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A ResNet attention model 
for classifying mosquitoes 
from wing‑beating sounds
Xutong Wei1, Md Zakir Hossain1,2,3* & Khandaker Asif Ahmed4

Mosquitoes are vectors of numerous deadly diseases, and mosquito classification task is vital for their 
control programs. To ease manual labor and time-consuming classification tasks, numerous image-
based machine-learning (ML) models have been developed to classify different mosquito species. 
Mosquito wing-beating sounds can serve as a unique classifier for mosquito classification tasks, 
which can be adopted easily in field applications. The current study aims to develop a deep neural 
network model to identify six mosquito species of three different genera, based on their wing-beating 
sounds. While existing models focused on raw audios, we developed a comprehensive pre-processing 
step to convert raw audios into more informative Mel-spectrograms, resulting in more robust and 
noise-free extracted features. Our model, namely ’Wing-beating Network’ or ’WbNet’, combines the 
state-of-art residual neural network (ResNet) model as a baseline, with self-attention mechanism and 
data-augmentation technique, and outperformed other existing models. The WbNet achieved the 
highest performance of 89.9% and 98.9% for WINGBEATS and ABUZZ data respectively. For species 
of Aedes and Culex genera, our model achieved 100% precision, recall and F1-scores, whereas, for 
Anopheles, the WbNet reached above 95%. We also compared two existing wing-beating datasets, 
namely WINGBEATS and ABUZZ, and found our model does not need sophisticated audio devices, 
hence performed better on ABUZZ audios, captured on usual mobile devices. Overall, our model has 
potential to serve in mosquito monitoring and prevalence studies in mosquito eradication programs, 
along with potential implementation in classification tasks of insect pests or other sound-based 
classifications.

Machine learning (ML) models are being implemented widely in automatic classification tasks1. ML models 
are capable of extracting and processing classification features by ensuring time-efficiency and minimal human 
intervention2. Besides their wide application in diverse fields, they are being applied in numerous insect classifi-
cations tasks. An image-based Convolutional Neural Network (CNN) model3 identified different insect pests in 
agricultural crops to improve a healthy food supply. Valan et al.4 used a CNN model, pre-trained on the general 
dataset (imageNet), and transferred the trained features for the insect classification task. Their high performing 
model showed the potentiality for transfer learning5 techniques in classification projects, reducing the need of 
creating a large training dataset.

Moreover, numerous traditional ML methods such as Support Vector Machine (SVM)6, Naive Bayes7, and 
K-Nearest Neighbours (KNN)8 have been adopted to classify different insect species. Image-based ML models 
have been widely used in mosquito systematics. The venation and shape of mosquito wings are species-specific, 
and Artificial Neural Network (ANN) classification models on mosquito wing images showed good accuracies in 
mosquito species classification9,10. However, the collection of wing images is a cumbersome task, which required 
long and sophisticated mounting and image capture procedures to get a single informative image11. Rather, sev-
eral CNN-based models have been developed to extract features and classify different mosquito species based 
on the whole body and posture images11–13. Most of the studies utilised manually curated datasets, with similar 
backgrounds—which is a cumbersome task for creating a large dataset. Recently, Yefeng et al.14 developed a 
ML-based approach which utilises open-sourced insect images, to filter in informative fruitfly images, regardless 
of diverse backgrounds and showed the potential of the dataset for fruitfly classification tasks. However, image-
based insect classification favor larger size insects, where it is relatively easier to extract visual features. For small 
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insects, it often becomes difficult to capture good quality images, and sometimes complex backgrounds make 
the detection task more challenging. Besides image-based classification, several ML models are being utilised 
for different classifiers on audios, odorant15 or molecular datasets16,17.

Insects produce a wide range of sounds, ranging from their eating, moving, wing-beating during flight, and 
these sounds can be used as unique classifiers to classify specific insect classes. Fine Gaussian SVM and KNN 
algorithms build on numerous insect sounds18 are able to classify some insects classes, whereas, another Bayesian 
model for insect flight sounds19 showed improved performance for insect classification tasks. Besides, some ANN 
models such as Probabilistic Neural Network20 and deep learning algorithms such as CNNs21, were also been 
used in insect sounds classification and detection. Some algorithms used raw audios as input22, whereas other 
models did rigorous pre-processing tasks, including Mel-frequency Cepstral Coefficients (MFCCs) features of 
audio waveforms20 to make their models more robust.

Mosquitoes produce unique and species-specific wing-beating sounds23. Numerous studies utilized publicly 
available mosquito wing-beating datasets, namely WINGBEATS24 and ABUZZ25 to classify different mosquitoes. 
A CNN model on ABUZZ dataset25 showed 97.65% accuracy for binary classification of Aedes aegypti, but for 
multi-class classification of twenty mosquito species, the average accuracy dropped to 78.12%26. A DenseNet-121 
based CNN model27 on WINGBEATS24 dataset achieved 96% accuracy to classify six mosquito species. The 
model extracted audio features and trained on six mosquito species from spectrograms. Moreover, a 1D CNN 
model with a combination of Long Short-Term Memory (LSTM) network28 can feed the raw wing beating audios 
directly into the network without any preprocessing procedures. However, raw audio signals contain only time-
domain information, and it is often difficult to obtain information about frequency distribution. Spectrograms 
have advantage over raw audio signals by considering the frequency distribution changes over time from two 
dimensions, which allows ML models to extract more features for the classification task. A Mel-spectrogram 
is a type of spectrogram where applied mel-scale in the frequency domain in a spectrogram29. Compared with 
the ordinary linear spectrogram, Mel-spectrogram is closer to the sound frequency recognition of the human 
ear, and the difference in the discrimination of low-frequency sounds is greater. Mel-spectrogram is the result 
of some non-linear transformation of the frequency scale which shows in Eq. (1), where f is the frequency.The 
mosquitoes’ wing beating frequency ranges between 100 and 1000 Hz30, which belongs to low-frequency sounds, 
so, transforming mosquito wing-beating audio sounds to Mel-spectrograms can obtain more useful information, 
so as to potentially perform better for classification tasks.

Wing beating sounds and relevant ML models have implications in mosquito systematics and potentiality in 
public health. Mosquitoes are the vector of numerous deadly pathogens, resulting in yellow fever, encephalitis 
viruses, malaria, West Nile virus, chikungunya, Rift Vally fever, dengue31,32. Besides, according to World Health 
Organization, every year millions of people get infected with mosquito-borne diseases worldwide and over 
400,000 deaths per year are resulted from the Malaria alone33. Specific mosquito genera and species spread 
specific types of diseases and before any species-specific control programs, it is necessary to classify mosquito 
species efficiently and robustly. The classification task will also be helpful to measure population density within a 
particular area and take necessary initiatives for an eco-friendly and sustainable mosquito control strategy. Gen-
erally, mosquitoes are classified based on their morphological features34 and individual sexes of each mosquito 
species show differences in their antennal features35. It is often cumbersome to distinguish mosquitoes only by 
tiny morphological features, and molecular identification methods such as mitochondrial DNA-based barcode 
technology36,37 become more effective way to distinguish different mosquito species. Both of the methods are 
expensive and time-consuming, need particular domain experts to perform the tasks. There is a need for ML 
models to identify suitable classifiers to classify mosquito species and also a robust model for detection.

The current study aims to build a Deep Neural Network based-classification model to classify different mos-
quito species. Wing beating sounds of six mosquito species of three different genera, namely Aedes, Anopheles, 
and Culex were collected from two different publicly available datasets, rigorously pre-processed, transformed 
into Mel-spectrograms. Later an augmentation method was applied, and tested on different architectures for 
species classification. Finally, a ResNet-based model WbNet was developed, with a combination of the self-
attention mechanism. Our robust model has implications in mosquito systematics tasks, and can be extended 
further for gender-based classification. The model can be deployed easily in different remote areas to monitor 
prevalence of specific mosquito species and will be helpful to prevent mosquito-borne diseases by developing 
species-specific control measures.

Results
From the spectrogram-based models, we found that our model, namely WbNet, has outperformed other ML 
models (Fig. 1). In Fig. 1, it is shown that except WbNet, ResNet-18 got the best accuracy of 89.1% for WING-
BEATS, whereas, ResNet-34 performed best for ABUZZ (98.3%). We also found that all models consistently 
well-performed on the ABUZZ dataset compared to the WINGBEATS dataset. For example, ResNet-18 got 
89.1% and 97.2% accuracies in WINGBEATS and ABUZZ. Moreover, we compared the ResNet models with 
two existing models (2-layer-CNN and DenseNet-121) on mosquito wing beating sounds. A multi-class clas-
sifier built on a 2-layer convolutional neural network26 got 81.9% and 86.9% accuracies on WINGBEATS and 
ABUZZ. Another DenseNet-121 based CNN model27 with our pre-processed data, got accuracies of 89.2% and 
96.1% on WINGBEATS and ABUZZ.

WbNet had been developed and implemented as a new ResNet-Attention model, for mosquito species clas-
sification problem. The WbNet model (shown in Fig. 4) is built upon ResNet-18 network, with residual blocks to 
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ensure efficient learning. A self-attention mechanism was also added within the model to persuasively capture 
the global spatial dependencies and solve the forgotten phenomenon of data—which might exist in relatively 
long audios. In addition, rigorous data pre-processing and data augmentation techniques had also been applied 
before feeding the data into our model. Our model achieved accuracies of 89.9± 0.15% and 98± 0.09% for 
WINGBEATS and ABUZZ respectively (Fig. 1). A detailed analysis based on each mosquito species is illustrated 
in Table 1. It is worthwhile to note that we did not report any accuracy in Table 1 as the Table illustrates the indi-
vidual performances for each species, i.e. locally, where accuracy and precision are used to report performances 
globally and locally respectively. Due to the nature of the evaluation matrix, precision is good fit for measuring 
individual performance for each mosquito species (accuracy measures general performance across all species).

Overall, we found that, Ae. albopictus species has the best classification scores in both datasets by showing 
100% precision, recall and F1-score for ABUZZ, and 91% Precision, 99% Recall, 95% F1-score for WINGBEATS. 
Even though there are marked discrepancies among different species classification scores, we showed that our 
classification model works well for ABUZZ data with near-perfect accuracy. In the WINGBEATS dataset, An. 
arabiensis got the lowest precision (67%), recall (69%), and F1-score (68%), whereas, Cu. pipiens has reached the 
highest precision of 96%, and Ae. albopictus reaches the highest recall of 99%. The results varied across different 
species due to the imbalanced nature of each dataset. For the ABUZZ dataset, as shown in Table 1, our model 
achieved 100% precision, recall, and F1-score for four species, namely Ae. albopictus, Ae. albopicyus, Cu. pipiens, 
and Cu. quinquefasciatus. Two confusion matrices are shown in Fig. 2 with predicted and ground-truth values 
on horizontal and vertical axes. As shown in the figure, diagonal numbers are correctly classified values and 
other numbers represent misclassified information. For example, there were 4983 true positive classifications 
for 5058 Ae. albopictus samples on WINGBEATS dataset. Overall, within total 69,893 samples in WINGBEATS, 
only 7036 cases are misclassified. For the ABUZZ dataset, most of the validation data were correctly classified 
by our model with only 2 misclassifications over 181 validation data. Overall, it has been found that our model 
performed better for the ABUZZ dataset compared to the WINGBEATS dataset.

Lastly, to improve model performance, we implemented a data augmentation technique by applying masks 
on both time domain and frequency dimensions on Mel-spectrograms to prevent overfitting, and make our 
model more stable and robust. We executed the augmented and original Mel-spectrogram data within the basic 
ResNet-18 and our WbNet models to test the impact and stability of out data augmentation method, where the 
result is shown in Fig. 3. We found that, the accuracy of the ResNet-18 model increased by 0.3% on the WING-
BEATS dataset. The performance of our WbNet model was further improved by 0.2% and 0.1% for WINGBEATS 
and ABUZZ.

Figure 1.   Models comparison with input: (a) raw audio waveforms, (b) pre-processed spectrograms.

Table 1.   WbNet evaluation metrics for different mosquito species.

Species

WINGBEATS dataset ABUZZ dataset

Precision Recall F1-score Precision Recall F1-score

Ae. aegypti 91 90 91 100 100 100

Ae. albopictus 91 99 95 100 100 100

An. arabiensis 67 69 68 100 95 97

An. gambiae 90 89 89 97 100 98

Cu. pipiens 96 93 94 100 100 100

Cu. quinquefasciatus 87 92 89 100 100 100
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Discussion
Our project aims to identify different species of mosquitoes by their unique wing beating sounds. We pre-
processed the wing beating sounds from two different datasets, tested numerous 1D and 2D ML models, and 
finally proposed our modified model, namely WbNet. The WbNet outperforms other existing models on wing 
beating sounds with the accuracies of 89.9% and 98.9% for respective datasets. A data augmentation method 
showed a slight increase (0.1–0.2%) in overall performances.

Our first experiment found more features in converted spectrograms than the raw audio sounds. Raw audios 
are 1D signals, which have memory recession during model progression and some of the spatial dependencies 
get lost during training. While raw audio contains only one-dimensional time-domain signal, the spectrogram 
covers both the time domain and frequency distribution information29. As a consequence, the subsequent experi-
ment with different ML models with 1D (raw audio) and 2D (spectrogram) inputs showed better accuracies for 
processed spectrograms. Our finding is similar to Fanioudakis et al27, where spectrograms inputs outperformed 
raw audios.

While comparing different 2D-input based models, namely 2-layer-CNN26, ResNet-1838, ResNet-3438, 
ResNet-5038 and DenseNet-12139, ResNet models performed best among the model. The CNN-based models 
preferentially gather local information to extract features. As the sound wave is a continuous period, some 

Figure 2.   Confusion matrix of WbNet on (a) WINGBEATS, (b) ABUZZ.

Figure 3.   Data augmentation on ResNet-18 and WbNet model, percentage increased shown in red.
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spatial dependencies in terms of global information needed to be considered to enhance the overall accuracies. 
Subsequently, we build our model on ResNet-18, which performed better than other CNN-based models. A pos-
sible explanation is—our model combines the advantages of both state-of-art CNN model and a self-attention 
mechanism. Our model considered both local and long-term features dependencies problems, which assisted 
the model to achieve more accurate classification results. Our model employed a self-attention mechanism 
through the allocation of weight parameters40, which is capable to capture the global information and works bet-
ter for feature extractions. Traditional attention mechanisms calculate attention scores by hidden states between 
source end and target end and assign different weights on different parts of input to extract the more important 
information. The self-attention mechanism put more weights on informative parts, which resulted in detailed 
attention rather than the whole input data41. It captures the dependencies within the source or target end itself, 
which solved the problem of ignoring dependencies within the source end in the traditional attention mechanism 
and kept other advantages from the traditional attention mechanism. Besides we applied a data augmentation 
technique into the model, which alleviated the overfitting problem and extended the training time, ensuring 
better accuracy. However, a DenseNet-121-based model27 resulted better (96%) accuracy than our model. While 
re-implementing their model with our processed spectrograms, the overall accuracy of that model drop to 89.2%, 
as shown in Fig. 1. The possible reason can be due to different parameter settings during spectrogram conversion 
or hyperparameters during training.

Besides, the learning rate setting was a crucial and challenging part of our model as the rate controls the speed 
of a neural network model to learn a problem in each step42. The discrepancies in learning values resulted in an 
unstable training process or sometimes lengthy training period42. A learning rate schedule is used to change the 
learning rate throughout the training process according to a pre-defined schedule. The reduction trend of the 
cosine learning rate was relatively slow at the beginning, decreasing faster in the middle, and decreasing slowly 
again until close to zero. As cosine learning rate schedule provides smooth and stable training results, we used 
the schedule to train our WbNet model.

Further, to increase model performance, a data augmentation method—SpecAugment43 has been added 
into the model to overcome the overfitting problem44. In our WbNet model, SpecAugment modifies the Mel-
spectrogram by masking both frequency and time domain channels and preventing over-fitting by deliberately 
giving some corrupted data—which increased the robustness of the network for mosquitoes’ wing-beating sound 
recognition. Data augmentation methods are widely used in mosquito classification models. A CNN-based 
model on mosquito images got a 23% increase in performance with data augmentation functions of vertical 
and horizontal flip, random rotation, and noise13. Another model got a 13.1% boost45 with data augmentation 
on the mosquito image data. Even though our model for spectrogram gets only 0.1–0.2% increase in overall 
performances, it showed some potential to utilize similar data augmentation techniques in sound-based clas-
sification tasks, to improve their performances.

Overall, raw audios based models provided better results for WINGBEATS than ABUZZ. WINGBEATS 
audios were short, 0.65 s in length, and captured with a sophisticated audio device, whereas ABUZZ data is 
longer in length, varies up to 5 min but captured on normal mobile devices within noisy environment. For 1D 
models, longer audios with noises might effect the feature extraction part of the model, causing degradation in 
model performance. Interestingly, for spectrogram-based models, we saw the opposite scenario of having better 
validation results for ABUZZ than the WINGBEATS. Due to the longer length, each ABUZZ audio was split into 
several segments where each segment was 10-s long. Thus, more data were generated for the ABUZZ dataset, 
and the classifier block learn more feature information than the WINGBEATS. Since WINGBEATS had lower 
features than ABUZZ, the deeper neural network models become prone to model overfitting problems, which 
might resulted in demotion of overall performance.

The current model will be beneficial for ongoing mosquito eradication programs to identify mosquito species 
prevalence in a target area and propose species-specific measures. As male mosquitoes have a higher wing-beating 
rate than female mosquitoes46, our model can be widely used to classify females mosquitoes, which are solely 
responsible for transmitting pathogens. Besides mosquitoes, the current model will serve as a baseline model to 
classify other insect-pest species, based on their unique sound features, e.g.—wing-beating, movement, feeding 
sounds, etc, and can be adopted for other audio-based classification tasks47. Lastly, the current study is based on 
audios, and we can only detect one species at one time. There is a scarcity of multi-species and gender-specific 
wing-beating datasets available online. Due to the lack of such a comprehensive dataset, we couldn’t implement 
and evaluate our model performance on those audios. Future directives of the present study can be constructing 
a comprehensive wing-beating dataset for multi-species and gender-based classification tasks.

Methods
Dataset.  Current study utilized two publicly available datasets, namely “WINGBEATS”24 and “ABUZZ”25. 
The “WINGBEATS” dataset contains raw audio sounds of six mosquito species of three different genera, 
namely—Ae. aegypti, Ae. albopictus, An. arabiensis, An. gambiae, Cu. pipiens, and Cu. quinquefasciatus. All data 
were collected individually from six different insectary boxes at the premises of Biogents, Regensburg, Ger-
many, and recorded by large aperture optoelectronic devices24. Each audio sound was 0.65 s in length, with a 
sample rate of 8000 Hz. The number of sound files ranging from 19,297 files for An. arabiensis to 85,553 files for 
Ae. aegypti. The second dataset, namely “ABUZZ” was collected from Mukundarajan et al.25. The dataset con-
tains wing-beating sounds of twenty mosquito species, spreading over four different genera. However, we only 
selected the six above-mentioned mosquito species to proceed further. Compared to the previous dataset, the 
number of sound files was low (8 files for Cu. pipiens to 66 files for An. gambiae) and all sounds contain a rela-
tively large amount of noises due to publicly sourced, mobile phone recorded audios. The length of most audio 
sounds varies up to 5 min, with sample rates of 8000 Hz and 44,100 Hz.
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Data pre‑processing.  From raw audio waves, we first inspected the amplitudes of the data waveform and 
detected silence or small noises which drastically affect the model performances due to the low magnitude. 
Hence, for noises with no overlapping part with the mosquito wing-beating sounds, we manually removed the 
segment using Audacity. For both datasets, we adopted unique filtering methods to ensure a uniform dataset for 
downstream tasks. Further, we padded the data using a ‘reflection padding’ method, where padding the data by 
reflecting it over the boarding axis. The reflection padding was used to reflect an audio wave into both left and 
right sides of an original audio wave, where the original audio wave worked as a mirror. It is useful for smooth 
transition of any audio waves. For the ABUZZ dataset, the number of audio samples was small but lengthy. We 
divided each audio of ABUZZ into multiple audio segments, to increase the sample number.

Further, we extracted Mel-spectrograms from the waveform audios and then fed Mel-spectrograms as input 
data into our network. Since an audio signal is a mixture of several frequency waveforms, we used Fast Fourier 
Transform (FFT) algorithm to transform the audios into individual frequencies. To derive the Mel-spectrogram, 
we converted the FFT into inter-connected audio segments and then stacked all FFT outputs together to address 
different frequencies of audio over the time domain. Later, to get the spectrogram, we log-transformed the 
frequencies and converted the unit of amplitude to decibels. Finally, we applied mel-scale through frequency to 
obtain Mel-spectrograms. All procedures were done using librosa48 library in python. Hence, Mel-spectrograms 
from audios with their corresponding class labels were stored as our input data and labels of the deep neural 
network.

Data augmentation is considered to increase the input audio signals for each species of mosquitoes by gen-
erating similar data without collecting more audio signals from scratch. The process works as a regulariser and 
reduces the chance of over-fitting when training the WbNet. For the data augmentation, we implemented a 
simplified version of SpecAugment43 directly on the processed spectrograms. We modified our spectrograms 
only by masking data features both on time and on frequency domains. We assumed the time length of an audio 
was τ , we chose a random number from 0 to τ as the starting point of a mask, and then select a random number 
t as the masking range, so that all features between t0 and t0 + t were masked. As shown in the SpecAugment 
part in Pre-processing at Fig. 4, the horizontal axis was the time domain, where the vertical black rectangle 
was the mask on the time domain. For frequency masking, we assumed that υ was the frequency channels, and 
we randomly selected a number f0 from 0 to υ as the starting point of the frequency masking and then chose 
a random number f as the range of the masking space. As a result, all features between the f0 and f0 + f  were 
masked. The masking value of 10 was selected randomly, for making the training results more stable. The overall 
formula is shown below.

Figure 4.   The architecture of our WbNet model.
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Implementation of 1D and 2D models.  We implemented different ML models on mosquito wing-beat-
ing sounds from both datasets. DenseNetMLP and 1D-CNN were re-implemented from previous studies27 on 
raw audio sounds, as they accept only 1D inputs. Further, we directly implemented our pre-processed Mel-spec-
trograms on different ResNet models, such as ResNet-1838, ResNet-3438, ResNet-5038, along with two existing 
models on mosquito wing-beating sounds (2-layer-CNN and DenseNet-12127). The transfer Learning method 
was applied to ResNet models to speed up training. While 2-layer-CNN26 model was built upon twenty-mos-
quito species, to be consistent across all analyses, we limit the inputs for six species of mosquitoes only.

Architecture of WbNet.  Our model contains a feature extractor and a classification block to classify pre-
processed spectrograms. The feature extractor was implemented in a combination with the ResNet-18 network 
and Self-Attention mechanism, which gathered the leverage of both Residual Networks and Attention. Residual 
Networks38 were adopted to solve the degradation problem, whereas the self-attention mechanism41 focused on 
the spatial dependencies. In general, an attention mechanism focuses on the all relevant features of an input data 
and the self-attention mechanism is a part of the WbNet architecture that focuses on different features of the 
winbeating audios in order to compute a better representation of the mosquito. In our model, a self-attention 
mechanism49 was stacked after every two residual blocks to extract more pivotal information and improve model 
accuracies, by minimizing computational and storage requirements.

In our model, ResNet-18 had been used as a basis. As shown in Fig. 4, in the feature extractor part, every 
orange block with a curve was a residual block. Residual blocks are important component of ResNet, where F 
and x denote block and input. We fed x into F to get the output F(x), and we applied a shortcut connection from 
input x to output F(x). A shortcut connection can skip some layers to obtain the final result of the element-wise 
addition of F(x) and x. Generally there are two shortcut connections in ResNet-18, called convolution shortcut 
connections (dotted curve) and identity shortcut connections (solid curve), as shown in the Feature Extractor 
block at Fig. 4. Dotted curve was used when output dimensions changed between two sub-blocks in the Feature 
Extractor block, otherwise we used a solid curve. As the dimension was changed for the dot curve, we expanded 
the input dimension to make them uniform with the output dimension before applying element-wise addition. 
In each sub-block, we had two convolutional layers with batch normalizations, where the ReLU activation func-
tion was used between the layers.

The self-attention mechanism41 helps our model to capture more important information through the alloca-
tion of weight parameters40. Within the self-attention mechanism (Fig. 4), three queries were gained from the 
dot products between weight matrices ( WQ,WK , and WV ) and input of convoluted features map X, where Q, K, 
and V denotes queries, keys, and values. The overall equation is illustrated in Eq. (2). Briefly, we first calculated 
the attention score by applying dot product between Q and K and then divided by 

√
dk  . 

√
dk  was a scale that 

prevented the result from the dot product of Q and K being too large. Later, softmax was applied to normalize 
the score into probabilities to check significant features. We applied the dot product again between the prob-
abilities and the V matrix to get the final score. The main idea for this step was to reduce unimportant features 
by keeping the attention of important features. In the end, we accumulated weights to produce the output of the 
self-attention layer.

For the classification block, we applied average pooling from feature extractor outputs to feed the features into 
a fully connected layer with 128 dimensions. We extracted the features into a 6-dimension fully connected layer 
applying the dropout technique50. The 6-dimension layer was considered due to six mosquito species. A dropout 
of 30% of units was used to prevent overfitting, which drops some neuron units randomly while training the 
network. Since the output of the fully connected layer was not normalized, a softmax activation function was 
introduced into our classifier to obtain the final classification probabilities for each species (Eq. 3). This func-
tion can convert a set of numbers into probabilities, which helped to represent a probability distribution over a 
set of discrete variables1. The equation of softmax is shown in Eq. (3), where z is the input vector of softmax; in 
our case, z is a vector of the output of a 6-dimension fully connected layer. Also, i is the ith element of input z; zi 
is the value of the ith elements, and K is the total element of vector z. Hence, we applied the softmax activation 
function on top of the 6-dimension fully-connected layer.

We also applied the cosine learning rate schedule51, to train our architecture. The mathematical form of the cosine 
schedule is shown in Eq. (4). In this equation, ηt is the learning rate in batch t, where T is the batches in total and 
η is the initial learning rate. In the cosine schedule, we scale the range of the learning rate values from zero to π.

SpecAugment =
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Experimental setup and performance evaluation.  All the models were implemented on NVIDIA 
GeForce RTX 2080ti GPU of 11 GB of memory, using python3.7 with supported libraries of Pytorch, librosa, 
pandas, and numpy. The datasets were split by 80% for training and 20% for validation. For WINGBEATS and 
ABUZZ, we trained for 100 and 150 epochs. The number of epochs was chosen by running the model with 
multiple different number of epochs, to avoid overfitting and underfitting problems. Besides, we used adam 
optimizer, ReLU activation function, and cross-entropy loss function, to evaluate model performances. In our 
experiments, adam optimizer showed better performance than other optimizers such as SGD, while cross-
entropy loss is proper to be used as a measurement in a classification model. We reported model performances 
using different evaluation matrices as shown in equations from 5 to 8. The evaluation matrices were calculated 
from confusion matrix. The confusion matrix is formed with True Positive or TP (both predicted values and 
actual values are positive), True Negative or TN (both predicted value and actual values are negative), False 
Positive or FP (predicted values are positive but actual values are negative), and False Negative or FN (predicted 
values are negative but actual values are positive) values. Accuracy (error between predicted and actual values), 
precision (dispersion of predicted values), and F1-score (harmonic mean of precision and recall) provide model 
performances at nominal values.

Data availability
The datasets analysed during the current study are available in Kaggle https://​www.​kaggle.​com/​datas​ets/​potam​
itis/​wingb​eats and Dryad data repositories https://​datad​ryad.​org/​stash/​datas​et/​doi:​10.​5061/​dryad.​98d7s. The 
codes, used in the current study, are available in github page https://​github.​com/​xuton​g30/​WbNet-​ResNet-​Atten​
tion.
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