
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports

Encryption technique based
on chaotic neural network space
shift and color‑theory‑induced
distortion
Muhammed J. Al‑Muhammed1* & Raed Abu Zitar2

Protecting information privacy is likely to promote trust in the digital world and increase its use. This
trust may go a long way toward motivating a wider use of networks and the internet, making the
vision of the semantic web and Internet of Things a reality. Many encryption techniques that purport
to protect information against known attacks are available. However, since the security challenges
are ever‑growing, devising effective techniques that counter the emerging challenges seems a
rational response to these challenges. This paper proffers an encryption technique with a unique
computational model that inspires ideas from color theory and chaotic systems. This mix offers a novel
computation model with effective operations that (1) highly confuse plaintext and (2) generate key‑
based enormously complicated codes to hide the resulting ciphertext. Experiments with the prototype
implementation showed that the proposed technique is effective (passed rigorous NIST/ENT security
tests) and fast.

Information security is an ongoing battle between security experts who strive for devising effective informa-
tion protection methods and hackers who work persistently to enhance their hacking techniques to breach the
information. This battle seems endless and any relaxation from the security experts probably leads to catastrophic
surprises. To tip the balance to their favor, security experts have proposed many encryption techniques with
different computational models. Traditional techniques use mathematical manipulations and static substitution
to encrypt information1–3. Biologically based techniques make use of the complexity of human DNA sequences
to hide the information4. Honey techniques protect the information through deceiving hackers by returning a
pleasing, but fake document when attempting the wrong key5,6.

Although current standard encryption techniques (e.g. AES) still provide enough protection against current
threats, the formidable advancements in cryptanalysis tools may soon challenge these techniques. How the
current encryption techniques can effectively face the increasing security challenges or even speculate on the
surprises these hacking tools may have is certainly unclear. In such a foggy setting, developing new techniques
with more sophisticated computational models sounds logically justifiable. It simply gives more options to
respond to emerging security challenges.

This paper offers an encryption technique with an innovative computational model. The technique uses a
chaotic space shift scheme to deeply transform plaintext symbols and shift them to a totally different domain
that does not correlate with the original. Furthermore, the technique uses operations whose computations are
based on principles inspired by the color theory. These operations use the encryption key to generate enormously
complicated codes that provide an impenetrable shield in which the ciphertext symbols are hidden. Combin-
ing chaotic systems with principles from color theory offers a unique encryption technique with an extremely
sophisticated computational model that can effectively protect information against hacking techniques.

The contributions of this paper can be summarized as follows. The paper proposes a space-shift scheme that
transforms the input blocks to ciphertext with high confusion and diffusion. Since the space-shift scheme is fun-
damentally founded on chaotic substitution and distortion operations, the confusion induced by the proposed
scheme largely outperforms that induced by current methods that rely on static substitution and symbol manipu-
lation. The paper also proposes a computationally-light method inspired by the color theory principles. This
method conservatively uses the key to generate enormously complicated codes for sealing the ciphertext symbols.

OPEN

1Faculty of Information Technology, American University of Madaba, Madaba, Jordan. 2Sorbonne Center of
Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, UAE. *email: m.almuhammed@aum.edu.jo

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14356-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

We present our contributions as follows. "Chaotic system: Lorenz chaotic system" Section introduces the
chaotic system and gives the details of o novel way for initializing the chaotic system parameters. Sections Space
chaotic shift process and Space chaotic shift process inverse discuss the space chaotic shift and its inverse. “Sec-
tion 5” presents the technical details of the color-theory and key based process for generating sealing codes.
“Section Encryption/decryption process” presents the encryption and decryption technique. We analyze the
performance of the proposed technique in “Section Performance analysis” and discuss the performance analysis
results in “Section Discussion”. We compare the proposed technique to state-of-the-art techniques in “Section 9”
and give concluding remarks and directions for future work in “Section Conclusions and future work”.

Chaotic system: Lorenz chaotic system
The Lorenz is a hyperchaos system with non-periodic behavior due to its high sensitivity to the initial
 conditions7–9. This property is ideal for cryptography techniques because it enables the generation of long
sequences of chaotic values without repeated patterns and any changes to the initial conditions results in very
different sequences. Lorenz system is defined by the differential equations (1)10–13.

The values a, b, and c are the parameters of Lorenz system. As reported in14, Lorenz system falls into a hyper-
chaotic state for a = 10, b = 8/3, and c = 28. The effective intervals for the initial variables x0 , y0 , and z0 are: x0 , y0 ∈
(−40, 40) and z0 ∈ (1, 80). To use Lorenz chaotic system, it must be discretized. Although many discretization
methods, we use the fourth-order Runge-Kutta method, which can be found in14.

The effective use of Lorenz system in cryptography requires binding the parameters (x0 , y0 , z0 , a, b, c) to
values computed using the key. To the best of our knowledge, all the encryption techniques that use Lorenz sys-
tem require users to provide additional values to initialize these parameters. One different way to bind Lorenz
parameters is to create a seed from the key and use it in one of the known random number generators to initial-
ize the parameters. This way is not cryptographically sound. First, the seeds for a random generator can hold
far fewer bits than available in the key, which means that the generator does not fully exploit the key. Second,
random number generators are not generally cryptography secure. This paper proposes an innovative technique
that fully exploit the key to automatically bind Lorenz system’s parameters.

Lorenz system initializer. The initializer is an efficient technique that securely exploits all the bits of the
key. Figure 1 delineates the initialization process. The proposed process computes values for Lorenz’s param-
eters using the key and it extremely sensitive to the key variations—a single bit change in the key causes drastic
changes to the computed values.

Although the process is well-documented (see Fig. 1), we briefly describe its core functionality. The input to
the process is the n-symbol key K, where each symbol is p bits. The output is three values for the parameters of
Lorenz chaotic system (x0, y0, z0) and three random noises for distorting the system coefficients (a, b, c). The
process uses the variables D, P, X, and K1 , which are initialized as specified. The list D is populated with the
integers from 0 to N–1 (N > 2p) and these integers are scattered using the operation Data-based-Reorder
(D) (Fig. 2). The variable X combines all the processed symbols of the key so that a change in any key symbol
necessarily causes changes to the all subsequent uses of X. The variable P is initialized with the leftmost 4 bytes
of the key K. The variable K1 is assigned the rest of the key’s bytes and its value is constantly updated at each
iteration by appending the ASCII character “ X Mod 2p ” to it.

The loop (7 through 26) binds the parameters of Lorenz system (x0, y0, z0) with appropriate values. Each itera-
tion of the loop involves randomizing P by calling Proc(P) operation, updating P by calling update(.) operation,
and indexing D using “P Mod N” to retrieve an integer and append it to Q. The local variable Q can be x0, y0 ,
and z0 . The operation Proc(.) randomizes its input using an XOR operation (∧) and a series of logical shifts (<<
or >>>). (Authors15 provided many possible assignment values for the shift amounts t1, t2 , and t3—e.g. 35, 21,
and 4.) The operation update (.) updates X using the input symbol T and then uses updated X to update P by left
shifting P by W and then XORing the outcome with X (W is the leftmost 3 bits of original P—before refreshing
its value).

Step 9 ensures that the leftmost digit of x0, y0 , and z0 is less than 8. That is because the rang of these three
variables is less than 80. Since x0 and y0 ∈ (−40, 40), the initializer interprets the value of Q as follows. For x0 and
y0 , if Q < 40 assign −1 ∗ Q to x0 or y0 else assign Q − 40 . Since z0 ∈ (1, 80), the value of Q is directly assigned
to z0 without further processing.

The instructions 27–29 compute noise values Nx ∈ [0, 1] for the parameters of Lorenz system (a, b, c). Each
noise Nx is computed by updating the variable P and dividing the value of the rightmost 24 bits by the maximum
value of 24 bits (i.e. 224).

Chaotic number generation. After initializing its parameters, the Lorenz system is used to produce three
random streams of numbers corresponding to the three parameters x, y, and z. For a maximum effectiveness of
the generated streams, the system is iterated for H times to ensure true transition to the chaotic state. After these
H iterations, the streams (Xi ,Yi ,Zi) are generated using formulas (2). Where floor(x) returns the closet integer

(1)

fx(x, y, z) =
dx

dt
= a(y − x)

fy(x, y, z) =
dy

dt
= cx − y − xz

fz(x, y, z) =
dz

dt
= xy − bz

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

to x and k represents the desired range of chaotic numbers (e.g. if the desired range is the integers 0...255, then
k =256).

Space chaotic shift process
Figure 3 shows the flow of control of the space chaotic shift process. It handles a plaintext block by repeatedly
executing (s times) the subprocesses S-Layer cNN, Chaotic Substitution, and Chaotic Muta-
tion. Each execution of these subprocesses enormously shifts the input symbols from the plaintext space to a
completely different space. As such, the process introduces maximum confusion to the encryption technique.

Finite Galois field GF(2p). The Galois field, denoted GF(2p) , contains a finite number of elements, where
these elements are integers mod p. We succinctly discuss some of the Galois field GF(2p) results and invite
respected readers to see16,17 for detailed discussion.

(2)

Xi = floor(xi × 1014)MOD k

Yi = floor(yi × 1014)MOD k

Zi = floor(zi × 1014)MOD k

Figure 1. Process for producing initial values for Lorenz chaotic system.

Z = 0
For i=1 to N Do

Compute a new location Z for the symbol D[i]
Z = (Z <<1) ^ D[(i+1) Mod N]

Move D[i] to the new location Z

Figure 2. Data-dependent reordering.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

Each element i ∈ GF(2p) is represented as an irreducible polynomial. For instance, the representation of
the decimal value 177 (10110001) is x7 + x5 + x4 + 1 . The four arithmetic operations addition, subtraction,
multiplication, and division are different from their intuitive meaning. The addition “+” and subtraction “–” of
two elements i1, i2 ∈ GF(2p) are performed as an XOR operation between these two elements (i1 ∧ i2). The mul-
tiplication (⊗) and division (/) are rather tricky. The multiplication of two elements is defined as a polynomial
multiplication for these two numbers modulo an irreducible polynomial in GF(2p). The division is defined like-
wise except that the first element is multiplied by the multiplicative inverse of the second element. We illustrate
the multiplication using an example from17—3F and A5 are two hexadecimal numbers.

Observe, since addition in GF(2p) is an XOR, the terms with even coefficients are eliminated. To find the
final result, we must mod the result (11000101000112) by the irreducible polynomial (1000110112) , which can
be done by long division with XOR (∧) in place of subtraction as follows.

Chaotic neural network subprocess (S‑Layer cNN). The S-Layer cNN subprocess consists of a net-
work of s layers and a processing logic that uses operations on Galois field. The s layers are chained in Hill cipher
manner, where the output of the layer Li is the input for the next layer Li+1 (after receiving additional processing).
Each layer Li is an n× n array whose entries are chaotic values from Galois field GF(2p) produced as follows. Let
(xj , yj , zj) be triples of chaotic numbers generated by the chaotic system. We compute new chaotic values wj =
MOD (floor〈(xj + yj + zj) * 1014 〉 , 2p) and assign them to Li . Where floor (t) returns the closest integer greater
than or equal to t and MOD is modulo operation. Note because of the module by 2p , wj are values in GF(2p).

The cNN subprocess manipulates an n-symbol input block Q (which is interpreted as a vector of n entries) and
produces a new n-symbol block R using the following matrix multiplication R = Lk

⊗

Q (or ri=
∑n

j=1 li,j
⊗

qj ,
i=1...n). The chaotic numbers li,j ∈ Lk and the characters qj of the input block Q are to be treated as values in the
field GF(2p). The sum (

∑

) and the multiplication (
⊗

) are operations on the field GF(2p)—not classical sum
and multiplication.

The processing logic for cNN subprocess is reversible. To restore the original block Q from R = Li
⊗

Q , the
inverse of Li is computed using the operations of GF(2p). The inverse can be computed using any of the Matrix
algebra techniques. By computing the inverse matrix L−1

i , Q can successfully be recovered by Q= L−1
i

⊗

R.
Figure 4 shows an example of the computation of the chaotic neural network. The top part of Fig. 4 shows

the result A(216, 49, 120, 167, 111) of multiplying the chaotic matrix L with the input vector Q(84, 97, 107, 101,
33). Each element of A is computed by multiplying a row of the matrix L with the vector Q. For instance, 216
= 48 ⊗ 84 + 210 ⊗ 97 + 152 ⊗ 107 + 155 ⊗ 101 + 182 ⊗ 33, where ⊗ and + are the multiplication and addition
under GF(2p) and are performed as described in “Section Finite Galois field GF (2p)”. The bottom part of Fig. 4
shows that the computation is reversible using the inverse of the matrix L−1.

Chaotic substitution subprocess. The chaotic substitution subprocess is defined in Fig. 5. The chaotic
behavior of the substitution subprocess is stimulated by Eq. (3), where m ∈ [1,∞) and xi is a long positive
integer. Equation (3) resembles the effective one-dimensional logistic chaotic map but with a better correla-
tion to the input symbols due to the way in which the parameter m is updated. As Fig. 5 shows, the operation
Update_m(ci) updates m using a input-dependent process. First, the processed input symbols c1c2...ci−1 are
accumulated by the variable Ac (initially zero) through Shift/XOR operations. The variable Ac is therefore a

3F ⊙ A5 = (00111111)2 ⊗ (10100101)2
= (x5 + x4 + x3 + x2 + x + 1)⊗ (x7 + x5 + x2 + 1)

= x12 + x11 + 2x10 + 2x9 + 2x8 + 3x7 + 2x6 + 3x5 + 2x4 + 2x3 + 2x2 + x + 1

= x12 + x11 + x7 + x5 + x + 1

= 11000101000112

11000101000112 mod 1000110112
= (1100010100011) ∧ (100011011)

= (100100010011) ∧ (100011011)

= (111001011) ∧ (100011011)

= 11010000 = D0 (the result of the multiplication)

Figure 3. The space chaotic shift process: flow of control.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

“memory” that remembers the impact of the previously processed symbols and passes this impact to influence
the processing of the current input symbol ci . Second, the parameter m is randomized using a series of Shift/XOR
operations that ensure deep bit-mixing. Third, m is updated by combining its previous value with the impact of
the effect-carrying memory Ac (the combination is performed via Shift/XOR operations). With this update to m,
the computational behavior of Eq. (3) is very sensitive to the input and chaotic.

The chaotic substitution substitutes the block c1c2...cn using Eq. (3) as outlined in Figure 5 (left-top box). The
parameters m and xi of the Eq. (3) are initialized to two chaotic values obtained from the chaotic system. The
input symbol c1 is substituted with the symbol d1 , which is computed using the initial values of xi and m since we
do not have any previous input symbols. The input symbols ci (i > 1) are substituted with the symbols di that are
computed using the updated values of xi and m. As such, the substitution of every input symbol cj is influenced
by the preceding input symbols ck (k=1... j − 1).

The chaotic substitution subprocess is reversible provided that m and x are initialized to the same values. (The
chaotic generator guarantees initializing m and x to the same values—used during the substitution—provided
that the correct encryption key is provided.) Figure 5 (left-bottom box) shows the algorithmic steps of Chaotic
Substitution subprocess Inverse, which effectively restores the plaintext block from the substituted block. The

(3)xi+1 = (x2i −m)

L⊗Q

48 210 152 155 182
50 171 145 85 150
255 73 56 30 9
10 138 92 202 135
81 100 127 110 255

⊗

84
97
107
101
33

=

216
49
120
167
111

= A

L−1 ⊗A =

114 20 −126 −56 −72
−60 −50 112 −12 119
98 67 −3 −67 31
31 100 99 −83 31
16 −111 17 −3 −59

⊗

216
49
120
167
111

=

84
97
107
101
33

= Q

Figure 4. An example of the chaotic neural network computation.

Figure 5. The chaotic substitution (top) and the chaotic substitution inverse (bottom).

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

inverse subprocess essentially performs the same steps as the Chaotic Substitution subprocess except that the
input is the substituted block.

Chaotic mutation subprocess. This subprocess increases the confusion of the block manipulation pro-
cess. The movement of a crawler within a two-dimensional space (called mesh) may invoke a destructive behav-
ior in the mutation subprocess that causes deep changes to the input symbols. We describe first the mesh and
then show how the crawler’s movement may stimulate the mutation subprocess’s destructive behavior.

The mesh. The mesh is an N × N space, denoted by MSH. Figure 6 (left) provides an example of the mesh. The
headers of the columns and the rows are labeled with ASCII codes from 0 to N − 1 . (N = 2p ; p is the number
of bits that represent the used symbols.) The codes of the columns/rows are randomly scattered by swapping the
content of the entries at indices i and zi , where zi is a chaotic value. A number M = N2/2× (1+ tv/2

p) of the
mesh’s entries are designated with the directives T and J, where tv is a chaotic value less than or equal to 2p . The
count of the T and J is specified as follows: M/2 of the Mesh’s entries are annotated with T and M/2 of the entries
are annotated with J. M/2 cells of the mesh are annotated with the directive T using M/2 chaotic indexes (i1, i2).
M/2 cells of the mesh are annotated with the directive J likewise. It is likely that some of the entries are anno-
tated by both T and J due to the chaotic annotation. Along with the annotated mesh, we envisage a crawler that
starts from an initial point (x, y) within the mesh and moves over the mesh’s cells according to logic to be made
precise later.(As we discuss next, the directive T triggers the mutation process while the directive J fuzzifies the
crawler’s move within the mesh.)

Figure 6 (right) also shows Trajectory—a variable determines a move direction. The Trajectory defines 8
direction flags, which constitute all the possible moves within the mesh starting from some cell. Half of the direc-
tion flags are bidirectional because they entail changes on the rows and the columns. The flag URC is an example
because a move along this flag causes the value of the rows’ index to decrease and the value columns’ index to
increase. The other half of the direction flags are unidirectional because they entail change on either the rows or
columns. The flag B is an example because moving along this flag causes the value of the row’s index to increase.

Mesh‑based chaotic mutation. The mutation subprocess processes the input block w1w2...wn using the algorith-
mic steps in Fig. 7. First, the crawler’s initial position (x, y) and the variables (IR, IC) are initialized with chaotic
values. When the mutation subprocess considers an input symbol wi , it triggers the Mutate(.) operation only if

Figure 6. The mesh MSH (left) and eight instances of trajectory (right).

Mutation Subprocess Mutate(wi)
Input w1w2...wn Let V1 = MSHr[IR]
Let (x, y) be an initial point in the mesh MSH Let V2 = MSHc[IC]
Let (IR, IC) be two chaotic indexes Let V3 = V1 ⊗ V2
Repeat i = 1 to n Return ui = wi ⊗ V3
If MSH[x, y] = T
Trigger Mutate (wi)↗

If MSH[x, y] = J /*Chaotic Jump*/
Trigger Chaotic-Jump()↘ Chaotic-Jump()

x, y, IR, IC = Next-Move (x, y, IR, IC , wi) Obtain two chaotic values (q1, q2)
END Mutation Subprocess x = x ∧ q1, y = y ∧ q2

Figure 7. The mutation subprocess.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

the crawler’s current position (x, y) is annotated with T (i.e. if MSH[x, y] =T). When invoked, Mutate(.) uses the
variable IR to index the row’s headers (denoted by MSHr[IR]) to obtain a symbol V1 and uses the variable IC to
index the column’s headers (denoted by MSHc[IC]) to obtain a symbol V2 . It uses then the values V1 and V2 to
mutate the input symbol wi using Galois multiplication (⊗) operation as illustrated in the figure.

The mutation subprocess updates the crawler’s position by executing the operations Chaotic-Jump() and
Next-Move(). The operation Chaotic-Jump() is conditionally executed: if the current cell of the mesh
(MSH[x, y]) is annotated with J. If executed, Chaotic-Jump() uses chaotic values to distort the crawler’s
current position. It does so by XORing the current position (x, y) with a pair of chaotic values (q1, q2) obtained
from the chaotic system. The Next-Move() operation whose algorithmic steps are defined in Fig. 8 imposes
an input-dependent update to both the crawler’s current position (x, y) and to the variables (IR , IC) regardless
whether MSH[x, y] is annotated with J. Referring to Fig. 8, Next-Move() executes the routine Compute-
Velocity() to produce the velocity Vr or Vc or both depending on the value of Trajectory[SELD]. (SELD is
initialized to a chaotic value and updated as shown in Fig. 8.) When Trajectory[SELD] is unidirectional and
equals U or B, the routine computes Vr by performing Galois multiplication (⊗) between the input symbol b
and the coordinate x. When Trajectory[SELD] is unidirectional and equals L or R, the routine computes Vc by
performing Galois multiplication (⊗) between the input symbol b and the coordinate y. When Trajectory[SELD]
is bidirectional however, the routine computes Vr and Vc by respectively multiplying (⊗) the coordinate x with
the value of the right half bits of b (i.e. by b Mod 2p/2) and multiplying the coordinate y by the value of the left
half bits of b (i.e. by b / 2p/2).

The Next-Move(.) operation uses the computed velocities Vr and Vc to update the value of either x or y or
both based also on Trajectory[SELD]. When the Trajectory[SELD] is a unidirectional flag (U,B, L, or R) only
x or y is updated. For instance, if Trajectory[SELD] = U (direction of the move is “up”) only x is updated by sub-
tracting the velocity Vr ; no changes to y because the move is along the same column. When Trajectory[SELD] is
bidirectional (ULC, BLC, URC , or BRC), both x and y are updated. For instance, if Trajectory[SELD] = ULC
(direction of the move is “upper left corner”), x and y are updated by subtracting the velocity Vr from x and the
velocity Vc from y. The velocities Vr and Vc are also used to update chaotic indices IR and IC through an XOR
operation as illustrated in Fig. 8.

According to the Figs. 7 and 8, the Mutation subprocess is data and encryption key dependent. The input
symbols influence the move of the crawler within the mesh because these symbols are used to calculate the
velocities and to update the variable SELD , which affects how the current position of the crawler is updated. The
encryption key also controls the move of the crawler. The Chaotic-Jump() operation shoots the crawler’s cur-
rent position within the mesh using chaotic values generated based on the key. The key determines the number
of the directives T and J and their topology (distribution) within the mesh. Each key impacts the number of the
directives J and T and their topology within the mesh differently. More T-annotations cause more input sym-
bols to be processed and more J-annotations cause more chaotic changes to crawler’s position, largely affecting
which symbols to be processed. The topology of T and J also determines which symbols in the input block to
be processed. This dual-dependency of the mutation subprocess on the input and key makes it so effective in
inducing a great confusion in the output.

The mutation subprocess is reversible. Figure 9 delineates the inverse steps. Note, the inverse mutation sub-
process executes roughly the same steps as the mutation subprocess. The key difference is that in the mutation
subprocess inverse, the input symbol ui is divided by V3 instead of multiplied.

Figure 8. Computing the next move parameters: algorithmic instructions.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

Space chaotic shift process inverse
This process reverses the impact of the space chaotic shift process and restores the plaintext block. The inverse
process uses pretty similar processing steps as the space chaotic shift process (Fig. 3) with some modifications.
First, the inverse process uses the inverse of each subprocess. Second, the inverse process executes the inverse
subprocesses backwards. Therefore, if we denote inverse of the chaotic mutation subprocess by C−M , the inverse
of the chaotic substitution subprocess by C−S and the inverse of the chaotic neural network subprocess layer Li by
L−1
i , the sequence of the execution would be ≺ C−M �→ C−S �→ L−1

s ≻ �→ · · · �→ ≺ C−M �→ C−S �→ L−1
1 ≻.

Sealing layer
The sealing layer generates key-based enormously complicated codes that seal the ciphertext symbols and greatly
confuse the ciphertext (the output of the space shift stage). Figure 10 shows the core components of this layer and
the flow of control. The sealing layer receives the encryption key, which is processed by the Diffusion stage.
The Input Expansion stage expands the diffused key to a sequence of d bytes. The Distortion stage uses
the left d1 bytes of the output sequence and generates hiding codes. The right d2 bytes are fed back to the diffu-
sion stage for producing more expanded sequences. To impose more confusion on the input of the Diffusion
stage, the d2 bytes feedback are noised by padding chaotic values to it (obtained from stream Z of the chaotic
generator). The number of padded chaotic values can be between 0 and d2 (the length of the feedback) and this
number is determined by the first chaotic number to be padded as follows. If H is the first chaotic value, the
number of chaotic values to be padded to the feedback is “H Mod d2 ”. This chaotic noise is extremely important
because it greatly varies the input to the diffuser, which complicates the generated key-based sealing codes. The
following subsections present the technical details of the sealing layer stages.

Diffusion stage. The diffusion stage processes its input in many rounds as illustrated in Fig. 11. Each round
executes forward and backward bit-mixing along with a chaotic substitution.

The forward bit-mixing handles the input b1b2...bn using substitution and XOR instructions. The symbol b1 is
handled by XORing (“∧ ”) it with a value uk provided by the controller and the outcome of the XOR operation is
substituted using the Substitute() operation to yield c1 . The symbols bi (i > 1) are handled by XORing each
symbol bi with the previous symbol ci−1 and then substituting the outcome of the XOR operation. The backward

Mutation Inv Scheme Mutate-Inv (ui)
Input u1u2...un Let V1 = MSHr[IR]
Let (x, y) be an initial point in the mesh MSH Let V2 = MSHc[IC]
Let (IR, IC) be two chaotic indexes Let V3 = V1 ⊗ V2
Repeat i = 1 to n Return wi = ui / V3 (Galois Division)

If MSH[x, y] = T
Trigger Mutate-Inv (ui)↗

If MSH[x, y] = J /*Chaotic Jump*/
Trigger Chaotic-Jump() →−�···→− Chaotic-Jump()

x, y, IR, IC = Next-Move (x, y, IR, IC , wi) Obtain two chaotic values (q1, q2)
END Mutation Inv Scheme x = x ∧ q1, y = y ∧ q2

Figure 9. The mutation inverse scheme.

Figure 10. The sealing layer stages.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

bit-mixing uses similar logic except that it starts from the end of the input block c1c2...cn . It handles the symbol
cn by XORing it with a value uk+1 provided also by the controller and substitutes the outcome. The remaining
symbols are manipulated using similar logic as the forward bit-mixing.

The Substitute() operation substitutes its input argument ti using a stochastic behavior. This operation
uses a 64-bit variable x (initialized with a chaotic value) to accumulate the impact of the previously processed
input symbols through an XOR operation (x ∧=ti). The stochastic behavior is induced by a system of XOR-Shift
operations that randomize the variable x. (The values of a, b, and c are specified as in15.) The Substitute()
operation processes its input argument ti by first randomizing the variable x using the system of XOR-Shift and
then multiplying ti by “x mod 2p ”. Respected readers should interpret “ ⊗ ” as the multiplication in Galois field
GF(2p). Additionally we take “mod 2p ” since each input symbol consists of only p bits.

The diffusion stage is the primary source of confusion for the sealing layer. The bidirectional bit-mixing
enables the diffusion stage to detect the change wherever occurs in the input and transmit this change back
and forth to cover all the output symbols, causing every output symbol to change. The stochastic substitution
operation props the sensitivity of the bit-mixing. Because the accumulator variable x collects the impact of all
previously processed input symbols, any change in the previously processed symbols impacts the substitution of
the subsequent input symbols. This props the sensitivity of the forward/backward bit-mixing due to embedding
variations of the input in the processed symbols.

Input expansion stage. The sealing code generation requires continuous expansion of the key to produce
arbitrary length hiding codes. Although literature has reported many techniques that can expand a sequence
of n symbols to a longer sequence (e.g.18,19), this paper utilizes SHA-51220. SHA-512 is a one-way, fast, and
has high avalanche effect; making it a perfect choice for key expansion. It hashes a string S with a size of � bits
(0 ≤ � ≤ 2128) and produces a corresponding hash value of length 64 bytes (512 bits). (The technical details of
SHA-512 is beyond the scope of the paper and interested readers are kindly referred to21.) We use the leftmost
48 bytes as an input to the Distortion stage and the right 16 bytes as a feedback to Diffusion stage for
producing more sequences.

Distortion stage. The distortion stage uses an effective computational model whose functionality is based
on physical principles inspired by the color theory. In particular, the distortion stage uses computations that are
based on the color theory to generate distortion values and trigger distortion operations that consume the gen-
erated distortion values to deeply distort the input symbols. As Fig. 10 shows, the distortion stage continuously
consumes two triples (x, y, z) and (u, v, w) and produces an output triple (sealing code).

The controller. Figure 12 outlines the inputs and the outputs of the controller. The controller generates four
control signals (Map, Map-Distort, Distort-Map, and Skip) that adjust the functionality of the map-
ping distorter—i.e. determine how the mapping distorter processes its input triples. The four control signals are
described in Table 1. The controller generates these four signals using two fundamental themes inspired from
the Color theory: relative luminance and color contrast ratio22,23. Given an input triple (x, y, z), which can be

Figure 11. The diffusion stage processing logic.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

interpreted as a triple of color code RGB (red, green, blue), the controller computes the relative luminance for
this triple using Eq. (4)23.

Where, the linear values R (red), G (green), and B (blue) are computed for the triple (x, y, z) using the logic (5)
proposed by23. Note, the computation assumes 8-bit representation for x, y, and z.

Given the relative luminance L, the Color theory provides a way to compute the contrast ratio CR between
two color triples E1 (r1, g1, b1) and E1(r2, g2, b2). Specifically, we compute first the relative luminance LE1 and
LE2 for respectively E1 and E2 using Eq. (4) and then combine them (LE1 and LE2) using Eq. (6) adopted from22.

(4)L = 0.2126 ∗ R + 0.7152 ∗ G + 0.0722 ∗ B

(5)

Rs =
x

255

Gs =
y

255

Bs =
z

255

IF (Rs ≤ 0.03928) R =
Rs

12.92
ELSE R =

(

Rs + 0.055

1.055

)2.4

IF (Gs ≤ 0.03928) G =
Gs

12.92
ELSE G =

(

Gs + 0.055

1.055

)2.4

IF (Bs ≤ 0.03928) B =
Bs

12.92
ELSE B =

(

Bs + 0.055

1.055

)2.4

Figure 12. The controller logic.

Table 1. The control signals generated by the controller.

Signal Semantic

Map This signal enables mapping the triple (u, v, w) to the layer without distortion.

Map-Distort Post-Distortion: this signal enables mapping the triple (u, v, w) to the layer and then distorting the outcome of the mapping.

Distort-Map Pre-distortion: like Map-Distort except that the triple is distorted first then mapped to the layer.

Skip The triple skips all subsequent layers and is passed to the output (i.e. no mapping to the current layer nor to the subsequent
layers).

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

As mentioned in22, the contrast ratio CR can assume any value in the range [1...21], where 1 indicates no
contrast and 21 indicates the maximum contrast. The controller uses the contrast ratio CR and its value range
to generate four control signals according to the scheme (7).

In addition to generating the control signals, the controller uses the contrast ratio to generate the values ui
using the logic in Fig. 13. These values are used to support the functionality of the mapping distorter and the
diffusion stage. As Fig. 13 shows, the generation of ui uses the Xorshift RNGs algorithm15, which operates on the
input Seed. The Seed is created by XORing the variables CR64 and Initial64 , where CR64 is the leftmost 64 bits
extracted from the fraction part of the contrast ratio (CR) and Initial64 is a 64-bit variable whose initial value
is zero. The Xorshift RNGs is repeated L times to produce L values ui . After generating the values ui(i = 1...L) ,
the variable Initial64 is updated by XORing its current value with the recent value of the Seed. This means that
generating new values ui(i = 1...L) is necessarily affected by not only the current CR64 , but also by the previous
values of CR64 , which are accumulated in the variable Initial64.

The mapping distorter. The mapping distorter consists of a sequence of m layers (see Fig. 14). The output
of the current layer is the input for the next one. The connectors between the layers are called mapping links.
Each layer Li consists of 2p cells filled with the integers 0...2p–1, where p is the maximum number of bits that
represent the used symbols. For instance, if the maximum number of bits is 8, the 2 8 cells are populated with
the integers 0...255. The entries of each layer Li are independently scattered using a sequence of chaotic numbers
from the chaotic system.

(6)CR =

{

LE1+0.5
LE2+0.5

, IfLE1 > LE2;
LE2+0.5
LE1+0.5

, Otherwise;

(7)Signal =

“Map′′, IfCR ≤ 1;

“Map− Distort′′, IfCR ≤ 6;

“Distort −Map′′, IfCR ≤ 12;

“Skip′′, Otherwise;

Figure 13. Process for producing the values ui (i = 1...L).

Figure 14. The mapping distorter layers.

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

Mapping a triple (u, v, w) to a layer Li is performed in a natural way: each element of the triple (u, v, w) indexes
one of the cells of Li . The content of the indexed cells (Li[u] , Li[v] , Li[w]) yields a new triple (u′, v′,w′), which
provides input to both the next layer Li+1 and the controller.

The mapping distorter declares a set of distortion operations (Table 2). These operations distort the outcome
of the mapping process, making this process non-linear. The distortion operations are placed in a list and reor-
dered using a sequence of chaotic values obtained from the chaotic system. The mapping distorter chooses the
operations for manipulating the input triples using three state variables f, s, and t, where these variables select
distortion operations to respectively process the first, the second, the third element of the input triple. The initial
values for (f, s, t) are zeros. These variables, however, are updated using the scheme (8) before using them for
operation selection. (The valuesu1 , u2 , u3 are generated using the contract ratio.)

The mapping distorter defines three distortion levels for the input triple (u, v, w). Levels 1, 2, and 3 distort
respectively only one element, only two elements, or all the three elements of the triple. Because the triple has
three elements, there are 7 different configurations: distort only one element (3 configurations), distort two ele-
ments (3 configurations), and distort the three elements (1 configuration). To select any of these configurations,
the mapping distorter uses the logic (9). The state variable q is initially zero, but updated—prior to any use—using
q = ((q<< 1) ∧ u4) Mod 2p , where u4 is obtained from the contrast ratio ("The controller" section).

After describing each component of the distortion stage, we explain how it works. Figure 15 summarizes the
distortion stage flow of control. The input to the distortion stage is two triples (x, y, z) and (u, v, w), where the
first triple is directed to the controller while the second is directed to both the controller and mapping distorter.
The output of the distortion layer is a new triple (u′, v′,w′).

The controller generates a control signal and produces the values ui (i=1...L), where the first four ui(i = 1...4)
are used to update the values of the state variables f, s, t, and q. The mapping distorter maps the triple (u, v, w)
to its layers Li (i=1...m) according to the control signal. If the received control signal is Skip, the mapping dis-
torter does not process the input triple (u, v, w) and passes it to the output without modification. If the signal is
Map, the triple is mapped to the current layer Li . If the signal is Distort-Map, the mapping distorter uses the
state variable q to determine the level of the distortion(one, two, or the three elements of the triple) and uses the
variables f, s, and t to select the distortion operations. The number of selected operations depends on the level of
the distortion. For instance, if the level is to distort three elements of the triple, the variables f, s, and t are used
to select three distortion operations. The distorted triple is then mapped to the layer Li (after being distorted).
The same logic applies if the control signal is Map-Distort except that the triple is mapped to the layer Li and
then the outcome of the mapping is distorted.

This process is repeated for each layer Li of the mapping distorter except if the signal is Skip. (Because the
control signal Skip interrupts the mapping and the triple is passed to the output without additional mappings.)
Therefore, if there are more layers to map the triple to, the distortion layer updates (u, v, w) to the latest produced
value and repeats the processing for the next layer Li+1.

Encryption/decryption process
Figure 16 delineates the proposed encryption technique. The Chaotic System uses the key to generate three
streams (X, Y, Z) of chaotic values for supporting the functionality of the encryption different processes. The
three streams (X, Y, Z) are combined as to described in “Section Chaotic neural network subprocess (S-Layer
cNN)” for populating the entries of the cNN layers Li ’s and then for initializing the two parameters (x, m) of the

(8)
f = ((f << 1)∧u1)Mod2p

s = ((s << 1)∧u2)Mod2p

t = ((t << 1)∧u3)Mod2p

(9)

Switch(q)

Case < (2q/7) ∗ 1 : distort the first element in the triple
Case < (2q/7) ∗ 2 : distort the second element in the triple
Case < (2q/7) ∗ 3 : distort the third element inthetriple
Case < (2q/7) ∗ 4 : distort first/second elements in the triple
Case < (2q/7) ∗ 5 : distort first/third elements in the triple
Case < (2q/7) ∗ 6 : distort second/third elements in the triple
Case < (2q/7) ∗ 7 : distort all elements in the triple

Table 2. The bitwise distortion operations.

Operation Semantics

Left-Rotate (x, k) Left rotate the bits of x for k positions, where k =1, 2...p–1

Mutate (x, u5) XOR the input symbol x with u5
Swap(x) Swap the left half of bits of the input x with the right half bits of x

FlipSwap(x, u8, e)
Flip the left/right half bits of x by XORing them with the left/right half bits of u8 and swap the left half bits of x with
the right half bits. Selecting which half to flip is based on e ={0 (left), 1 (right)}

ReplaceWith (x, u6) Replace x with a value u6.

L-ShiftXOR(x, u7) Left shift x by 1 position and XOR the result with u7 . The resulting integer is confined by taking Module 2p

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

chaotic substitution map (3). Second, once the cNN layers and the parameters (x, m) are initialized, the streams
X and Y of the chaotic generator are directed to support the operations of Chaotic Mutation subprocess and
while the stream Z supports the operations of Sealing Layer.

The encryption technique processes the input plaintext in n-symbol blocks. The Space Shift processes each
block in s iterations (s is the number of the neural network layers Li). At any iteration i, the Space Shift processes
the input block using the layer Li (of the chaotic Neural Network, cNN) and then distorts the output of the layer
Li using Chaotic Substitution and Chaotic Mutation operations. Because both the chaotic substitution and chaotic
mutation are nonlinear and chaotic, they have a very sophisticated computational behavior that highly confuses
the input. The output of the chaotic shift receives further confusion by the sealing layer. The sealing layer hides
the output symbols by XORing them with enormously complicated key-dependent codes.

Figure 17 shows the decryption process. The initialization step follows the same steps of the encryption except
for the need to compute the inverse of the layers of the chaotic neural network. Once the process is initialized,
the decryption process restores the plaintext block using the inverse of the encryption operations (see Fig. 17).
The decryption process first handles the ciphertext block using the Sealing Layer to remove the key impact. The
output of the Sealing Layer goes through a sequence of operations: Chaotic Mutation Inv⇀Chaotic Substitution
Inv⇀cNN-Inv layer. Each Inverse operation removes the impact of the corresponding encryption operation on

Figure 15. The flow of control of the distortion stage. Note we show only one layer of mapping distorter to
simplify the presentation.

Figure 16. The encryption process.

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

the block. Note, the decryption process applies the layers of the “cNN-Inv” backwards: from the layer L−1
s down

to the layer L−1
1 .

Performance analysis
We evaluate in this section the performance of the proposed technique. We first analyze the important proper-
ties of the sealing code layer. Specifically, we analyze the entropy, avalanche effect, and the randomness of the
sealing codes. These are very important properties and the sealing code must have high entropy, high avalanche
effect, and random to be effective. We next evaluate the performance of the encryption technique by running
different security tests on the ciphertext.

Sealing code performance. The test case consists of a large set of 128-bit keys. For better matching the
possible distribution of the keys in real-world applications, we used 2500 random keys generated using the
service (passwordsgenerator.net), 170 handcrafted keys, 3278 low entropy keys. The low entropy keys
(3278) were generated using an input key of all zeros as follows. We created 128 keys by flipping only the ith bit
of the input key (i=1...128). The rest of the keys are created by flipping j bits at random positions of the input key
(j=2, 3, 4, 5...64). By flipping only up to half of the key, we kept the resulting keys with low entropy.

The sealing code layer used each of these keys to generate large sealing code sequences. Each sequence is
of 128,000 symbols—each symbol is 8 bits. Since the execution of the diffuse stage and the mapping distorter
(two subprocesses in the sealing layer) depends on the number of rounds and the number of mapping layers, we
analyzed the impact of rounds and the mapping layers on the overall performance of the sealing layer. Therefore,
the sealing layer was executed several times for different values of the rounds and the mapping distorter layers.
Figures 18 and 19 shows the performance of the sealing layer in terms of two important performance metrics:
entropy (Fig. 18) and autocorrelation (Figs. 19). The numbers represent the average over all the sequences. The
figures show a general improvement pattern: the values of the entropy improve (getting closer to the ideal value
1) and the values of the autocorrelation improve (getting closer to 0) as the number of rounds and the number
of mapping distorter layers increase. However, examining the figures, one can see that there is no significant
improvement beyond the 4 round (DIF-4) and 4 mapping distorter layers. Since increasing the number of rounds
and mapping layers entails an increase in the execution time, we fixed the number of rounds to 4 and the number
of mapping layers to 4. We refer to this configuration by the effective configuration.

Table 3 shows the results of the ENT random test on the sequences that were generated using 4 rounds for
the diffuse stage and 4 layers of the mapping distorter. The table shows the result of five important ENT random-
ness tests. The entropy is close to 1 (the ideal values for bit sequence), the Chi-square values indicate that the
sequences are random, the estimation for π is close to the actual value with a tiny error (please see24 for ENT
test values interpretation). The serial correlation coefficient is sufficiently small (close to 0) and the arithmetic
mean is close to the ideal value 0.5. These ENT test results indicate that the sequences generated by the sealing
layer does not deviate from random.

To effectively examine the avalanche effect of the proposed technique, we used a low entropy 128-bit key of
all zeros. We then constructed different perturbed keys by flipping bits at random positions of the low entropy
input key. Due to the prohibitively large possibilities, the number of flipped bits is 1, 2, 3, 4, 8, 12, 16, 24, 32, 64,
96. For each number of flipped bits, we constructed 20 perturbed keys. For instance, we constructed different 20
perturbed keys, where each key is created by flipping the input key in a single random position. The sealing code
layer produced, for each key, a code sequence of 1024 symbols (8192 bits). In addition, when the sealing code
layer produced the code sequence, it used the effective configuration (4 rounds for the diffuse stage and 4 layer
for the mapping distorter). We computed Hamming distance between the sequence generated using the input

Figure 17. The decryption process.

15

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

Figure 18. The entropy as a function of number of diffuse stage rounds (DIF-i) and the number of mapping
distorter layers.

Figure 19. The autocorrelation as a function of number of round (DIF-i) and the number of mapping distorter
layers.

Table 3. ENT’s randomness tests.

Randomness Test Test output (stream of bits)

Entropy 0.9999982

Chi-square Test 54.531%

Arithmetic Mean 0.50785

Monte Carlo Value for Pi (π) 3.1414260 (Err. −6.7×10−5)

Serial Correlation Coefficient −0.00056

16

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

key and the sequences generated using its corresponding perturbed keys. (Hamming distance is the number of
bit differences between two sequences at the corresponding positions).

Figure 20 shows the average avalanche effect based on the number of flipped bits. As the figure shows, the
minimum average avalanche exceeds 5000 bits difference. This means when we change a bit or more in the input
key, the bit difference between the sequence generated from the input key and the sequence generated from its
perturbed key exceeds half of the length of the sequence (8,192 bits). The confidence intervals around the aver-
age—represented by the error bars—show that there is no significant difference in the average of bit difference
when the number of the flipped bits changes. These numbers are indicative and show that the sealing code layer
has a large avalanche effect.

Security analysis. This section presents the performance analysis of the proposed encryption technique.
Successful testing considers all the parameters that impact the performance of the technique. These parameters
include key variations, plaintext variations, and the entropy of the plaintext and the key. National Institute for
Standards and Technology has provided a well-designed framework for thoroughly examining the performance
of encryption techniques25,26, which include the following three sets of data.

1. Key Avalanche Data Set Examines the impact of the key’s changes on the randomness of the resulting cipher-
text (fixed plaintext).

2. Plaintext Avalanche Data Set Examines the impact of the plaintext’s changes on the resulting ciphertext (fixed
key).

3. Plaintext/Ciphertext Correlation Data Set Examines the correlation between plaintext/ciphertext pairs (high
correlation means bad security).

We created the above three sets consistently with the specification25. For the key avalanche, we created and
analyzed 1200 sequences of size 524,288 bits each. We used a fixed low entropy 4096-bit plaintext of all zeros
and 1200 random keys each of size 128 bits. Each sequence was constructed by concatenating 128 derived blocks
created as follows. Each derived block is constructed by XORing the ciphertext created using the fixed plaintext
and the 128-bit key with the ciphertext created using the fixed plaintext and the perturbed random 128-bit key
with the ith bit modified, for 1 ≤ i ≤ 128 . For plaintext avalanche, we created and analyzed 1200 sequences of size
524,288 bits each. The construction of the sequences is similar to the construction of the key avalanche set except
we used 1200 random plaintexts of size 4096 bits and a fixed low entropy 128-bit key of all zeros. For plaintext/
ciphertext correlation, we constructed 800 sequences of size 614,400 bits. Each sequence is created as follows.
Given a random 128-bit key and 1200 random plaintext 512-bit blocks, a binary sequence was constructed by
concatenating 1200 derived blocks. A derived block is created by XORing the plaintext block and its respective
ciphertext block. Using the 1200 (previously selected) plaintext blocks, the process is repeated 799 times (one
time for every additional 128-bit key).

We ran the NIST battery of randomness test on the above three data sets. Tables 4 and 5 show the results
presented in terms of the number of sequences that passed a specific test (Success) and their percentages (Rate%).
The used level of significance is α = 0.05 , which means ideally no more than 5 sequences out of 100 may fail
a corresponding test. In practice, however, any set of data is likely to deviate from this ideal. To consider this,
we computed an upper bound on the number of the sequences that may fail using the formula (10)25. (In for-
mula (10), S is the total number of sequences and α is the level of significance.) The upper bounds are presented
in the column “M.Fail”.

Figure 20. The average avalanche effect as a function of number of flipped bits.

17

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

The performance numbers in Tables 4 and 5 showed a high percentage pass. More than 96% of the key/
plaintext data set sequences and more than 95% of the plaintext/ciphertext data set sequences passed the NIST
randomness tests. The number of sequences that failed any of the randomness tests is much less than the maxi-
mum number that is expected at a significance level of 0.05.

Tables 6, 7, and 8 show the ENT battery of randomness tests results. These tests give additional insights about
the performance of the proposed technique. Referring to these tables, the entropy is so close to 1 (ideal value is
1). The arithmetic mean is close to 0.5 (ideal exactly 0.5). Having a very close approximation for the π , with an
error magnitude of 10−4 , using Monte Carlo method indicates very good randomness of the sequences. Finally,
the serial correlation is so close to zero (ideally zero), which statistically indicates that there is no dependency
between a bit and its predecessor.

(10)Max Failure = S.(α + 3.

√

α(1− α)

S
)

Table 4. NIST’s random test figures: Key/Plaintext Avalanche.

Test

Key Avalanche Plaintext Avalanche

M.FailSuccess (Rate%) Success (Rate%)

Runs 1200 (100%) 1200 (100%) 82.65

Monobit 1192 (99.3%) 1200 (100%) 82.65

Spectral 1156 (96.3%) 1162 (96.8%) 82.65

Serial 1189 (99.08%) 1200 (100%) 82.65

Cumulative Sums 1172 (97.6%) 1165 (97.1%) 82.65

Non-Overlapping Template Matching 1196 (99.7%) 1196 (99.7%) 82.65

Overlapping Template Matching 1186 (98.8%) 1188 (99%) 82.65

Linear Complexity 1200 (100%) 1183 (98.5%) 82.65

Binary Matrix Rank 1184 (98.7%) 1178 (98.2%) 82.65

Maurer’s “Universal Statistical” 1181 (98.4%) 1185 (98.6%) 82.65

Approximate Entropy 1193 (99.4%) 1193 (99.4%) 82.65

Longest Runs of Ones in a Black 1191 (99.2%) 1195 (99.6%) 82.65

Table 5. NIST’s random test figures: Plaintext/Cipheredtext Correlation.

Test Success (Rate%) Max Failure

Runs 798 (99.7%) 55.1

Monobit 800 (100%) 55.1

Spectral 765 (95.6%) 55.1

Serial 788 (98.5%) 55.1

Cumulative Sums 781 (97.6%) 55.1

Non-Overlapping Template Matching 775 (96.9%) 55.1

Overlapping Template Matching 792 (99.0%) 55.1

Linear Complexity 776 (97.0%) 55.1

Binary Matrix Rank 776 (97.0%) 55.1

Maurer’s “Universal Statistical” 783 (97.9%) 55.1

Approximate Entropy 789 (98.6%) 55.1

Longest Runs of Ones in a Black 798 (99.7%) 55.1

Table 6. ENT Test results (Key Avalanche).

ENT Test Average value Min/Max value

Entropy 0.999998 0.9997901/1.00

Chi-square 57.098 53.133/62.453

Arithmetic Mean 0.5003538 0.4918323/0.5035560

Monte Carlo estimation of π Err. 2.9E−4 Err. 1.87E−6/3.33E−3

Serial Correlation 4.1E−5 3.9E−6/2.44E−4

18

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

Security attacks resistance. We analytically demonstrate that the proposed technique is effective against
critical types of attacks. We specifically show why the proposed encryption method can resist deferential and
classic attacks.

Deferential attacks. Differential attacks are so effective and very challenging to encryption techniques. They
can exploit vulnerabilities due to the lack of effective confusion that can hide the key identity. Therefore, if the
encryption technique does not induce enough confusion to hide the patterns of the key, attackers can flip one or
more bits in plaintext and observe the differences in the values of the bits between the two ciphertexts to identify
a pattern that helps crack the encryption technique27. The proposed encryption technique uses the key either to
initialize the chaotic system parameters or to generate the sealing code. The initialization process ("Chaotic sys-
tem: Lorenz chaotic system" section) applies nonlinear operations to generate initialization values. These opera-
tions ensure deep manipulations of the key through key splitting and constant randomization-update operation.
The key trace (pattern) is consequently eliminated. The sealing code layer also uses the key. The key is deeply
processed using a one-way expansion algorithm and a distortion operation whose functionality is controlled by
color theory principles. As analyzed in "Sealing code performance" section, the output of the sealing layer has
very high entropy, is random, and has a high avalanche effect (flipping a bit forces more than 1

2
 of the output bits

to change).

Classic attacks. Classic attacks involve four powerful types: ciphertext-only, known-plaintext, chosen-plain-
text, and chosen-ciphertext attacks. Although all of these attacks can seriously threaten the encryption tech-
nique, chosen-plaintext attack is the most effective one27–29. If the encryption technique can resist this attack, it
can resist the others30.

The proposed encryption technique resists the chosen-plaintext attacks due to both the space chaotic shift
and the sealing layer. The space chaotic shift processes plaintext using three nonlinear subprocesses . The chaotic
neural network subprocess makes deep changes using chaotic numbers and irreducible operations of Galois
field. The chaotic substitution intensifies the confusion through nonlinear substitution for the symbols of the
input. In particular, the chaotic substitution subprocess uses plaintext to induce chaos in the substitution due
to the enhanced logistic map equation. The chaotic mutation imposes chaotic and fine-grained changes to the
symbols. The output, therefore, is sharply different and not correlated to the input due to the accumulated con-
fusion induced by these three nonlinear operations. The sealing code layer produced key-based code sequences
that are random with high entropy and avalanche effect. The contribution of the sealing code layer is additional
confusion resulted from the variations of the key. This additional confusion makes it impossible for hacking
techniques to locate and follow any patterns that may lead to knowing the input plaintext.

Time complexity analysis. The major merit of the proposed technique is that the two principal compo-
nents—the space chaotic shift and the sealing layer—are completely independent. They can work in a parallel
mode. Therefore, we analyze the time complexity for each and consider the maximum complexity of the two as
the complexity of the technique.

The space chaotic shift process consists of three subprocesses. The chaotic neural network subprocess multi-
plies a matrix with a vector of n entries (the input block). The complexity of this multiplication is O(n), where n is
the input size. The chaotic substitution subprocess handles its input block (n symbols) using simple operations—
XOR, integer multiplication, and logical shift. Each of these simple operations is O(1) and consequently, the total
time is O(n). The chaotic mutation subprocess includes operations that access the mesh by directly indexing a cell
or two, XOR operation, and multiplication under Galois field. These operations are simple and each is O(1). We

Table 7. ENT Test results (Plaintext Avalanche).

ENT Test Average value Min/Max value

Entropy 0.999988 0.9998475/1.00

Chi-square 61.199 57.995/63.333

Arithmetic Mean 0.4998363 0.4989756/0.5099671

Monte Carlo estimation of π Err. 6.08E−4 Err. 1.0E−5/5.23E−3

Serial Correlation 8.7E−5 1.7E−6/8.76E−4

Table 8. ENT Test results (Plaintext/Ciphertext Correlation).

ENT Test Average value Min/Max value

Entropy 0.9999899 0.9997601/1.00

Chi-square 60.053 59.111/64.377

Monte Carlo estimation of π Err. 4.7E−4 Err. 6.3E−4/8.072E−4

Serial Correlation 5.01E−5 1.20E−6/7.104E−3

19

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

have additionally a one-time initialization for the neural network nodes and for initializing the Lorenz chaotic
system parameters. These operations are linear and upper bounded by O(n). Based on this, the complexity of
the space chaotic process is linear and has an upper bound of O(n).

The sealing layer process consists of also three subprocesses. The diffusion stage executes XOR, logical shift,
Galois field multiplication. These operations are simple and each is O(1). Therefore, for an input block of n sym-
bols, the complexity of the diffusion stage is upper bounded by O(n). The input expansion stage uses SHA-512
hashing algorithm. The algorithm is known for its time efficiency and therefore its complexity is upper bounded
by O(n). The distortion stage involves integer value arithmetic operations (addition, division, and multiplica-
tion) each of O(1). It also involves XOR, logical shift, and direct indexing for the mapping distorter layers. These
operations, however, are simple and of O(1). The one-time initialization for the mapping distorter layers is of
O(m), where m is the size of each layer (the size of each layer is typically small and of 256 integers). Accordingly,
the complexity of the sealing layer is linear and upper bounded by O(n).

According to the definition of Big-O, the time complexity of the proposed technique is O(n). To the best of
our knowledge, there is no encryption technique whose computational model is less than O(n) (including AES19).
Figure 21 shows the time required for different input sizes (megabytes). The hardware specification was an Intel
Core i5 with 4GB memory and windows 10 (OS). The bars represent the time required by the space chaotic shift
process to produce its final input. The curve represents the time required by the sealing layer to generate a sealing
code sequence of the same size as the ciphertext. The curve and the bars are increasing roughly linearly. This is
consistent to a large extent with the complexity analysis. Although the figure shows that the sealing layer requires
a bit more processing time than the space chaotic shift, this extra time is not significant.

Discussion
We discuss now the experimental results presented in "Performance analysis" section. Based on the results in
Tables 4 and 5, the output (ciphertext) of the proposed technique passed the NIST randomness tests due to the
high percentage of sequences that passed each randomness test and the low parentage of sequences that failed.
Referring to Tables 4 and 5, one can see that the number of sequences that failed an individual test is less than
the maximum number of sequences that may fail a test (as estimated by the NIST formula 10). Additionally, the
results of ENT randomness tests shown in Tables 6, 7, and 8 indicate that the method output is random. The well-
established NIST framework, which was used to test the standard encryption technique competition, states that
encryption techniques whose output passes the defined randomness tests are considered effective. Accordingly,
since the proposed technique passed all the randomness tests with the number of failed sequences less than the
maximum number of sequences that may fail, it then is effective.

The experimental analysis of the effectiveness of the proposed technique is supported also by the theoretical
analysis ("Security attacks resistance" section). The high entropy and avalanche effect of the key sequence gener-
ated by the sealing layer ensure that the key is secure27. Furthermore, we showed in "Security attacks resistance"
section that our technique can resist a chosen-plaintext attack. Based on28,29, if the technique can resist a chosen-
plaintext attack, it can resist all other types of attacks.

According to our discussion in "Time complexity analysis" section, the technique is time-efficient. The theo-
retical analysis for the time showed that the technique has linear time complexity. This is indicated by the upper
limit of the time complexity O(n). This theoretical analysis (in terms of Big-O) is well supported by the time
measurements in Fig. 21, which plots the time requirement for encrypting text files of varying sizes. One can

Figure 21. The time (milliseconds) for processing different input sizes.

20

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

observe that the time required for encrypting each file increases as the size of the file increases, but this time
increase is pretty linear.

To further examine the time performance of the proposed technique, we compared it to state-of-the-art
encryption techniques. In particular, we used two standard algorithms AES and DES as a base for time per-
formance comparison. Because the proposed technique was implemented in Java, we also used the Java imple-
mentation of AES and DES so that we have similar software platform. The hardware platform was an Intel Core
i5, 4GB memory, and Windows 10. We executed the proposed technique and the two baseline techniques on
inputs with different sizes. (The techniques AES and DES were executed using ECB mode.) For each input, we
executed each technique 20 times and recorded the average over the 20 runs. Figure 22 plots the average execu-
tion time for the proposed technique and the two baseline techniques. (Table 9 shows the average execution time
numbers rounded to the closest integer). As can be seen, DES required longer time than AES and the proposed
technique for all the input sizes. The proposed technique and AES required almost the same time for input sizes
up to 2MB. However, the execution time of the proposed technique becomes slightly better (shorter) than the
execution time for AES for larger input sizes (>2MB). These numbers indicate that the proposed technique has
an execution time similar to the time required by state-of-the-art techniques and can be widely used for real-
world applications. Although it would be more comprehensive to compare the proposed technique with more
encryption techniques, we think that the comparison with AES and DES provides sufficient evidence for the
time efficiency of the proposed technique. (AES and DES are standard, have an efficient implementation in Java
platform, and AES is known for its execution time efficiency31.)

Related works
This section compares the proposed technique to state-of-the-art techniques. In the comparison, we show the
properties of the computational model of each technique and then compare these models with the computational
model of the proposed technique.

Chaotic systems provide a significant foundation for cryptographic applications due to their hypersensitiv-
ity to the initial conditions and input parameters. Slight modifications to the initial conditions or the inputs
produce unpredictable behavior32,33. Although chaotic systems are mostly used in image cryptosystems, their

Figure 22. The execution time for proposed, AES, and DES for different input sizes.

Table 9. The execution time for proposed, AES, and DES for different input sizes

Input size AES Proposed DES

100KB 120 98 380

250KB 123 111 487

500KB 209 218 811

1MB 262 251 905

2MB 817 800 1001

4MB 1388 1289 1509

6MB 2203 2122 2705

8MB 2544 2455 3111

10MB 4397 4203 5400

12MB 5737 5528 6799

21

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

hypersensitivity and unpredictability are certainly applicable to text cryptosystems34,35. The techniques17,36–40
used chaotic systems for inducing enough confusion in the resulting ciphered image. The authors41 proposed
a color image encryption technique based on one-time keys and robust chaotic maps. This technique used a
linear piecewise chaotic map to generate the keys with a real random generator. The proposed technique29 used
cyclic shift and sorting to permutate the image bits and produce high confusion. The proposed technique42 used
dynamic piecewise coupled mapping lattice, which generates good chaotic behavior that induces large confu-
sion in the resulting ciphered image. In43, the proposed image encryption technique used a semi-tensor product
matrix along with a Boolean network as fundamental operations for encrypting images. Fractal Sorting matrix
(FSM) with global chaotic pixel diffusion is proposed in44. Based on the FSM and global chaotic pixel diffusion,
this paper constructs a more efficient and secure chaotic image encryption algorithm than other approaches.
Hybrid chaotic mapping and dynamic random growth techniques are used in45. These chaotic noises are used to
increase the security of the technique and its resistance against classical attacks (e.g. chosen-plaintext).

Non-chaotic encryption techniques (e.g.46) use the “manipulate-and-mask” principle to produce the neces-
sary confusion and diffusion for the technique. The manipulation part is ensured by operations such as static
substitutions, permutations, and shifting. The mask part depends on the encryption technique and ranges from
producing key-based code through performing simple manipulations on the key using patterns such DNA
sequences. The techniques19,31,47–49 use static substitution and mathematical manipulations to generate sufficient
confusion that boosts the security of the ciphertext. The use of the key is restricted to generating a sequence
of key-based symbols that are XORed with the ciphertext symbols. The generation process for the key-based
symbols depends also on static substitution, symbol swap, and shift operations. DNA-based techniques make
use of the sophisticated structures of the DNA sequences of living beings50–52. These techniques first manipulate
their input using manipulation operations and then hide the resulting messages within the complicated human
genomic DNA. As such, the security of such methods is built only partially on the manipulation operations but
mainly on the complexity of the DNA. The proposed technique53 is based on chaotic maps along with DNA
coding. This method has two powerful operations that increase its effectiveness: the confusion of the pixels by
transforming the nucleotide into its base pair for random times and the generation of the new keys according
to the plain image and the common keys. Authors54 proposed a novel image encryption scheme based on DNA
sequence operations and a spatiotemporal chaos system to encrypt images.

Authors also proposed many important neural network based encryption techniques. Authors55 proposed
a double image encryption algorithm based on convolutional neural network and dynamic adaptive diffusion.
The technique ensures the security of double image and improves the encryption efficiency and reduces the
possibility of being attacked. The technique proposed in56 uses continuous-variable quantum neural network to
induce high confusion and thus secure the ciphered images.

Honey encryption techniques57–59 are designed to withstand the brute-force attacks. The idea is to respond
intelligently to incorrect key attempts with a decryption that yields a plausible, but fake document. This way
attackers will be confused and have no clue whether they actually getting the right plaintext.

The proposed technique substantially differs from these techniques and has better security. Although the
“manipulate-and-mask” techniques show reasonably high diffusion and confusion, they lack the capabilities
of the proposed method. First, the proposed method utilizes a chaotic-driven scheme that makes the substitu-
tion and replacement inherently chaotic. This is significantly more effective than a pure static substitution and
deterministic manipulation operations. The DNA techniques capitalize on the complexity of the DNA sequences
to secure the information. The proposed technique, however, has a robust computational model that produces
complicated hiding code that resembles the DNA sequences. The hiding code production is based on the encryp-
tion key, which fits perfectly with the main objective of encryption “the encryption security is fully built on the
key”. The Honey techniques base their security on the ability to confuse attackers. The proposed technique uses
better techniques that significantly raise the confusion due to chaos driven behavior. Additionally, the proposed
technique is more general. The Honey techniques are applicable only on short plaintext.

Conclusions and future work
The paper presented an encryption technique. The encryption technique includes the space-shifting operations,
which uses chaotic behavior (e.g. chaotic neural network and chaotic substitution) to greatly eliminate structural
relation to the plaintext. The technique also includes a sealing layer, which uses principles from the color theory
and chaotic systems to produce highly complicated codes for forcing further confusion in the ciphertext. The
performance of the technique is thoroughly tested using data sets that consider the key/plaintext variations and
entropy. The randomness tests (NIST and ENT batteries) showed high performance. Large ratio of the sequences
passed the randomness tests.

The proposed technique has several merits. First, the space chaotic shift process uses three principal sub-
processes. Each subprocess has a nonlinear functionality that makes drastic changes to its input. The chaotic
neural network substitutes the input symbols by mixing these symbols with chaotic layers using additions and
multiplication in Galois field GF(2p) . The chaotic substitution substitutes the input symbols by influencing them
using data-dependent chaotically generated values. Each input symbol is influenced by handling it along with
the chaotic value using an XOR operation. The chaotic mutation imposes micro changes (bit-level) changes to
the symbol using chaotic operation. The collective impact of the thee subprocesses results in a large confusion to
the output. Second, the encryption technique is lightweight (time-wise) and can produce maximum confusion
using only four rounds. For instance, the sealing layer needed only four rounds to produce a code sequence that
passed tests of entropy, avalanche, and randomness (please see Figs. 17, 18, and Table 3). Third, both the chaotic
system parameters initializer and the sealing code layer conservatively use the encryption key to effectively hide
its identity. The chaotic system parameter initializer applies partial splitting, randomization, and shift-XOR

22

Vol:.(1234567890)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

operation to process the key. The sealing layer uses the diffusion stage and other color theory-based operations
to avoid having any trace of the key in the resulting sealing code.

We have two directions for future work. We plan to use more test cases. We also plan to use our technique in
image encryption. We think that this method is likely to outperform the current image encryption techniques
because it has a powerful ability to induce confusion and high bit-distortion capabilities.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 21 December 2021; Accepted: 6 June 2022

References
 1. Acla, H. B. & Gerardo, B. D. Security analysis of lightweight encryption based on advanced encryption standard for wireless sensor

networks. In 2019 IEEE 6thInternational conference on engineering technologies and applied sciences (ICETAS), 1–6 (2019).
 2. Singh, P. & Kumar, S. Study & analysis of cryptography algorithms: RSA, AES, DES, T-DES, blowfish. Int. J. Eng. Technol. 7(15),

221–225 (2018).
 3. Al-Muhammed, M. J. & Abuzitar, R. Mesh-Based Encryption Technique Augmented with Effective Masking and Distortion

Operations. In Intelligent Computing (eds Arai, K. et al.) 771–796 (Springer, Cham, 2019).
 4. Niu, Y., Zhao, K., Zhang, X. & Cui, G. Review on DNA Cryptography. In Bio‑inspired Computing: Theories and Applications (BIC‑

TA 2019) Vol. 1160 (eds Pan, L. et al.) 134–148 (Springer, Singapore, April 2020).
 5. Moe, K. S. M. & Win, T. Enhanced honey encryption algorithm for increasing message space against brute force attack. In 2018

15th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI‑
CON), pages 86–89, (2018).

 6. Juels, A. & Ristenpart, T. Honey Encryption: Security beyond the brute-force bound. In Advances in Cryptology‑EUROCRYPT
2014 Vol. 8441 (eds Nguyen, P. Q. & Oswald, E.) 293–310 (Springer, Berlin, Heidelberg, May 2014).

 7. Chen, Y. The existence of homoclinic orbits in a 4D Lorenz-type hyperchaotic system. Nonlinear Dyn. 87(3), 1445–1452 (2017).
 8. Kondrashov, A. V., Grebnev, M. S., Ustinov, A. B. & Perepelovskii, V. V. Application of hyper–chaotic Lorenz system for data

transmission. J. Phys. 1400(4), 044033 (2019).
 9. Wang, X. et al. A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62, 615–621 (2010).
 10. Zhang, Y., Wang, Z., Liu, X. & Yuan, X. A DNA-based encryption method based on two biological axioms of DNA chip and poly-

merase chain reaction (PCR) amplification techniques. Chemistry 23, 13387–13403 (2017).
 11. Wang, X. & Wang, M. A hyperchaos generated from Lorenz system. Physica A 387, 3751–3758 (2008).
 12. Zhang, F. & Zhang, G. Dynamical analysis of the hyperchaos Lorenz system. Complexity 21, 440–445 (2016).
 13. Yong, Z. A chaotic system based image encryption scheme with identical encryption and decryption algorithm. Chin. J. Electron.

26(5), 1022–1031 (2017).
 14. Li, W., Wang, C., Feng, K., Huang, X. & Ding, Q. A multidimensional discrete digital chaotic encryption system. Int. J. Distrib.

Sens. Netw. 14(9), 1–8 (2018).
 15. Marsaglia, G. Xorshift RNGs. J. Stat. Softw., 8(14), (2003).
 16. Stallings, W. Cryptography and network security: Principles and practice. Pearson, 8th edition, (July 2019).
 17. Thoms, G. R. W., Muresan, R. & Al-Dweik, A. Chaotic encryption algorithm with key controlled neural networks for intelligent

transportation systems. IEEE Access 7, 158697–158709 (2019).
 18. Al-Muhammed, M. J. A novel key expansion technique augmented with an effective diffusion method. J. Comput. Fraud Secur.

2018(3), 12–20 (2018).
 19. Daemen, J. & Rijmen, V. The design of Rijndael: AES–the advanced encryption standard. Springer‑Verlag,(2002).
 20. Federal Information Processing Standards Publication 180-3. Secure Hash Standard, (2008). http:// csrc. nist. gov/ publi catio ns/ fips/

fips1 80-3/ fips1 80-3_ final. pdf.
 21. Gueron, S., Johnson, S. & Walker, J. SHA-512/256. In Proceedings of the eighth international conference on information technology:

New generations, pages 354–358, Las Vegas, NV, USA, (2011). IEEE.
 22. Anderson, M., Motta, R., Chandrasekar, S. & Stokes, M. Proposal for a standard default color space for the internet-sRGB. In

Proceeddings of4thColor and imaging conference final program 238–245 (Scottsdale, Arizona, 1996).
 23. Stokes, M., Anderson, M., Chandrasekar, S. & Motta, R. A Standard default color space for the internet–sRGB, version 1.10.

Technical report, Hewlett–Packard, (1996).
 24. Walker, J. ENT: A pseudorandom number sequence test program, Fourmilab: Switzerland, (2008). https:// www. fourm ilab. ch/

random/.
 25. Soto, J. et al. Randomness testing of the AES candidate algorithms, (1999).
 26. Lawrence, E., Andrew, L., Rukhin, J. S, Nechvatal, J. R., Smid, M. E., Leigh, S. D., Levenson, M., Vangel, M., Heckert, N. A. & Banks,

D. L. A Statistical test suite for random and pseudorandom number generators for cryptographic applications. Special Publication
(NIST SP) ‑ 800‑22 Rev 1a, September (2010).

 27. Wang, X. & Gao, S. Image encryption algorithm ased on the matrix semi-tensor product with a compound secret key produced
by a Boolean network. Inf. Sci. 539, 195–214 (2020).

 28. Khalid, B. K., Guohui, L., Sajid, K. & Sohaib, M. Fast and efficient image encryption algorithm based on modular addition and
SPD. Entropy, 22(1), (2020).

 29. Wang, X., Feng, L. & Zhao, H. Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019).
 30. Wang, X., Teng, L. & Qin, X. A novel colour image encryption algorithm based on chaos. Signal Process. 92(4), 1101–1108 (2012).
 31. Patil, P., Narayankar, P., Narayan, D. G. & Meena, S. M. A comprehensive evaluation of cryptographic algorithms: DES, 3DES,

AES, RSA and Blowfish. Proc. Comput. Sci. 78, 617–624 (2016).
 32. Kumar, M., Saxena, A. & Vuppala, S. S. A survey on chaos based image encryption techniques Vol. 884 (Springer, Cham, 2020).
 33. Su, Z., Zhang, G. & Jiang, J. Multimedia security: A survey of chaosbased encryption technology, pages 99—124. Multimedia-A

Multidisciplinary Approach to Complex Issues. InTech, (2012).
 34. Wang, X. Y. & Gu, S. X. New chaotic encryption algorithm based on chaotic sequence and plaintext. ET Inform. Secur. 8(3), 213–216

(2014).
 35. Nesa, N., Ghosh, T. & Banerjee, I. Design of a chaos-based encryption scheme for sensor data using a novel logarithmic chaotic

map. J. Inform. Secur. Appl. 47, 320–328 (2019).
 36. Wu, X., Zhu, B., Hu, Y. & Ran, Y. A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps.

IEEE Access 5, 6429–6436 (2017).
 37. Abanda, Y. & Tiedeu, A. Image encryption by chaos mixing. IET Image Process 10(10), 742–750 (2016).

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/

23

Vol.:(0123456789)

Scientific Reports | (2022) 12:10410 | https://doi.org/10.1038/s41598-022-14356-x

www.nature.com/scientificreports/

 38. Kocarev, L., Makraduli, J. & Amato, P. Public-key encryption based on Chebyshev polynomials. Circ. Syst. Signal Process. 24(5),
497–517 (2005).

 39. Amani, H. R. & Yaghoobi, M. A new approach in adaptive encryption algorithm for color images based on DNA sequence opera-
tion and hyper-chaotic system. Multimed. Tools Appl. 78, 21537–21556 (2019).

 40. Babaei, M. A novel text and image encryption method based on chaos theory and DNA computing. Nat. Comput. 12, 101–107
(2013).

 41. Liu, H. & Wang, X. Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10),
3320–3327 (2010).

 42. Wang, X. & Yang, J. A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling
coefficient. Inf. Sci. 569, 217–240 (2021).

 43. Wang, X. & Gao, S. Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced
by a Boolean network. Inf. Sci. 539, 195–214 (2020).

 44. Xian, Y. & Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021).
 45. Wang, X., Liu, L. & Zhang, Y. A novel chaotic block image encryption algorithm based on dynamic random growth technique.

Opt. Lasers Eng. 66, 10–18 (2015).
 46. Belazi, A. et al. Efficient cryptosystem approaches: S-boxes and permutation-substitution-based encryption. Nonlinear Dyn. 87,

337–361 (2017).
 47. Ren, W. & Miao, Z. A Hybrid Encryption Algorithm Based on DES and RSA in bluetooth communication. In Proceedings of the2nd

international conference on modeling, simulation and visualization methods, pages 221–225, Sanya, China, (May 2010). IEEE.
 48. Schneier, B. Description of a new variable-length key, 64-bit block cipher (Blowfish). In Fast Software encryption, Cambridge security

workshop, Cambridge, UK, December 9‑11, 1993, Proceedings, volume 809 of Lecture Notes in Computer Science, pages 191–204.
Springer, (1993).

 49. Modi, B. & Gupta, V. A Novel security mechanism in symmetric cryptography using MRGA. In Progress in intelligent computing
techniques: Theory (eds Sa, P. et al.) 195–202 (Springer, Singapore, 2018).

 50. Weiping, P., Danhua, C. & Cheng, S. One-time-pad cryptography scheme based on a three-dimensional DNA Self-assembly
pyramid structure. PLoS One 13(11), 1–24 (2018).

 51. Cui, G., Han, D., Wang, Y. & Wang, Z. An improved method of DNA information encryption. In Bio‑inspired computing‑theories
and applications Vol. 472 (eds Pan, L. et al.) 73–77 (Springer, Berlin, Heidelberg, 2014).

 52. Kals, S., Kaur, H. & Chang, V. DNA cryptography and deep learning using genetic algorithm with NW algorithm for key genera-
tion. J. Med. Syst. 42(1), 17 (2018).

 53. Liu, H., Wang, X. & Kadir, A. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12(5),
1457–1466 (2012).

 54. Wang, X.-Y., Zhang, Y.-Q. & Bao, X.-M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers
Eng. 73, 53–61 (2015).

 55. Man, Z., Li, J., Di, X., Sheng, Y. & Liu, Z. Double image encryption algorithm based on neural network and chaos. Chaos, Solit. &
Fract. 152, 111318 (2021).

 56. Shi, J. et al. An approach to cryptography based on continuous-variable quantum neural network. Sci. Rep. 10, 2107 (2020).
 57. Yin, W., Indulska, J. & Zhou, H. Protecting private data by honey encryption. Security and communication networks, 2017:9 pages,

(2017).
 58. Yoon, J. W., Kim, H., Jo, H. J., Lee, H. & Lee, K. Visual honey encryption: Application to steganography. In Proceedings of the3rd

ACM workshop on information hiding and multimedia security, pages 65–74, Portland, Oregon, USA, (2015). ACM.
 59. Juels, A. & Ristenpart, T. Honey encryption: Security Beyond the Brute–Force Bound. In Q. Nguyen Phong and O. Elisabeth, edi-

tors, Advances in Cryptology–EUROCRYPT, volume 8441 of Lecture Notes in Computer Science, pages 293–310. Springer, (2014).

Acknowledgements
The authors appreciate the support for this work provided by the Thales Group through the context of the
Endowed Chair of Excellence Project-SCAI-Sorbonne University, Abu Dhabi.

Author contributions
Both authors contributed equally to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.J.A.-M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Encryption technique based on chaotic neural network space shift and color-theory-induced distortion
	Chaotic system: Lorenz chaotic system
	Lorenz system initializer.
	Chaotic number generation.

	Space chaotic shift process
	Finite Galois field GF().
	Chaotic neural network subprocess (S-Layer cNN).
	Chaotic substitution subprocess.
	Chaotic mutation subprocess.
	The mesh.
	Mesh-based chaotic mutation.

	Space chaotic shift process inverse
	Sealing layer
	Diffusion stage.
	Input expansion stage.
	Distortion stage.
	The controller.

	The mapping distorter.

	Encryptiondecryption process
	Performance analysis
	Sealing code performance.
	Security analysis.
	Security attacks resistance.
	Deferential attacks.
	Classic attacks.

	Time complexity analysis.

	Discussion
	Related works
	Conclusions and future work
	References
	Acknowledgements

