880​00000​22 (1988).
	32.	 Bagchi, P. & Kadane, J. Laplace approximations to posterior moments and marginal distributions on circles, spheres, and cylinders. 

Can. J. Stat. 19, 67–77. https://​doi.​org/​10.​2307/​33155​37 (1991).
	33.	 Bangert, M., Hennig, P. & Oelfke, U. Using an infinite von mises-fisher mixture model to cluster treatment beam directions in 

external radiation therapy. In 2010 Ninth International Conference on Machine Learning and Applications, 746–751. https://​doi.​
org/​10.​1109/​ICMLA.​2010.​114 (2010).

	34.	 Damien, P. & Walker, S. A full Bayesian analysis of circular data using the von Mises distribution. Can. J. Stat. 27, 291–298. https://​
doi.​org/​10.​2307/​33156​39 (1999).

	35.	 Dowe, D. L., Oliver, J. J., Baxter, R. A. & Wallace, C. S. Bayesian estimation of the von Mises concentration parameter. In Maximum 
Entropy and Bayesian Methods (eds Hanson, K. M. & Silver, R. N.) (Springer, 1996). https://​doi.​org/​10.​1007/​978-​94-​011-​5430-7-6.

	36.	 Guttorp, P. & Lockhart, R. A. Finding the location of a signal: A Bayesian analysis. J. Am. Stat. Assoc. 83, 322–330. https://​doi.​org/​
10.​2307/​22888​46 (1988).

	37.	 Hornik, K. & Grün, B. On conjugate families and Jeffreys priors for von Mises-fisher distributions. J. Stat. Plan. Inference 143, 
992–999. https://​doi.​org/​10.​1016/j.​jspi.​2012.​11.​003 (2013).

	38.	 Nuñez-antonio, G. & Gutiérrez-peña, E. A Bayesian analysis of directional data using the von Mises-fisher distribution. Commun. 
Stat. Simul. Comput. 34, 989–999. https://​doi.​org/​10.​1080/​03610​91050​03084​95 (2005).

	39.	 Rodrigues, J., Galvão Leite, J. & Milan, L. A. Theory & methods: An empirical Bayes inference for the von Mises distribution. Aust. 
N. Z. J. Stat. 42, 433–440. https://​doi.​org/​10.​1111/​1467-​842X.​00140 (2000).

	40.	 Taghia, J., Ma, Z. & Leijon, A. Bayesian estimation of the von-mises fisher mixture model with variational inference. IEEE Trans. 
Pattern Anal. Mach. Intell. 36, 1701–1715. https://​doi.​org/​10.​1109/​TPAMI.​2014.​23064​26 (2014).

	41.	 Roge, R., Madsen, K. H., Schmidt, M. N. & Mørup, M. Infinite von Mises-Fisher mixture modeling of whole brain fmri data. Neural 
Comput. 29, 2712–2741. https://​doi.​org/​10.​1162/​neco_a_​01000 (2017).

	42.	 Mulder, K., Jongsma, P. & Klugkist, I. Bayesian inference for mixtures of von mises distributions using reversible jump mcmc 
sampler. J. Stat. Comput. Simul. 90, 1539–1556. https://​doi.​org/​10.​1080/​00949​655.​2020.​17409​97 (2020).

	43.	 Nakhaei Rad, N., Bekker, A. & Arashi, M. Bayesian inference for skew-wrapped Cauchy mixture model using a modified Gibbs 
sampler. In 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 1–6. https://​
doi.​org/​10.​1109/​MFI52​462.​2021.​95911​81 (IEEE, 2021).

	44.	 Nakhaei Rad, N., Bekker, A., Arashi, M. & Ley, C. Coming together of Bayesian inference and skew spherical data. Front. Big 
Datahttps://​doi.​org/​10.​3389/​fdata.​2021.​769726 (2021).

	45.	 Ley, C. & Verdebout, T. Modern Directional Statistics (Chapman and Hall, 2017).
	46.	 Mullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. Deoptim: An r package for global optimization by differential evolution. 

J. Stat. Softw. 40, 1–26. https://​doi.​org/​10.​18637/​jss.​v040.​i06 (2011).
	47.	 Storn, R. & Price, K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. 

Optim. 11, 341–359. https://​doi.​org/​10.​1023/A:​10082​02821​328 (1997).
	48.	 Price, K., Storn, R. M. & Lampinen, J. A. Differential Evolution: A Practical Approach to Global Optimization (Springer, 2006).
	49.	 Carlin, B. P. & Louis, T. A. Bayesian Methods for Data Analysis (CRC Press, 2008).
	50.	 Ghaderinezhad, F., Ley, C. & Serrien, B. The wasserstein impact measure (wim): A practical tool for quantifying prior impact in 

Bayesian statistics. Comput. Stat. Data Anal. 1, 107352. https://​doi.​org/​10.​1016/j.​csda.​2021.​107352 (2021).
	51.	 Ley, C. & Verdebout, T. Skew-rotationally-symmetric distributions and related efficient inferential procedures. J. Multivar. Anal. 

159, 67–81. https://​doi.​org/​10.​1016/j.​jmva.​2017.​02.​010 (2017).
	52.	 Kotz, S., Balakrishnan, N. & Johnson, N. L. Continuous Multivariate Distributions. Models and Applications (Wiley, 2004).
	53.	 Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://​doi.​org/​10.​1109/​

TAC.​1974.​11007​05 (1974).
	54.	 Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464. https://​doi.​org/​10.​2307/​29588​89 (1978).
	55.	 Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 

64, 583–639. https://​doi.​org/​10.​1111/​1467-​9868.​00353 (2002).
	56.	 Fernández-i-Marın, X. Ggmcmc: Analysis of mcmc samples and Bayesian inference. J. Stat. Softw. 70, 1–20. https://​doi.​org/​10.​

18637/​jss.​v070.​i09 (2016).
	57.	 Bekker, A., Nakhaei Rad, N., Arashi, M. & Ley, C. Generalized skew-symmetric circular and toroidal distributions (Springer, 2021).
	58.	 Arashi, M., Nagar, P. & Bekker, A. Joint probabilistic modeling of wind speed and wind direction for wind energy analysis: A case 

study in humansdorp and noupoort. Sustainabilityhttps://​doi.​org/​10.​3390/​su121​14371 (2020).

Acknowledgements
We would like to thank two anonymous reviewers for the constructive comments that significantly improved the 
presentation. Also, we would like to thank Mr. Lourens Snyman (Department of Geography, Geoinformatics and 
Meteorology at the University of Pretoria), Ms. Ria Olivier (Department of Botany and Zoology, Stellenbosch 
University) and Antarctic Legacy of South Africa for providingFig. 1. This work was based upon research sup-
ported in part by the Visiting Professor Programme, University of Pretoria and the National Research Founda-
tion (NRF) of South Africa, SARChI Research Chair UID: 71199; Ref.: IFR170227223754 Grant No. 109214; 
Ref.: SRUG190308422768 Grant No. 120839, the South African DST-NRF-MRC SARChI Research Chair in 

https://doi.org/10.1109/TGRS.2019.2946885
https://doi.org/10.1109/TGRS.2018.2812778
https://doi.org/10.1109/TGRS.2018.2812778
https://doi.org/10.1109/JSTARS.2021.3078902
https://doi.org/10.1109/JSTARS.2021.3078902
https://doi.org/10.1109/TGRS.2016.2635078
https://doi.org/10.1109/JSTARS.2020.2986448
https://doi.org/10.1109/TPWRD.2016.2519599
https://doi.org/10.1007/s00362-009-0277-x
https://doi.org/10.1080/757583874
https://doi.org/10.1080/02664768800000022
https://doi.org/10.2307/3315537
https://doi.org/10.1109/ICMLA.2010.114
https://doi.org/10.1109/ICMLA.2010.114
https://doi.org/10.2307/3315639
https://doi.org/10.2307/3315639
https://doi.org/10.1007/978-94-011-5430-7-6
https://doi.org/10.2307/2288846
https://doi.org/10.2307/2288846
https://doi.org/10.1016/j.jspi.2012.11.003
https://doi.org/10.1080/03610910500308495
https://doi.org/10.1111/1467-842X.00140
https://doi.org/10.1109/TPAMI.2014.2306426
https://doi.org/10.1162/neco_a_01000
https://doi.org/10.1080/00949655.2020.1740997
https://doi.org/10.1109/MFI52462.2021.9591181
https://doi.org/10.1109/MFI52462.2021.9591181
https://doi.org/10.3389/fdata.2021.769726
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.csda.2021.107352
https://doi.org/10.1016/j.jmva.2017.02.010
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.2307/2958889
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.18637/jss.v070.i09
https://doi.org/10.18637/jss.v070.i09
https://doi.org/10.3390/su12114371


15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11442  | https://doi.org/10.1038/s41598-022-14383-8

www.nature.com/scientificreports/

Biostatistics (Grant No. 114613), STATOMET at the Department of Statistics at the University of Pretoria and 
DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa. The research 
of the third author (M. Arashi) is supported by a grant from Ferdowsi University of Mashhad (N.2/56073). The 
opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed 
to the CoE-MaSS or the NRF.

Author contributions
All authors contributed equally to this work.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.N.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancing wind direction prediction of South Africa wind energy hotspots with Bayesian mixture modeling
	Site location and wind data
	Materials and methods
	Sine-skewed von Mises distribution. 
	Parameter estimation. 
	Maximum likelihood estimation. 
	Bayes estimation. 

	Model selection criteria. 

	Evaluation and results
	Simulation. 
	Real data. 

	Conclusion
	References
	Acknowledgements


