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Accurate 3D hand mesh recovery 
from a single RGB image
Akila Pemasiri*, Kien Nguyen, Sridha Sridharan & Clinton Fookes

This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing 
approaches where parametric hand models are employed as the prior, we show that the hand mesh 
can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN 
to learn the mesh through end-to-end adversarial training. By interpreting the mesh as a graph, our 
model is able to capture the topological relationship among the mesh vertices. We also introduce a 
3D surface descriptor into the GAN architecture to further capture the associated 3D features. We 
conduct experiments with the proposed Im2Mesh GAN architecture in two settings: one where we 
can reap the benefits of coupled groundtruth data availability of the images and the corresponding 
meshes; and the other which combats the more challenging problem of mesh estimation without the 
corresponding groundtruth. Through extensive evaluations we demonstrate that even without using 
any hand priors the proposed method performs on par or better than the state-of-the-art.

Compared with existing 2D or 3D hand pose estimation from RGB or/and depth image data, hand mesh recovery 
can provide a more expressive and useful representation for monocular hand image understanding. The hand 
mesh recovery from a single RGB image is of particular interest for a wide range of applications in many domains, 
including augmented  reality1,2 and human computer  interaction3,4.

Hand mesh recovery is a challenging and ill-posed problem considering multiple meshes can be inferred 
from the same RGB image. The popular solution to deal with this ill-posed recovery is using priors. Most of 
the hand mesh recovery approaches in the literature employ the parametric MANO hand  model5 as the hand 
prior and employ some forms of neural networks to regress the model  parameters6–9. However low dimensional 
nature of the parametric models limits their capability to capture non-linear shapes of  hands10. In addition, some 
approaches rely on the heatmaps of the keypoint annotations in the early steps of their  model8,10. We argue that 
this is redundant since the 3D keypoints can be learned simultaneously with the mesh and they should be learned 
simultaneously due to the complementary nature of two tasks.

In this paper, we approach the problem of learning the priors by end-to-end adversarial training. We show 
that the hand priors can be learned explicitly in the 3D mesh representation and can be encoded in a generative 
network. We propose a new type of Generative Adversarial Network (GAN) called Im2Mesh to learn the mesh 
vertices directly from a single RGB input image. Through the competing process of the generator and discrimi-
nator, the generator gradually improves to a level where it can generate the mesh directly from a single input 
image, providing an accurate solution for the hand mesh recovery task.

Importantly, by interpreting the mesh as a graph, we can employ recent advances in Graph Neural Networks 
(GNNs) to support mesh processing in both generator and discriminator networks. GNNs have demonstrated the 
capability of handling non-Euclidean structured data such as graphs and  manifolds11,12. In contrast to the exist-
ing graph-based mesh estimation methods in the  literature10 which only consider the CNN generated features, 
we introduce a 3D descriptor that encodes surface level information into the GNNs, allowing them to better 
exploit the topological relationship among mesh vertices in the graph-structured hand data. This improves the 
mesh recovery accuracy since the recovery algorithm not only considers the vertex 3D coordinates but also the 
3D features associated with the vertices.

Our main contribution of this paper are summarised as below:

• We propose a new GAN architecture called Im2Mesh to enable end-to-end learning of the hand mesh directly 
from a single RGB input image, without requiring any heatmap processing, 3D keypoint (joint landmark) 
annotations or external parametric hand models.

• We model the generator of the GAN as a graph architecture, allowing it to model the topological relation-
ship among the vertices of the mesh. To the best of our knowledge, this is the first attempt to introduce a 3D 
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descriptor into a generative graph model to encode the surface level information, explicitly capturing the 3D 
features associated with the mesh vertices.

• The proposed approaches not only address the problem of mesh reconstruction for the coupled datasets 
where one-to-one mapping prevails between the images and the groundtruth meshes, but also simultane-
ously address the problem of reconstructing meshes for the datasets which do not have the corresponding 
groundtruth annotations.

• We do not use the depth images; as such we increase the potential of using our model for the datasets which 
do not have the corresponding depth images.

The remainder of this paper is organised as follows. In section "Evaluations" we discuss the related work in the 
research area and their limitations. section "Conclusion" describes our methodology with subsections outlining 
each component where we describe the approach for the coupled data as well as for uncoupled data. In section 5 
we present our experimental results including ablative studies and comparison of our method to the state-of-the-
art, and we conclude the paper in section 5 while describing the results of the proposed methodology.

Related work
3D hand pose and mesh estimation using parametric models: Majority of existing 3D hand pose and shape esti-
mation  methods8,13 are based on  MANO5 model which is a low dimensional parametric representation of hand 
mesh. However, there remain few weaknesses in using such parametric models. Firstly, the model is generated in 
controlled environments which are different from the images that are encountered in real  world14 thus causing 
a domain gap. Secondly, the low dimensional nature of the parametric models limits their capability to capture 
non-linear shapes of  hands10. Thirdly, to create a parametric model it requires a large amount of data, which 
makes it challenging to adopt those methods to other object classes. Due to these limitations, in this paper we 
propose a hand mesh reconstruction approach which does not utilize a parametric hand model.

Model free 3D hand pose and mesh estimation: In the recent approaches on 3D hand pose and mesh estimation 
where parametric models are not used, other priors are employed. For an instance using 2D pose of the hand as an 
input to the  network14. This requires the annotation of the 2D pose on input images, which limits the approach’s 
ability in adopting to the datasets where the 2D pose annotation is not available. In addition, there exists some 
approaches that rely on heatmaps of the keypoints at early  stages8,10, which requires additional steps of keypoint 
estimation which can later be extracted directly from the estimated mesh. In contrast, we do not employ 2D or 
3D keypoint locations in our method.

Graph Neural Networks (GNNs) for hand mesh estimation: In the recent literature, several approaches can be 
found where GNNs have been employed in estimating the 3D mesh of human  hand10,14. However, the objective 
functions of these methods are limited to the vertex coordinates and other properties associated with the vertex 
location in the final mesh, where the resultant features of the GCNs are not fully utilized. To fully harness the 
strengths of GCNs we incorporate a 3D feature descriptor to our method, where the GCN is aimed to learn not 
only the vertex locations but it also learn to estimate the 3D feature descriptor, which elevate the overall accuracy 
of mesh estimation.

Effective use of datasets for hand pose and mesh estimation: When the datasets for hand pose and mesh estima-
tion are considered, most recent datasets (Dome dataset by Kulon et al.15, FreiHAND dataset by Zimmermann 
et al.16) contain the images and their corresponding groundtruth mesh. These datasets have been used by the 
state-of-the-art methods for hand pose and mesh  estimation13,14. However, datasets such as  RHD17 and  STB18 
contains the images and their corresponding groundtruth 3D pose, and the methods that have used those datasets 
have targeted only on estimating the 3D  pose19,20. However, we propose an approach where the existing datasets 
which do not contain the groundtruth mesh details can effectively be used for the task of hand mesh estimation.

Im2Mesh GAN-single image mesh generation
When considering the available datasets for single image hand mesh reconstruction, there are 2 main variations; 
(1) The datasets which contain images and the corresponding by groundtruth mesh (i.e., the dataset by Kulon et 
al.15 (referred as the Dome dataset hereafter) and the dataset by Zimmermann et al.16 (referred as the FreiHAND 
dataset hereafter), and (2) Other standard datasets such as Rendered Handpose Dataset (RHD)17 and Stereo 
Handpose Dataset (STB)18 that do not contain the groundtruth meshes, instead they contain the 3D and 2D 
keypoint annotations of the human hand. Therefore we use two different network architectures: (1) To reap the 
maximum benefit of the availability of the coupled data in the Dome  dataset15 and FreiHAND  dataset16 and (2) 
To use the mesh data in Dome dataset along with the image data in other standard datasets (i.e., STB and RHD) 
for the robust estimation of the hand mesh.

In this section, we describe the details of our method. First, we briefly introduce the network architectures 
while distinguishing the architectural differences between the considered 2 settings, then we introduce the hand 
mesh representation and the 3D surface feature descriptor we use in this paper. We then elaborate on the details 
of each network architecture along with the objective functions that were employed.

Architecture for Coupled Data vs Architecture for the Uncoupled Data. The network architecture 
for the coupled training data is depicted in Fig. 1 and the network architecture for the uncoupled training data 
is depicted in Fig. 2. For the coupled training data a Conditional GAN architecture is employed (Eq. 3), where 
RGB images (I) are fed as the input to the “Generator”. At the training time RGB images (I) with the generated 
meshes (G(I)) which contain the hand mesh representation (detailed in section "Evaluation protocol") and the 
3D surface descriptor (detailed in section "Ablative studies") and RGB images with corresponding groundtruth 
meshes are fed to the “Discriminator”.
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For the uncoupled training data a Cycle GAN architecture is employed (Eq. 12) where RGB images from a 
particular dataset (e.g.,  RHD17 dataset) is fed to the “Mesh Generator” ( G_M ) and mesh data from a different 
distribution (e.g. Dome  dataset16) is fed to the “Image Generator” ( G_I).

Hand mesh representation. In this work we represent hand mesh M as in Eq. (1), where V denotes the 
vertices and F denotes the faces that comprises the mesh. Each vertex in V is denoted by its x, y and z coordinates 
(i.e., vi =

[

xi , yi , zi
]

 ) and each face is denoted by the vertex numbers which have contributed for that face (i.e., 
fi =

[

vp, vq, vr
]

).

3D surface descriptor. In GNNs an attributed graph is defined as,

where V is the set of vertices/nodes which is directly extracted from M (Eq. 1), E is the set of edges which is 
derived using F in Eq. (1). X, can either be node attributes (i.e., XvεRN×d such that XviεR

d , is the feature vector 
of node vi ), or edge attributes (i.e., XeεET×c where T is the number of edges in the graph).

In this work, we use a node feature that can represent distinctive node properties. We selected the Signature 
of Histogram of Orientations (SHOT)  descriptor21, which has the ability to generate descriptive features for 
3D points. SHOT descriptor is a combination of the concepts of “signature”22 and “histogram”23, such that the 
descriptor possess computational efficiency while maintaining the robustness. Apart from the evaluations that 

(1)M = (V , F);V εRN×3; F εVM×3

(2)Graph = (V ,E,X),

Figure 1.  The proposed Im2Mesh GAN architecture for coupled training data. The position values and the 
SHOT descriptor values are generated using the generator network and passed to the discriminator network, 
which classifies whether they are generated or the groundtruth.

Figure 2.  The proposed Im2Mesh GAN architecture for uncoupled training data. G_M denotes the generator 
which is designed for estimating the mesh from the input image I, where as G_I denotes the generator which is 
designed for estimating the image from the input mesh M.
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have been performed by the developers of the SHOT descriptor Samuele et al.21, the SHOT descriptor has demon-
strated optimum performance in different  domains24, including in frameworks with deep learning  techniques25. 
Furthermore compared with other 3D feature descriptors (e.g.Point Feature Histogram (PFH)  descriptor26 and 
Fast Point Feature Histogram (FPFH)  descriptor27), SHOT descriptor the SHOT descriptor has been shown to 
better capture information of the surface as it encodes the details across radial, azimuth and elevation axes of 
the support region. The dimension of the feature descriptor depends on the parameters such as the number of 
neighbours that should be considered at the time of the feature descriptor creation.

Network architecture for coupled training data. We use a variation of a conditional GAN in this 
work to generate realistic hand meshes, based on the RGB hand images. The objective of a conditional GAN is 
expressed as in Eq. (3), where G and D are the functions learned by the generator and the discriminator respec-
tively. Conditional GANs are capable of learning the mapping between the input and the desired output.

The configuration of the conditional GAN that we use is depicted in Fig. 1. The generator network has 2 
components to predict the position vectors (i.e., V in Eq. 1) and the node features (i.e., X in Eq. 2, wherein this 
work we have used SHOT descriptor). Similarly, the discriminator network is also composed of 2 components, 
as “Position Discriminator” and “Surface Descriptor Discriminator”.

When it comes to conditional GANs, the generator’s objective is to generate output that closely resembles the 
ground-truth output while fooling the discriminator. Therefore, we define L (G) as in Eq. (4),

to measure the similarity between the predicted values and the corresponding groundtruth values.
The final objective of the conditional GAN is,

The first two terms of Eq. (4) are aimed at minimizing the reconstruction error between the position vector and 
the SHOT descriptor respectively. Lpos is defined as,

where predpos and gtpos are the predicted and groundtruth vertex locations (i.e., position values) of the  mesh28.
We introduce Lshot , which is the difference between the surface descriptors (SHOT descriptor) of the 

groundtruth mesh and the predicted mesh. Lshot is defined as in Eq. (7).

A loss based on the surface normals of the mesh is introduced to enforce the smoothness of the mesh. To 
ensure that the surface normals of the groundruth mesh and the predicted mesh are parallel, the dot product 
among them is used. Lnormal is calculated as in Eq. (8), where nipred and nigt denote the normal vector of face i in 
the predicted mesh and the groundtruth mesh respectively.

In addition, to further enhance the smoothness of the mesh we employ the Laplacian loss ( LLaplacian)10. 
We introduce two components to the Laplacian loss (Eq. 9), where the LVertexLaplacian is calculated for each of 
the vertices in the mesh considering the adjacent neighbours while enforcing the smoothness in a fine grained 
context, and LKeypointLaplacian is calculated for the keypoints while considering the neighbours in a broad range, 
thus enforcing the smoothness in a more coarser level. The weights of the LVertexLaplacian and LKeypointLaplacian 
are denoted by α and β . Laplacian error in general is defined as in Eq. (10), where wi = pred_posi − gt_posi 
for vi . When considering LVertexLaplacian , the neighbours of vertex vi are defined as N(vi) = {wεV |(vi ,w)ε E} , 
whereas LKeypointLaplacian is defined based neighbours that are identified through a graph unrolling and graph 
traversing process.

(3)LcGAN (G,D) = Ex,y

[

logD
(

x, y
)]

+ Ex,z

[

log(1− D(x,G(x, z)))
]

(4)L (G) = �Lpos(G)+ µLshot(G)+ θLnormal(G)+ γLLaplacian(G)+ φLQuadratic(G),

(5)G∗ = arg min
G

max
D

LcGAN (G,D)+ δL (G)

(6)Lpos =

N
∑

i=1

∥

∥

∥
predipos − gtipos

∥

∥

∥

1
,

(7)Lshot =

N
∑

i=1

∥

∥predishot − gtishot
∥

∥

1

(8)Lnormal =

M
∑

i=1

∥

∥

∥
< nipred , n
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(9)LLaplacian =αLVertexLaplacian + βLKeypointLaplacian

(10)Laplacian error =

N
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To define neighbours for LKeypointLaplacian calculation, we unrolled the hand mesh into a graph format. For each 
of the keypoints, a separate graph is created by traversing the mesh using the vertex related to the keypoint as the 
starting node. We use breadth first  search29 based graph unrolling. As the vertices are not uniformly distributed 
throughout the mesh, the number of layers in each graph and the number of nodes in each layer is different.

The Quadratic loss ( LQuadratic ) (Eq. 11)30 is also used to penalize the predicted points in the normal direc-
tion. In Eq. (11), Qvgt vpred stands for the quadratic error (31,32) which is calculated based on the triangle incidents 
that correspond to vgt.

In general, the objective of the the discriminator network (D in Eq. 3) is to classify whether the given input 
is from the real sample or whether it has been generated by the generator network (G). However, the existing 
work on GANs is focused on discriminating the generated data such as class labels and images and thus have 
used fully connected or convolutional layers in the discriminator.

In this work we use graph convolutional layers in the “Surface Descriptor Discriminator” network (Fig. 1), 
where the node features are taken into consideration. As the edge connections (E in Eq. 2) remain the same for 
all the estimated meshes we use spectral based graph convolution operations. We used GCN layers introduced 
by Kipf et al.33.

Network architecture for uncoupled training data. Hand mesh estimation from a single image suf-
fers from the problem of having a limited amount of training data and hence the deep learning based techniques 
with supervised learning can not be used. As a solution many of the existing methods use the datasets with 3D 
keypoint annotations and estimate the hand pose. The estimated pose is then used along with parametric models 
such as  MANO5 for the 3D mesh reconstruction.

In this paper, we use a variation of cycle  GAN34 to estimate the 3D mesh of hand using a single image, based 
on uncoupled training data. The overview of the framework that we use in this work is depicted in Fig. 2, where 
“Mesh Generator” and “Mesh Discriminator” consists of position and surface descriptor related components 
which are denoted in Fig. 1.

We define the objective function of the network as,

where LGAN is defined according to the adversarial loss proposed  in35 (Eq. 13). Lcyc , which stands for cycle 
consistency loss is used to constraint the possible mapping functions such that the mapping from image to 
mesh can be made as unique as possible. We define the cycle consistency loss with two components as Lcyc_mesh 
and Lcyc_im , which stand for the cycle consistency of the mesh generator and the image generator respectively. 
Lcyc_mesh is defined as in Eq. (4), where we aim to retain the surface smoothness of the mesh while minimizing 
the position error and the shot descriptor error. It should be noted that in this setting pred in Eqs. (6)–(9) refers 
to the G_M(G_ I(M)) of Fig. 2. Lcyc_im is defined as in Eq. (14).

Generator and discriminator for coupled training data. The Dome  dataset15, contains meshes with 
7907 vertices and the FreiHAND dataset, which is based on the MANO model has 778 vertices. The generator 
network we use is composed with 2 main components 1) To estimate an initial mesh with low resolution and 2) 
To increase the mesh resolution. For the initial low resolution mesh, we targeted on learning position vectors 
and SHOT descriptors for 224 vertices. To be compatible with the image shape we derived the shot descriptors 
with a dimension of 221. For this dataset, SHOT descriptors of a dimension of 221 were obtained by setting the 
parameters such that number of bins = 7 , radius of descriptor estimation = 3 and minimumneighbours = 3.

Generator
For the preliminary layers of the generator we used a convolution based architecture which is in the shape of 

a U-Net36, however we did not use any skip connections in this work as the domains of the input and output are 
different. In denoting the 2D convolution layers followed by a batch normalization and a ReLU activation we 
use the notation of Convolution-BatchNorm-ReLU. We used a similar architecture as  in37, where the encoder 
has 8 layers of Convolution-BatchNorm-ReLUs with 64, 128, 256, 512, 512, 512, 512 and 512 kernels followed 
by a decoder with 8 layers of Convolution-BatchNorm-ReLUs with 512, 512, 512, 512, 256, 128, 64. The above 
mentioned convolutions are 4× 4 filters and decoder network is followed by another convolution layer to make 
the output channel dimension to 1. The ReLUs in the encoder are leaky with a slope of 0.2. After the final pass, 
which results in an output of shape 224× 224 (ignoring the batchsize dimension and channel dimension), we 
decompose that into two components as [224, 3] and [224, 221], where the first component is the position vector 
and the second component is the SHOT descriptor for the 224 vertices in the coarse grained mesh.

Mesh enhancer

(11)
LQuadratic =

1

N

∑

vpredεMpred

vgtεMgt

Qvgt vpred

(12)
L (G_M,G_I ,D_M,D_I) = LGAN (G_M,D_M, I ,M)+LGAN (G_I ,D_I ,M, I)+ δLcyc(G_M,G_I),

(13)LGAN (G,D,X,Y) =Ey

(

logD
(

y
)

+ Exlog(1− D(G(x)))
)

(14)Lcyc_im =E�G_ I(G_M(I))− I�1
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To enhance the mesh resolution, we used a cascade of Multi-branch  GCN38 modules, where GCNConv  layers33 
were used for feature upsampling. For the Dome dataset we used 5 Multi-branch GCN modules at the first cas-
cade level and then 8 modules in the second cascaded level and for the FreiHAND dataset we use 3 Multi-branch 
GCN modules. The resultant node features which construct mesh at full resolution were then passed through a 
set of Convolution-BatchNorm-ReLU which plays a role analogues to the role of “Coordinator Reconstructor” 
of the initial work on point  upsampling38. This contains Convolution-BatchNorm-ReLU layers with 64, 64, 64, 
64 and 1 kernels with each kernel having 1× 3 filters. Thus the output of this network constructs the position 
vector for the mesh at full resolution.

Discriminator
The discriminator network contains 2 branches where the position vectors and the node features are com-

pared with the corresponding groundtruth values. “Position Discriminator” takes the input of size N × 3 and 
the “Surface Descriptor Discriminator” takes the input of size N × 221 , where N is the number of vertices in the 
resultant mesh. For the position discriminator we use three Convolution-BatchNorm-ReLU layers with 64,64 
and 1 kernels in each with 5× 1 filters and for the “Surface Descriptor Discriminator”, we use 2 GCNConv layers 
where we reduce the feature size from 221 to 100 and then to 50. We pass each of these through a fully connected 
layer with 2048 nodes and then concatenate the output from the 2 discriminators before passing them trough 
another fully connected layer of 1048 nodes followed by a fully connected layer with size 1 and softmax activation.

Generator and discriminator for uncoupled training data. Compared with the network settings that 
are described in the above section where the coupled training data is available, when our implementation of 
cycle GAN (Fig. 2) is considered the main difference is that in cycle GAN we have enforced the cycle consistency 
loss where we feed the mesh generated by “Mesh Generator” in Fig. 2 to the “Image Generator” and vice-versa. 
To allow this, the inputs for each generator should be same in shape. Hence we consider the coarse grained mesh 
which has 224 vertices and set the input image width and height to 224 pixels. For the generators and for the 
“Image Discriminator” we used the same architectures that have been used by the original paper of cycle  GAN34. 
For the mesh discriminator, we used the same architecture that we described in the “Discriminator” subsection 
of section "3.6".

For the setting of uncoupled training data, we separately trained the mesh enhancer (Fig. 3) such that it learns 
the mapping from low dimensional mesh to the high dimensional mesh, and the generated low dimensional 
meshes were upsampled using it.

Training. For the network which uses coupled data we set δ = 10 in Eq. (5). All the parameters � , µ , θ , γ and 
phi in Eq. (4), and α and β in Eq. (9) were set to 1. To see the effectiveness of the constraints that were enforced to 
obtain surface smoothness we evaluate the method with setting the parameters θ and γ to 0. The results related 
to those settings can be found in the section "Conclusion". For the network which used uncoupled data, δ was set 
to 10. We used a training procedure similar  to34,37 where all the models were trained from the scratch and with a 
learning rate of 0.0002 using Adam  optimizer39.

Evaluations
In this section we describe the datasets and the evaluation matrix that we used, the ablative studies that we con-
ducted to evaluate the effectiveness of the components in our model, the experimental results that we obtained in 
benchmarking our model with the state-of-the-art methods. It should be noted that when recording the results 
of the state-of-the-art methods, we have used the evaluations that are been performed by the respective authors 
and the results with the best configuration of their proposed methods have been selected for the comparison.

Datasets. This work utilizes two types of publicly available datasets, (1) Coupled dataset where the images 
and the corresponding groundtruth mesh is available and (2) Datasets which contain only the images. For the 
coupled dataset we used the Dome  dataset15 and FreiHAND  dataset16 and for the later we used the  RHD17 and 

Figure 3.  The mesh enhancement process. It should be noted that this image depicts the process of upsampling 
a graph which has N nodes and a feature dimension of d, to a graph with R nodes. The depicted network 
contains two cascaded levels of graph upsampling followed by the “Coordinate Reconstructor” which calculates 
the position vector of the upsampled graph. k and q are the feature dimensions that of the generated features at 
cascaded level 1 and 2. Since the objective of our work is to upsample the graph while retaining the number of 
features we set k = q = d.
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 STB18 hand datasets with the 3D meshes which are available as the groundtruth in Dome dataset. These datasets 
have been widely used for benchmarking hand shape and pose  estimation8,17,40–42.

Evaluation protocol. For the Dome dataset we used the L1 reconstruction error, between the ground truth 
mesh and the predicted mesh. For the quantitative evaluations of the datasets for which groundtruth meshes are 
not available we extracted the 3D locations of the keypoints and used the accuracy measurement of Percentage 
of Correct Keypoints (PCK) scores. In PCK calculation, if the predicted keypoint, which we extract from the 
estimated mesh lies within a sphere with a specific radius with respect to the groundtruth value, it is considered 
as correct keypoint.

Ablative studies. Our ablative studies were conducted on the Dome dataset which has the groundtruth 
mesh data, as such the quantitative evaluations could be carried out. We conducted ablative studies, with the aim 
of evaluating the contribution of the components in Eq. (4). The results related to the secon ablative studies are 
recorded in Table 1.

Effectiveness of using the 3D surface descriptor: We performed this ablative study to evaluate the effectiveness 
of incorporating Lshot , which measures the similarity in the groundtruth and generated SHOT descriptor. We 
trained our model on training subset and tested on the test subset of the Dome  dataset15. For this ablative study, 
we set µ = 0 in Eq. (4).

Effectiveness of enforcing the surface smoothness in the mesh: As described in section "Selection of the 3D fea-
ture descriptor", our method combines several loss functions to enforce the surface smoothness of the mesh. We 
evaluate the effectiveness of each of these loss components (i.e., Lnormal and LLaplacian , where the later consists 
of 2 components as LVertexLaplacian and LKeypointLaplacian ). We assessed the effectiveness of using components 
individually and in combination. First we eliminate all the loss values that are related to the surface smoothness 
(i.e., surface normal loss, vertex laplacian loss and the keypoint laplacian loss), and the corresponding results can 
be found in the second raw of Table 1. Similarly by eliminating individual lossless we compared the reconstruc-
tion error (Table 1). Figure 4 better visualizes the effect of constraints that are used to smooth the surface. From 
the conducted ablative studies it is evident that the contribution of the components in the loss function is vital 
and the compound of all the components has resulted in better accuracy values.

Table 1.  Results of the conducted ablative studies to evaluate the effectiveness of the loss components 
that are indicated in Eq. (4) and in Eq. (9). The first row demonstrates the importance of using the 3D 
surface descriptor, where as the next five rows (highlighted in gray) demonstrate the effectiveness of surface 
smoothness and the seventh row demonstrates the effectiveness of the quadratic loss.

Use of loss components

Reconstruction error 
(mm)

3D Surface descriptor 
loss Surface normal loss

Laplacian loss

Quadratic LossVertex Laplacian Keypoint Laplacian

✗ ✓ ✓ ✓ ✓ 2.62

✓ ✗ ✗ ✗ ✓ 2.93

✓ ✗ ✓ ✓ ✓ 2.85

✓ ✓ ✗ ✗ ✓ 2.73

✓ ✓ ✗ ✓ ✓ 2.70

✓ ✓ ✓ ✗ ✓ 2.67

✓ ✓ ✓ ✓ ✗ 1.81

✓ ✓ ✓ ✓ ✓ 1.79

Figure 4.  The qualitative results that were obtained by changing the parameters that are related to surface 
smoothness, in Eq. (4).
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Selection of the 3D feature descriptor. We performed a comparative study to confirm that the SHOT 
descriptor is the best choice when compared to other 3D surface descriptors. For this evaluation we used Point 
Feature Histogram (PFH) descriptor, Fast Point Feature Histogram (FPFH) descriptor and SHOT descriptor. We 
trained our model by using each of these descriptors in Eq. (4) on training subset and tested on the test subset 
of the Dome  dataset15. The results are recorded in Table 2 and clearly demonstrate the superior performance of 
the SHOT descriptor (Tables 3, 4).

Comparison to the state-of-the-art. For the Dome dataset we compared our method with the state-of-
the-art method which has used the same dataset. When the two methods were compared using the L1 recon-
struction error, the obtained results are recorded in Table 5. From the obtained values it can be seen that our 
method has outperformed the state-of-the-art method with significant margins. Similarly for FreiHAND data-
set, we compared our results with the state-of-the-art methods and the obtained results are recorded in Table 6.

For the RHD dataset and STB dataset, the evaluations were performed using the 3D PCK values, where we 
compare the extracted 3D keypoint values with the groundtruth 3D keypoint values. The obtained PCK values 
are recorded in Fig. 5. From the results it can be seen that, though the objective of our method was not estimat-
ing the 3D keypoint locations, with our method we have obtained PCK values which are comparable to the 

Table 2.  Experimental results of replacing SHOT with other 3D descriptors in the evaluation on the Dome 
 dataset15.

3D feature descriptor
Reconstruction
Error (mm)

PFH  descriptor26 4.31

FPFH  descriptor27 3.87

SHOT  descriptor21 1.79

Table 3.  Area under curve values for RHD dataset, which are related to Fig. 5a.

Method Pose estimation Shape estimation
Parametric models
are not required AUC Value

Requires 2D
joint locations

GE et al. (CVPR, 2019)10 ✓ ✓ ✓ 0.92

Baek et al. (CVPR, 2019)43 ✓ ✓ ✗ 0.926

Does not require
2D joint locations

Zimmermann et al. (ICCV, 2017)17 ✓ ✗ ✓ 0.675

Spurr et al. (CVPR, 2018)40 ✓ ✗ ✓ 0.849

Cai et al. (ECCV, 2018)41 ✓ ✗ ✓ 0.887

Zhang et al. (ICCV, 2019)8 ✓ ✓ ✗ 0.901

Pemasiri et al. (BMVC, 2019)42 ✓ ✗ ✓ 0.911

Yang et al. (ICCV, 2019)44 ✓ ✗ ✓ 0.943

Kulon et al. (CVPR, 2020)9 ✓ ✓ ✗ 0.956

Ours ✓ ✓ ✓ 0.946

Table 4.  Area under curve values for STB dataset which are related to Fig. 5b.

Method Pose estimation Shape estimation
Parametric models are 
not required AUC Value

Requires 2D joint loca-
tions

Muller (CVPR, 2018)45 ✓ ✗ ✓ 0.965

Iqbal et al. (ECCV, 2018)19 ✓ ✗ ✓ 0.994

Ge et al. (CVPR, 2019)10 ✓ ✓ ✓ 0.998

Does not require 2D joint 
locations

Sun et al. (CVPR, 2015)46 ✓ ✗ ✓ 0.839

Zimmermann et al. 
(ICCV, 2017)17 ✓ ✗ ✓ 0.948

Spurr et al. (CVPR, 
2018)40 ✓ ✗ ✓ 0.983

Cai et al. (ECCV, 2018)41 ✓ ✗ ✓ 0.993

Panteleris et al. (WACV, 
2018)20 ✓ ✗ ✓ 0.994

Zhang et al. (ICCV, 2019)8 ✓ ✓ ✗ 0.995

Ours ✓ ✓ ✓ 0.998
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state-of-the-art methods. It should be noted that our method has not been trained with 3D pose supervision. 
However, it outperforms the state-of-the-art methods that have been trained with 3D pose supervision. Further-
more to demonstrate the constrains of other methods we have highlighted their capabilities and limitations in 
Tables 3, 4 and 6. Area Under Curve (AUC) values related to Fig. 5a are recorded in Table 3 and the AUC values 
related to Fig. 5b are recorded in Table 4.

It should be noted that when comparing the quantitative performance of the state-of-the-art methods, we have 
used the evaluations that are been performed by respective authors and the results with the best configurations 
of their proposed methods have been considered.

The qualitative results that were obtained for the coupled datasets (i.e., Dome  dataset15 and FreiHand  dataset16) 
are depicted in figure where the meshes are consisted with 7907 vertices are depicted in Figs. 6 and 7 respectively. 
It should be noted that the Dome dataset contains meshes with 7907 vertices while  FreiHand16 dataset contains 
the meshes with 778 vertices. In Fig. 7 the 5th column depicts the mask that was obtained by projecting the 
estimated mesh. Qualitave results for the RHD  dataset17, which is an uncoupled dataset are depicted in Fig. 8.

Table 5.  L1 Reconstruction error which was obtained for the Dome  dataset15.

Method Reconstruction error (mm)

Kulon et al. (BMVC, 2019)15 2.33

Ours 1.83

Table 6.  The PA MPVPE and F-scores which were obtained for the FreiHAND  dataset16.

Method Pose and shape estimation PA MPVPE F@5mm F@15mm

Use parametric
models

Hasson et al. (CVPR, 2019)7 ✓ 13.2 0.436 0.908

Boukhayma et al. (CVPR, 2019)6 ✓ 13 0.435 0.898

FreiHAND (ICCV, 2019)16 ✓ 10.7 0.529 0.935

Pose2Mesh (ECCV, 2020)14 ✓ 7.8 0.674 0.969

I2L-MeshNet (ECCV,2020)13 ✓ 7.6 0.681 0.973

Does not use
parametric
models

Im2Mesh GAN (Ours) ✓ 7.6 0.681 0.973

Figure 5.  The PCK values that were obtained when comparing our method with the state-of-the-art methods, 
where our method has comparable results to the state-of-the-art methods.
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Conclusion
While 3D mesh reconstruction of the human hand using a single image has been explored in the past, the 
problem still remains a challenge due to the high degree of freedom of the human hand. In this paper, we have 
presented a method to create 3D mesh of the hand using the single image that can effectively use the existing 
databases for better reconstruction of the 3D mesh using a single image. We have designed a loss function that 
can generate more realistic hand meshes, and we demonstrate the effectiveness of that loss function in two set-
tings of Generative Adversarial Networks. The first setting is targeted on the effective use of coupled datasets 
where the groundtruth meshes are available, whereas the second setting is targeted on uncoupled datasets. In 
addition, we employ a 3D surface descriptor in this work along with graph convolution networks, which enable 
the preservation of the surface details of generated meshes. We confirm that our framework outperforms the 
state-of-the-art as well represents the first effort to incorporate explicit 3D features in a single image-based 3D 
mesh reconstruction. One of the interesting properties of the proposed mesh recovery approach is that there is 
no need for parametric hand models as priors. The geometry of the hand is learned and encoded directly in the 
generator through the end-to-end adversarial training process. This fact enables the proposed algorithm to be 
easily adapted to other mesh problems such as other body parts or 3D objects.

Figure 6.  The qualitative results obtained for the Dome  dataset15. The meshes in the dataset contain 7907 
vertices.
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