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Integrated analysis reveals 
the pivotal interactions 
between immune cells 
in the melanoma tumor 
microenvironment
Jiawei Chen1,4, Shan Hu1,2,4, Huiqi Wang1,4, Tingxiu Zhao2, Yue Song1,3, Xueying Zhong1, 
Qingling Luo1, Mansi Xu1, Lina He1, Qiugu Chen1,3, Biaoyan Du2*, Jianyong Xiao1,3* & 
Kun Wang1,2*

Melanoma is the most lethal type of skin cancer. Despite the breakthroughs in the clinical treatment of 
melanoma using tumor immunotherapy, many patients do not benefit from these immunotherapies 
because of multiple immunosuppressive mechanisms. Therefore, there is an urgent need to 
determine the mechanisms of tumor-immune system interactions and their molecular determinants 
to improve cancer immunotherapy. In this study, combined analysis of microarray data and single-
cell RNA sequencing data revealed the key interactions between immune cells in the melanoma 
microenvironment. First, differentially expressed genes (DEGs) between normal and malignant tissues 
were obtained using GEO2R. The DEGs were then subjected to downstream analyses, including 
enrichment analysis and protein–protein interaction analysis, indicating that these genes were 
associated with the immune response of melanoma. Then, the GEPIA and TIMER databases were used 
to verify the differential expression and prognostic significance of hub genes, and the relationship 
between the hub genes and immune infiltration. In addition, we combined single cell analysis from 
GSE123139 to identify immune cell types, and validated the expression of the hub genes in these 
immune cells. Finally, cell-to-cell communication analysis of the proteins encoded by the hub genes 
and their interactions was performed using CellChat. We found that the CCL5-CCR1, SELPLG-SELL, 
CXCL10-CXCR3, and CXCL9-CXCR3 pathways might play important roles in the communication 
between the immune cells in tumor microenvironment. This discovery may reveal the communication 
basis of immune cells in the tumor microenvironment and provide a new idea for melanoma 
immunotherapy.

Melanoma (skin cutaneous melanoma (SKCM)) is the most aggressive and poorly prognosed skin cancer, 
accounting for more than 80% of skin cancer-related deaths. The incidence of SKCM has continued to rise in 
recent years, posing a serious threat to human life and  health1,2. The immune system has been shown to have 
anti-tumor capabilities in a variety of malignancies (e.g., melanoma and lung cancer)3. Previous studies have 
identified multiple types of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME), which 
provide all the metabolites and factors that control tumor cell proliferation, dissemination, and drug  resistance4. 
Melanoma has traditionally been considered an immunogenic  malignancy4, and the TME significantly influ-
ences the diagnosis, survival outcome, and clinical management of patients with melanoma. The distribution 
and density of TILs not only affect the survival of patients with  melanoma5, but also regulate the progression of 
 melanoma3. In this study, we aimed to explore more sensitive and efficient biomarkers to improve the treatment 
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and prognosis of melanoma. Based on these biomarkers, we also aimed to reveal the potential molecular mecha-
nism of immune cell interaction in the TME to improve immunotherapy for patients with melanoma.

With the rapid development of high-throughput technologies, bulk RNA sequencing (RNA-seq) technologies 
have been used widely in gene expression research at the population level. In recent years, single-cell sequencing 
technologies have also provided the possibility to explore gene expression profiles at the single-cell  level6. Single-
cell sequencing allows high-throughput sequencing analysis of the genome, transcriptome, and epigenome of 
individual cells, reflecting intercellular heterogeneity, and gene and molecular functional diversity. However, to 
explain the mechanisms of disease occurrence at the molecular level requires a deeper exploration of the data. 
Jin et al. developed CellChat, a tool capable of quantitatively inferring and analyzing intercellular communica-
tion networks from single cell RNA sequencing  data7. Cellular communication is the process by which cells 
receive, handle, and transmit signals from other surrounding cells or themselves, which plays an important role 
in coordinating various biological processes.

In this study, a protein–protein interaction (PPI) network was constructed based on differentially expressed 
genes (DEGs) from The Gene Expression Omnibus GEO database sets GSE15605 and GSE114445. Finally, 
IDO1(Indoleamine 2, 3-dioxygenase 1), SELL(L-selectin), FCGR2A(Fc gamma receptor IIa), GZMB(granzyme 
B), CD27(CD27 molecule), CXCL9(C-X-C motif chemokine ligand 9), ICAM1(intercellular adhesion mol-
ecule 1), CCL4(C–C motif chemokine ligand 4), CCL5(C–C motif chemokine ligand 5), CXCL10(C-X-C motif 
chemokine ligand 10), and CTLA4 (cytotoxic T-lymphocyte associated protein 4) were identified as significant 
predictive biomarkers for melanoma. We also combined single cell sequencing technology with CellChat to 
predict the intercellular communication and analyzed the potential interaction between immune cells in the 
TMR. We found that CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 interactions might 
form the basis of two-way communication between immune cells in the TME.

Results
Identification of DEGs. GEO2R analysis identified 3004 DEGs in GSE15605 and 1240 DEGs in GSE114445 
(Supplementary file 1). To visualize the distribution of the DEGs, we obtained expression matrices from GEO 
to plot volcano and heat maps using the ggplot2 package (Fig. 1A,B). The overlap of two datasets contained 343 
upregulated genes and 350 downregulated genes, as shown in the Venn plot (Fig. 1C).

GO enrichment analysis and KEGG pathway analysis of the DEGs showed functional enrich-
ment in immune regulation. To explore the potential signaling pathways and biological functions 
involving the common DEGs, we used the DAVID database to perform GO annotation and KEGG pathway 
enrichment analyses, which were visualized using ggplot2 to produce bubble plots (P < 0.05, Fig. 2). GO analysis 
identified that the DEGs were mainly associated with biological processes such as immune response, inflamma-
tory response, and signal transduction. In molecular function, the main changes focused on protein binding and 
transcription activators. The changes in cellular component were mostly plasma membrane, plasma membrane 
components, and extracellular secretion (Fig. 2A). Figure 2B shows that the top five KEGG-enriched pathways 
associated with the DEGs were cancer pathway, cytokine receptor interaction, chemokine signaling pathway, 
Hippo signaling pathway, and cell adhesion molecules (CAMs), and are enriched in immune responses, cytokine 
receptor interactions, and chemokine-mediated signaling pathways. These results showed that DEGs play an 
important role in cancer development of patients, which is related to the activation status of immune cells in 
the TME and the state of the immune response induced by various cytokines in the body, suggesting that these 
DEGs might be the key factors in the regulation of immune processes in the TME.

PPI network construction and the identification of hub genes. To further investigate the interac-
tion of the identified DEGs, we constructed a Protein–protein interactions (PPI) network using STRING and 
Cytoscape to explore the interactions and central genes of DEGs. A total of 693 DEGs were uploaded to the 
STRING website and the comprehensive score > 0.4 was used as the cut-off standard (Supplementary file 2). 
First, the PPI network was constructed using Cytoscape (Fig. 3A), which included 618 nodes and 2289 edges. 
Nodes represent proteins, edges represent interactions between proteins, and the number of edges connected 
by genes is positively correlated with the importance of their functions in the PPI network. Additionally, we 
showed the PPI networks of genes with a score threshold of 10,000 in Fig.S1 to observe genes with higher con-
nectivity. And then the top 15 hub genes with high connectivity in the PPI network were determined using the 
plug-in maximal clique centrality (MCC) of cytohubba: CCRL2, CD28, CD274, IL6, CTLA4, CXCL10, CCL5, 
CCl4, ICAM1, CXCL9, CD27, GZMB, FCGR2A, SELL, and IDO1 (Fig. 3B). Top 15 hub genes are all upregulated 
DEGs, and their higher scores suggest that they may play an important role in the development of melanoma and 
could be a key target in the treatment of melanoma (Supplementary file 3).

Expression verification and survival analysis of the hub genes. To investigate the expression of 
hub genes screened from the above datasets in other SKCM and normal tissue samples, we analyzed the RNA-
seq data of SKCM and normal skin tissues from the TCGA and GETx databases through the GEPIA database, 
including a total of 461 tumor samples and 558 normal samples. The results showed that CCRL2, CD28, CD274, 
and IL6 were up-regulated in SKCM, but the difference was not statistically significant (P > 0.05). The expression 
levels of other hub genes CTLA4, CXCL10, CCL5, CCl4, ICAM1, CXCL9, CD27, GZMB, FCGR2A, SELL, IDO1 
in SKCM were higher than those in non-tumor skin tissues (P < 0.05, Fig. 4), and the results were statistically 
significant.
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Figure 1.  Screening results of DEGs. (A) A volcano map of DEGs in the GSE15605 and GSE114445 data 
sets. The red, blue, and gray points represent genes that were upregulated, downregulated, and showed no 
significant differences in expression, respectively. (B) Heat map of differential gene expression in the GSE15605 
and GSE114445 datasets. (C) A Venn diagram displaying the number of DEGs in the two datasets from the 
GEO database. DEG differentially expressed gene, down downregulated, up upregulated, stable no difference in 
expression.
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Prognostic value of differentially expressed hub genes in patients with melanoma. To study 
the prognostic value of these differentially expressed hub genes in melanoma, we performed Kaplan–Meier 
survival analysis using GEPIA. According to the median value of hub genes expression, SKCM patients were 
divided into high expression group and low expression group. The results showed that the high expression lev-
els of 11 hub genes correlated significantly with longer overall survival (Fig. 5): CTLA4 (logrank p = 0.00055, 
hazard ratio (HR) = 0.63), CXCL10 (logrank p = 2.8e−05, HR = 0.57), CCL5 (logrank p = 3.2e−06, HR = 0.53), 

Figure 2.  GO and KEGG pathway enrichment analysis of the DEGs. (A) GO analysis of DEGs, including 
biological processes, cell components, and molecular functions. (B) KEGG pathway enrichment analysis of the 
DEGs. The GO analysis and KEGG pathway enrichment analysis of the DEGs were completed using DAVID 
and visualized using the ggplot2 package. GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, 
DEG differentially expressed gene.
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CCL4 (logrank p = 8.2e−08, HR = 0.48), ICAM1 (Logrank p = 0.00022, HR = 0.61), CXCL9 (logrank p = 2e−04, 
HR = 0.6), CD27 (logrank p = 0.00016, HR = 0.6), GZMB (logrank p = 8.8e−06, HR = 0.54), FCGR2A (logrank 
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Figure 3.  Construction of a PPI network and the identification of hub genes. (A) PPI network of DEGs. The 
outer circle represents upregulated genes, The outer circle represents downregulated genes, and the darker the 
color, the stronger the connection between the gene and other genes. (B) Top 15 DEGs obtained by MCC of 
cytohubba. DEG differentially expressed gene, PPI protein–protein interaction, MCC maximal clique centrality.
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p = 2.9e−06, HR = 0.53), SELL (logrank p = 0.00042, HR = 0.62), and IDO1 (logrank p = 1.1e−08, HR = 0.46), 
which indicated that these genes have diagnostic value (P < 0.001).

Relationship between differentially expressed hub genes and immune cell infiltration. Func-
tional annotation and pathway enrichment found that these differentially expressed hub genes are involved 
in immune responses, which suggested that they might be important in regulating immune processes during 
tumor progression. Therefore, we next explored the potential immune mechanisms involving the differentially 
expressed hub genes. The TME is a complex and dynamic ecosystem, where different cell populations coexist, 
mainly including tumor cells, immune cells, and supporting cells. Infiltrating immune cells play a key role in the 
TME. Some studies have shown that TILs are a prognostic indicator of SKCM. Therefore, we used the TIMER 
database to evaluate the correlation between differentially expressed hub genes and six types of invasive immune 
cells (neutrophils, macrophages, B cells,  CD4+ T cells,  CD8+ T cells, and dendritic cells) to predict their possible 
effects on immune cell infiltration (Fig. 6). The results showed that CTLA4, CXCL10, CCL5, CCL4, ICAM1, 
CXCL9, CD27, GZMB, FCGR2A, SELL, and IDO1 correlated positively with immune infiltration. Among them, 
FCGR2A, CTLA4, and ICAM1 had very limited correlations with the infiltration of the six immune cells (the 
coefficients were all less than 0.6), while CCL4, CCL5, CD27, CXCL9, CXCL10, GZMB, IDO1, and SELL are 

Figure 4.  Expression level of hub genes in SKCM compared with normal tissues. Melanoma was compared 
with normal tissues in the GEPIA database, red represents tumor tissue and gray represents normal tissue. 
SKCM skin cutaneous melanoma.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10040  | https://doi.org/10.1038/s41598-022-14319-2

www.nature.com/scientificreports/

mainly related to  CD8+ T cells, neutrophils, and dendritic cells (coefficient above 0.5). These findings suggest 
that these genes might be potential immune-related targets, and in-depth research on them could provide a bet-
ter understanding of the TME in melanoma.

ScRNA-Seq analysis and identification of different types of immune cells in melanoma. Next, 
we used scRNA-seq data of primary melanoma (GSE123139) to analyze and identify different types of immune 
cells in the TME of melanoma microenvironment, using a dimensionality reduction algorithm (t-SNE) to visual-
ize the results. t-SNE is an unsupervised machine learning algorithm that classifies cell populations into different 
clusters based on marker genes (Fig.S2, Supplementary file 4). We identified 12 types of cells, including mac-
rophages,  CD8+ T cells, B cells, and plasma cells (Fig. 7A). Further analysis of scRNA-seq data showed (Fig. 7B) 
that  CD8+ T cells and NK cells highly express GZMB, CCL4, and CCL5, and about 75% of  CD8+ T cells highly 
expressed CCL5. About 80% of  CD4+ T cells highly expressed GZMB. More than 50% of plasmacytoid dendritic 
cells (pDCs) highly expressed CXCL10. IDO1, on the other hand, was highly expressed in migratory DC and 
type 1 classical dendritic cells (cDC1s).

Integrated analysis reveals the basis of the interaction between immune cells in the TME. To 
determine the potential interactions between different immune cells, we performed CellChat analysis on a data 
set from the GEO database (GSE123139). CellChat contains a database of receptor-ligand interactions contain-
ing 2,021 verified molecular interactions. CellChat can identify the key features of cell-to-cell communication in 
a given scRNA-seq data set and predict potential signaling pathways that are currently less studied. The results 
showed that  CD8+ T cells, NK cells, pDCs, migratory dendritic cells (migDCs),  CD4+ T cells and other cell 
populations interact closely (Fig. 8A). Next, we used CellChat to identify the interaction of immune cells in 
the TME. To obtain more critical cell–cell interactions in the melanoma microenvironment, we analyzed the 
receptor-ligand pairs related to the hub genes to explore the potential interaction between immune cells. These 
receptor-ligand pairs were further divided into three signaling pathways, including CCL, SELPLG, and CXCL 
pathways. Then, we calculated and visualized the contribution of each ligand-receptor pair to the overall signal-

Figure 5.  Prognostic value of hub genes. Kaplan–Meier survival curves comparing the relationship between 
high and low expression of hub genes in the GEPIA database and overall survival in SKCM patients, the red 
curve represents high expression levels, while the blue curve represents low expression levels. SKCM skin 
cutaneous melanoma.
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ing pathway. Among them, the ligand-receptor pairs that play a major role in the interaction between immune 
cells in the TME are CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 (Fig. 8B).

Figure 6.  The correlation between hub genes and immune cell infiltration. The expression of hub genes was 
positively correlated with the infiltration level of  CD8+ T cells, DCs and neutrophils (Cor > 0.5). In addition, 
SELL was also positively correlated with the infiltration level of  CD4+ T cells. Three other immune cells (B cells, 
macrophages,  CD4+ T cells) were also positively associated with these hub genes.
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Next, we analyzed the interactions between these ligand-receptor pairs from the TME among 12 kinds of 
immune cells, and found that CCL5-CCR1 mainly sends signals of  CD8+ T cells and NK Cells, which may interact 
with pDCs, macrophages, cDC2s, and myeloid cells via the interaction of CCL5 and CCR1. The SELPLG-SELL 
ligand-receptor pair is the main interaction among  CD4+ T cells, NK cells, myeloid cells, and naïve B cells. Fur-
thermore, NOTCH2-cDCs interact with pDCs,  CD4+ T cells, cCD2s, NK cells, myeloid cells, naïve B cells, and 
cDC1s. Both migDCs and cDC1s interact with  CD4+ T cells, pDCs, cCD2s, NK Cells, myeloid cells, and naïve 
B cells. The CXCL10-CXCR3 ligand-receptor pair is the main interaction among pDCs, migDCs, and  CD4+ T 
cells, and the CXCL9-CXCR3 ligand-receptor pair is the main interaction among pDCs, cDC1s, migDCs, and 
 CD4+ T cells (Fig. 8C). We also used a violin plot to visualize the signal gene expression distribution in the three 
signaling pathways inferred by CellChat. The results showed that CCL5 is mainly expressed on  CD8+ T and NK 
cells, and its corresponding receptors are mainly in macrophages, myeloid cells, cCD2s, and pDCs. SELPLG is 
mainly expressed on  CD4+ T cells, NOTCH2-cDCs, migDCs, and cDC1s, and its corresponding receptor, SELL, 
is mainly expressed on naïve B cells, myeloid cells, NK cells, cCD2s, pDCs,  CD4+ T cells, and cCD1s. CXCL9 is 
mainly expressed on pDCs, migDCs, and cDC1s, CXCL10 is mainly expressed on pDCs and migDCs, and their 
corresponding receptor, CXCR3, is mainly expressed on  CD4+ T cells (Fig. 8D).

Relationship between the critical genes and immune cell infiltration in the melanoma tumor 
microenvironment. Finally, we validated the correlation between immune cells in the melanoma tumor 
microenvironment with 4 ligand-receptor pairs through TISIDB, an online repository of large human cancer 
datasets (Fig. 9). The results showed that, basically consistent with the previous results, the CCL5 expression 
was positively correlated with the cellular abundance of  CD8+ T cells (r = 0.885) and NK cells (r = 0.716), and 
the expression of CCR1 was associated with activated DCs (r = 0.708) and macrophages (r = 0.754), indicating 
that the CCL5/CCR1 ligand-receptor pair may play a key role in the interaction of  CD8+ T cells with DCs and 
macrophages in the tumor microenvironment as well as the interaction of NK cells with DCs and macrophages. 
At the same time, the expression of SELPLG was significantly correlated with the abundance of activated DCs 
(r = 0.8), and relatively correlated with the abundance of  CD4+ T cells (r = 0.478), indicating that SELPLG 
may have potential connection with the function of activated DC and  CD4+T cells. The receptor correspond-
ing to SELPLG, SELL, was also associated with activated B cells (r = 0.849), NK cells (r = 0.675), activated DCs 
(r = 0.645) and  CD4+ T cell (r = 0.496) abundance which suggested that SELL on activated B cells, NK cells may 
interact with SELPLG on the surface of activated DCs. The chemokine receptor CXCR3 was associated with 
the abundance of  CD4+ T cells (0.514), and its ligands CXCL9 (r = 0.639) and CXCL10 (r = 0.570) were both 
associated with activated DCs abundance. Therefore, we speculated that the ligands CXCL9 and CXCL10 on the 
surface of activated DCs might interact with CXCR3 on the surface of  CD4+ T cells. These data suggested that 
the CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 ligand-receptor pairs were likely to be 
the key interactions between immune cells in the melanoma tumor microenvironment.

Figure 7.  Immune cell types in SKCM were identified by single cell sequencing. (A) Cells were divided into 
12 types of immune cells based on cell-specifically expressed markers, and the results were visualized by t-SNE 
dimensionality reduction clustering. (B) The expression of hub genes in different immune cells. SKCM skin 
cutaneous melanoma, NK cell natural killer cell, cDC2 type 2 classical dendritic cell, pDC plasmacytoid dendritic 
cell, migDC migratory dendritic cell, cDC1 type 1 classical dendritic cell.
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Figure 8.  Cell communication network diagram. (A) The number of ligand receptor interactions detected 
between different cell types. (B) Ligand receptor contribution to the overall signaling pathway. The CCL5/CCR1 
ligand receptor pair contributed the most, followed by the SELPLG/SELL ligand receptor pair. (C) Receptor 
ligand pair interactions between immune cells. (D) The distribution and expression level of signal genes 
involved in the three signal pathway networks.
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Discussion
SKCM is one of the most life-threatening human malignancies because of its insensitivity to radiotherapy and 
chemotherapy, the difficulty of observing its abnormal condition at an early stage, and problems treating it at a 
later stage. Melanoma accounts for approximately 75% of skin cancer-related  deaths8. The morbidity and mor-
tality of melanoma varies greatly depending on the early detection and primary treatment in different  regions9. 
Immunotherapy is a popular treatment for  melanoma10; however, about 50% of patients do not respond to current 

Figure 9.  Associations of the CCL5, CCR1, SELPLG, SELL, CXCR3, CXCL10, CXCL9 expression level with 
immune cells in SKCM from TISIDB database.
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immune checkpoint inhibitors. Therefore, finding potential predictive and efficient markers is important for 
tumor immunotherapy and  diagnosis11,12.

In this study, we combined Bulk RNA-seq and scRNA-seq. Bulk RNA-seq measures the average transcript 
level of a cell population, which could quickly identify biological markers of a disease. In combination with 
scRNA-seq, cell heterogeneity could be identified, which enables in-depth study of biological structure and 
function. scRNA-seq technology can generate expression profiles of individual cells for analysis of heterogene-
ous cell populations and identification of cell types. The understanding of the phenotype of immune cells in the 
tumor microenvironment is essential to understand the mechanisms of cancer progression and immunotherapy.

First, we identified DEGs between primary melanoma samples and normal skin samples by analyzing datasets 
GSE15605 and GSE114445 from the GEO database, and the overlapping DEGs in both datasets were analyzed for 
functional annotation and pathway enrichment. The GO and KEGG results showed that the DEGs were closely 
related to tumor immunity, suggesting them as novel immune targets for melanoma treatment. We further 
identified and validated the hub genes among the DEGs. We finally screened genes significantly associated with 
overall survival, including IDO1, SELL, FCGR2A, GZMB, CD27, CXCL9, ICAM1, CCL4, CCL5, CXCL10, and 
CTLA4, for subsequent analysis.

Immune infiltrating cells in the TME have been shown to be very important in the antitumor immune 
response, including cytotoxic T cells, helper T cells, B/plasma cells, and macrophages/monocytes13. Identifying 
expression of hub genes in the specific immune cell types of the TME will help to better understand the underly-
ing mechanisms by which immune cells promote and counteract tumor progression. In our study, we also found 
a strong positive correlation between the above-mentioned hub genes and the level of immune infiltration of 
six types of invasive immune cells (including B cells,  CD4+ T cells,  CD8+ T cells, neutrophils, macrophages, and 
dendritic cells). This implied a strong association of these hub genes with immune cells in the SKCM TME, which 
was subsequently validated using scRNA-seq datasets.

CellChat can quantitatively infer and analyze intercellular communication networks from scRNA-seq  data7. 
Most of its ligand receptor interactions are based on the KEGG signal pathway database. After the user inputs 
the cell gene expression matrix, CellChat models the probability of intercellular communication and allows the 
user-defined ligand receptor pair to update the CellChatDB. We updated the CellChatDB by selecting the recep-
tor ligand pairs corresponding to the hub genes. Our results showed the number and intensity of interactions 
between immune cells in the TME. The ligand receptor pairs that play an key role in the interaction between 
immune cells in the TME are CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3.

The CCL5/CCR1 axis has been found to play a regulatory role in tumorigenesis and progression in several 
studies. Tumor growth is controlled by the recruitment of immunocompetent host cells such as T cells, NK 
cells, and  DCs14. Studies have shown that CCL5 directly affects the transport of immune cells and participates 
in anti-tumor immune response. CCL5 could recruit NK cells and cDC1s to infiltrate the  TME15,16. Meanwhile, 
the expression level of CCL5 at the tumor site determined the effectiveness of the antitumor response, which 
may be related to the increased number of NK cells and  CD8+ T cells at the tumor site. CCL5 belongs to the CC 
chemokine family and may activate several chemokine receptors, including CCR1, CCR3, CCR4 and CCR5, 
and regulates the expression and secretion of activated normal T  cells17. However, at present, the nature of the 
interaction between CCL5 and immune cells in the TME has not been determined. The scRNA-seq analysis 
showed that the expression level of CCL5 was high on NK cells and  CD8+ T cells (Fig. 7B); therefore, we hypoth-
esized that CCL5 may be the key node for two-way communication between NK cells or  CD8+ T cells and other 
TME immune cells. CCR1, the receptor of CCL5, can interact with a variety of chemokines, and has the highest 
binding affinity with CCL3 and CCL5. CCR1 or CCR3 can bind to CCL5 to mediate its  activity18,19. As shown 
in Fig. 8B, the CCL5-CCR1 ligand-receptor pair has the highest contribution to immune cell interaction, and 
mainly mediates the interactions among macrophages, myeloid cells, cDC2s and pDCs. And the TISIDB data-
base verified that CCL5 expression was positively correlated with the celluar abundance of  CD8+ T cells and NK 
cells, and the expression of CCR1 was positively correlated with the cellular abundance of activated DCs and 
macrophages. Therefore, we propose that macrophages, cDC2 and pDC may interact with the CCL5 ligand on 
NK cells in TME through CCR1 receptors on their surfaces.

CellChat analysis revealed the contribution of the SELPLG-SELL pathway to the interaction between the TME 
and immune cells. Figure 8D shows that the SELPLG-SELL pathway might affect the interaction between  CD4+ T 
cells and other immune cells in the TME. SELPLG is also known as the adhesion molecule P-selectin glycoprotein 
ligand-1 (PSGL-1). In melanoma models with T cell dysfunction, PSGL-1 deficiency leads to programmed cell 
death-1 (PD-1) downregulation, an improved T cell response, and tumor control, and PSGL-1 acts as a nega-
tive regulator of  CD4+ T cells in a variety of diseases, including cancer. Scholars have suggested that blocking 
PSGL-1 in  CD4+ T cells might represent a new cancer treatment  strategy20. PSGL-1 is the ligand of all selectins 
(P-, L- and E-selectins); therefore, reducing the interaction between selectins and PSGL-1 might also improve 
T cell  responses21. P-selectin on DCs could give rise to the tolerance phenotype, which could suppress T  cells22. 
Another study has shown that cDC1s play an important role to activate the  CD4+ and  CD8+ T Cell response to 
 tumors23; however, at present, it is unclear whether PSGL-1 on T cells and/or cDC1s contributes to T cell activa-
tion. CellChat analysis showed that  CD4+ T cells and cDC1s might interact through SELPLG-SELL (Fig. 8D). The 
TISIDB results showed that SELPLG was related to the abundance of  CD4+ T cells in tumor-infiltrating lympho-
cytes, while SELPLG and its receptor SELL were also closely related to the cellular abundance of activated  DCs24.

CXC Chemokine Receptor 3 (CXCR3) is considered a type 1 T helper cell (Th1) receptor. CXCR3 can bind to 
its ligands CXC motif chemokine (CXCL) 9, CXCL10, and  CXCL1125,26. Studies have shown that the chemotactic 
function of CXCR3 plays an important role in autoimmune diseases and  cancers27,28. CellChat analysis showed 
that CXCR3 is highly expressed on  CD4+ T cells. The CXCL10-CXCR3 and CXCL9-CXCR3 pairs might be the 
key interactions between  CD4+ T cells and pDCs, migDCs, and cDC1s in the TME. The CXCL9-CXCR3 and 
CXCL10-CXCR3 axes mainly regulate the migration, differentiation, and activation of immune cells. Immune 
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cells can be recruited through chemotaxis mediated by CXCL9-CXCR3 or CXCL10-CXCR3. Studies have shown 
that tumor-resident cDC1s are the main source of CXCL9 and  CXCL1029, and CXCL10 is a candidate for cancer 
immunotherapy. There is a strong correlation between insufficient expression of CXCL10 and poor prognosis at 
tumor sites in various human  cancers30. In addition, CXCL10 can induce  CD8+ and  CD4+ effector T cells to the 
tumor site and enhance their  function31. In the TISIDB results, CXCR3 was shown to be closely related to the 
cellular abundance of  CD4+ T cells, while CXCL9 and CXCL10 were closely related to the cellular abundance of 
activated DCs. Therefore, combining the results of CellChat and TISIDB analysis, we hypothesized that CXCL10-
CXCR3 and CXCL9-CXCR3 are key points of interaction between  CD4+ T cells and other immune cells in TME.

Tumor-infiltrating immune cells play a critical role in tumor progression and prognostic assessment. Further 
exploration of the interactions between T cell subsets and other infiltrating immune cells could help to better 
understand melanoma progression and improve its prognosis. All the above results suggested that the ligand-
receptor pairs CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 play an important role in 
the communication between immune cells in the TME. Our findings form the basis for future research. These 
biomarkers have prognostic significance and could be effective therapeutic targets for melanoma treatment. 
Understanding their complex roles in tumor biology will help improve the efficacy of cancer immunotherapy 
strategies, induce durable host anti-tumor immunity, and provide new ideas for SKCM immunotherapy.

Materials and methods
Data collection and processing. The GEO database (http:// www. ncbi. nlm. nih. gov/ geo/) is a public data-
base used to host high-throughput microarray and next-generation sequence functional genomic  datasets32. We 
downloaded expression profiles of patients with SKCM with clinical data from the GEO database. For this part of 
the study, we selected the datasets GSE15605 and  GSE11444533,34. The data of GSE15605 were obtained with the 
GPL570 Platforms (Affymetrix Human Genome U133 Plus 2.0 Array) by Vanderbilt University, and came from 
46 primary melanoma samples, 12 regional or distant metastases, and 16 normal skin samples. In this dataset, 
we only selected 46 primary melanoma samples and 16 normal skin samples for subsequent analysis. Similarly, 
the data of GSE114445 were based on the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array). 
We analyzed 16 primary melanoma tissues and 6 normal skin tissues in the GSE114445 dataset. We also selected 
the dataset with accession number GSE123139, which includes data from single-cell transcriptional analysis 
of immune cells from human melanoma  tumors35. The samples were obtained from public databases and the 
study was carried out in accordance with relevant guidelines/regulation. The statement of ethics approval and 
informed consent were not needed for this study.

Identification of DEGs. GEO2R (https:// www. ncbi. nlm. nih. gov/ geo/ geo2r/) is an online analysis 
tool based on the limma  package36, which enables users to identify DEGs in one or more datasets. We used 
GEO2R to separately screen DEGs between PM tissue samples and NS tissue samples from the GSE15605 and 
the GSE114445 datasets. DEGs were defined using the threshold of |log fold-change (FC)|> 1 and an adjusted 
P-value (adj.P.Val) ≤ 0.05. When the expression difference of a gene between normal tissue and tumor tissue 
meets this criterion, the differential expression of the gene is judged to be statistically significant. And when 
logFC is negative, it means low expression of genes in tumor tissues compared to normal tissue groups, and 
conversely, it means high expression. We next used the R software to extract the common DEGs between the two 
datasets and visualized them using volcano plots, heat maps, and Venn  plots37.

Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. GO 
(gene ontology) databases define biological processes (BP), cellular components (CC), and molecular functions 
(MF) based on gene products and are used widely to interpret  genomes38. The KEGG database links genomic 
and functional information, allowing users to analyze gene  functions39–41. DAVID (https:// david. ncifc rf. gov/) is 
a free online tool that extracts biological significance from large lists of genes or proteins, providing users with 
functional annotation and  visualization42,43. In this study, we used DAVID f to obtain GO functional enrichment 
analyses and enriched KEGG pathways of the DEGs. P < 0.05 was considered statistically significant and the 
results were visualized using ggplot2 in the R package.

Acquisition of hub genes by PPI network analysis. The STRING database (https:// string- db. org/, 
version: 11.5) is used to predict PPI networks from DEGs and to analyze the interaction between  proteins44. We 
used the STRING website to construct the PPI network from DEGs, using a minimum interaction score of 0.4. 
The plug-in cytoHubba in Cytoscape (version 3.7.2) was used to visualize the protein–protein interaction (PPI) 
network, and the identified the central genes by maxinmal clique centrality (MCC, one of the 12 methods to 
explore important nodes in biological networks) computing  method45,46.

Expression verification and survival analysis of the hub genes. Gene Expression Profiling Interac-
tive Analysis (GEPIA) is a web-based comprehensive analysis tool, including RNA sequencing data of tumor 
and normal samples from The Cancer Genome Atlas (TCGA) and genotype tissue expression projects (GTEx). 
GEPIA can analyze changes in gene expression in tumor and normal tissues, and provide gene interactions, 
functions, and prognostic  data47. We used the GEPIA data to determine the differential expression and prognos-
tic predictive significance of hub genes in normal and cancer tissues. A p value < 0.05 was considered statistically 
significant.

http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/
https://string-db.org/
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Tumor immune infiltration analysis. The Tumor Immune Estimation Resource database (TIMER) 
(https:// cistr ome. shiny apps. io/ timer) is an easy-to-use web interface to study the molecular characteristics of 
tumor immune  interaction48. TIMER can estimate the abundance of six types of infiltrating immune cells from 
gene expression profiles. To investigate the immune infiltration of genes in SKCM, we used the TIMER database 
to assess whether the level of tumor infiltrating lymphocytes (TILs) correlated with gene expression in SKCM. A 
p value < 0.05 was considered to be statistically significant.

Single cell sequencing data processing. This study used the original gene expression matrix from the 
dataset GSE123139, which includes single-cell RNA sequencing (scRNA-seq) data from 25 patients with mela-
nomas, with the aim of applying scRNA-seq data to dissect the immune cell composition and molecular features 
of the tumor microenvironment in SKCM. The quality control (QC) process used the R package Seurat (ver-
sion 4.0.4)49. The data filtering indicators were as follows: 1. The number of genes is greater than 300. 2. Cells 
with RNA greater than 1000 and less than 20,000. 3. Less than 12.5% mitochondrial genes. 4. Ribosomal genes 
accounted for more than 0.3%. 5. Less than 3% erythrocyte genes. At the end of QC, the cell populations were 
annotated according to marker genes, and markers were identified as major immune cell types and visualized 
with the dimensionality reduction algorithm t-distributed stochastic neighbor embedding (t-SNE)50.

Inference and analysis of intercellular communication using CellChat. scRNA-seq data contains 
gene expression information that could be used to infer intercellular communication. CellChat is a tool that 
can quantitatively infer and analyze intercellular communication networks from scRNA-seq  data7. We applied 
CellChat analysis to the scRNA-seq data of the SKCM samples. CellChat contains a database of receptor-ligand 
interactions. To obtain more critical cell–cell interactions in the melanoma microenvironment, we selected 
receptor-ligand pairs related to the hub genes for further analysis, aiming to explore the potential interactions 
between immune cells.

Database applied to analyze genes and immune cell infiltration correlation. The TISIDB (http:// 
cis. hku. hk/ TISIDB/ index. php) is an online storage database that collects a large number of human cancer data 
sets, and calculates a variety of genes and immune characteristics (such as lymphocytes, immune modulators 
and chemokines, etc.). The correlation between the four receptor-ligand pairs (CCL5-CCR1, SELPLG-SELL, 
CXCL10-CXCR3, and CXCL9-CXCR3) and immune cell infiltration in the melanoma tumor microenvironment 
was verified through the TISIDB.

Conclusions
In this study, we used bioinformatics to identify and verify the key genes related to the prognosis of SKCM, and 
explored the prognostic value of these genes. In addition, functional enrichment analysis showed that these genes 
are involved in the tumor immune response. We further predicted that the ligand-receptor pairs CCL5-CCR1, 
SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 might be the key points of communication between 
immune cells, revealing the potential cellular communication basis of  CD8+ T cells in the tumor microenviron-
ment and contributing to a better understanding of melanoma development.

Data availability
The datasets generated and analyzed during the current study are available at GEO database (https:// www. ncbi. 
nlm. nih. gov/ geo/), including GSE15605 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 605), 
GSE114445 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE11 4445) and GSE123139 (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 3139).

Received: 24 February 2022; Accepted: 6 June 2022

References
 1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).
 2. Yang, R. et al. The identification of the metabolism subtypes of skin cutaneous melanoma associated with the tumor microenviron-

ment and the immunotherapy. Front. Cell Dev. Biol. 9, 707677 (2021).
 3. Maibach, F., Sadozai, H., Hunger, R. & Schenk, M. Tumor-infiltrating lymphocytes and their prognostic value in cutaneous mela-

noma. Front. Immunol. 11, 2105–2105 (2020).
 4. Antohe, M. et al. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol. Lett. 17, 4155–4161 (2019).
 5. Mihm, M. C. & Mulé, J. J. Reflections on the histopathology of tumor-infiltrating lymphocytes in melanoma and the host immune 

response. Cancer Immunol. Res. 3, 827–835 (2015).
 6. Chen, G., Ning, B. & Shi, T. Single-cell RNA-Seq technologies and related computational data analysis. Front. Genet. 10, 317–317 

(2019).
 7. Jin, S. et al. Inference and analysis of cell-cell communication using cell chat. Nat. Commun. 12, 1088 (2021).
 8. Olszanski, A. J. Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J. Manag. Care Pharm. 

20, 346–356 (2014).
 9. Schadendorf, D. et al. Melanoma. Lancet 2, 971–984 (2018).
 10. Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lympho-

cytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).
 11. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).
 12. Wang, X. et al. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis 

patients. BMC Cancer 20, 378 (2020).
 13. Iglesia, M. D. et al. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl. Cancer Inst. 108, 144 (2016).

https://cistrome.shinyapps.io/timer
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15605
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114445
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123139
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123139


15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10040  | https://doi.org/10.1038/s41598-022-14319-2

www.nature.com/scientificreports/

 14. Lavergne, E. et al. Intratumoral CC chemokine ligand 5 overexpression delays tumor growth and increases tumor cell infiltration. 
J. Immunol. 173, 3755–3762 (2004).

 15. Mgrditchian, T. et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent 
manner. Proc. Natl. Acad. Sci. 114, E9271–E9279 (2017).

 16. Böttcher, J. P., Bonavita, E. & Chakravarty, P. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting 
cancer immune control. Cell 172, 1022–1037 (2018).

 17. Aldinucci, D. & Colombatti, A. The Inflammatory Chemokine CCL5 and Cancer Progression. Mediators Inflamm. 2014, 292376 
(2014).

 18. Soria, G. & Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 267, 271–285 (2008).
 19. Halama, N. et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy 

in cancer patients. Cancer Cell 29, 587–601 (2016).
 20. Tinoco, R. et al. PSGL-1 is an immune checkpoint regulator that promotes T cell exhaustion. Immunity 44, 1190–1203 (2016).
 21. Abadier, M. & Ley, K. P-selectin glycoprotein ligand-1 in T cells. Curr. Opin. Hematol. 24, 265–273 (2017).
 22. Urzainqui, A. et al. Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic 

dendritic cells. J. Immunol. 179, 7457–7465 (2007).
 23. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).
 24. Ru, B. et al. TISIDB: an integrated repository portal for tumor–immune system interactions. Bioinformatics 35, 4200–4202 (2019).
 25. Liu, Q. Z. et al. The CXC chemokine receptor 3 inhibits autoimmune cholangitis via CD8+ T cells but promotes colitis via CD4+ 

T cells. Front. Immunol. 9, 1090 (2018).
 26. Müller, M., Carter, S., Hofer, M. & Campbell, I. The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in 

neuroimmunity–a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 36, 368–387 (2010).
 27. Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).
 28. Lacotte, S., Brun, S., Muller, S. & Dumortier, H. CXCR3, inflammation, and autoimmune diseases. Ann. N. Y. Acad. Sci. 1173, 

310–317 (2009).
 29. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking 

and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).
 30. Karin, N. CXCR3 ligands in cancer and autoimmunity, chemoattraction of effector T cells, and beyond. Front. Immunol. 11, 976–976 

(2020).
 31. Karin, N. & Razon, H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. 

Cytokine 109, 24–28 (2018).
 32. Edgar, R., Domrachev, M. & Lash, A. Gene expression omnibus: NCBI gene expression and hybridization array data repository. 

Nucleic Acids Res. 30, 207–210 (2002).
 33. Raskin, L. et al. Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J. Invest. 

Dermatol. 133, 2585–2592 (2013).
 34. Yan, B. Y. et al. Novel immune signatures associated with dysplastic naevi and primary cutaneous melanoma in human skin. Exp. 

Dermatol. 28, 35–44 (2019).
 35. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 

181, 747 (2020).
 36. Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–D995 (2013).
 37. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for statistical computing, 2013).
 38. Consortium. The gene ontology (GO) project in 2006. Nucleic Acids Res. 34, D322–D326 (2006).
 39. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
 40. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
 41. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. 

Nucleic Acids Res. 49, D545–D551 (2021).
 42. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nat. Protoc. 4, 44–57 (2009).
 43. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional 

analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
 44. Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery 

in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
 45. Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 

13, 2498–2504 (2003).
 46. Chin, C. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, S11–S11 (2014).
 47. Tang, Z. et al. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 

45, W98–W102 (2017).
 48. Li, T. et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Can. Res. 77, e108–e110 (2017).
 49. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, 

technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
 50. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019).

Acknowledgements
We thank Dr. Jianming Zeng (University of Macau), and all the members of his bioinformatics team, biotrainee, 
for generously sharing their experience and codes.

Author contributions
Conceptualization, K.W. and X.J.; Methodology, J.C., S.H. and H.W.; Software, J.C., S.H. and H.W.; Validation, 
K.W. and Y.S.; Formal analysis, J.C. and H.W.; Investigation, X.Z., Q.L. and L.H.; Resources, M.X. and Q.C.; Data 
curation, J.C., H.W. and X.Z.; Writing—original draft preparation, J.C. and S.H.; Writing—review and editing, 
K.W. and J.X.; Visualization, J.C., Q.C. and K.W.; Supervision, K.W., T.Z. and B.D.; Project administration, K.W. 
and J.X.; Funding acquisition, K.W. and J.X.

Funding
This work was supported by the National Natural Science Foundation of China [Grant numbers 81873146, 
82104571 and 82074070], the Guangdong Natural Science Foundation [Grant number 2020A1515110632], the 
Science and Technology Plan Project of Guangzhou of China [Grant number 202102020721], and the National 



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10040  | https://doi.org/10.1038/s41598-022-14319-2

www.nature.com/scientificreports/

Undergraduate Training Programs for Innovation and Entrepreneurship [Grant numbers 202110572002, 
202110572030].

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 14319-2.

Correspondence and requests for materials should be addressed to B.D., J.X. or K.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-14319-2
https://doi.org/10.1038/s41598-022-14319-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Integrated analysis reveals the pivotal interactions between immune cells in the melanoma tumor microenvironment
	Results
	Identification of DEGs. 
	GO enrichment analysis and KEGG pathway analysis of the DEGs showed functional enrichment in immune regulation. 
	PPI network construction and the identification of hub genes. 
	Expression verification and survival analysis of the hub genes. 
	Prognostic value of differentially expressed hub genes in patients with melanoma. 
	Relationship between differentially expressed hub genes and immune cell infiltration. 
	ScRNA-Seq analysis and identification of different types of immune cells in melanoma. 
	Integrated analysis reveals the basis of the interaction between immune cells in the TME. 
	Relationship between the critical genes and immune cell infiltration in the melanoma tumor microenvironment. 

	Discussion
	Materials and methods
	Data collection and processing. 
	Identification of DEGs. 
	Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. 
	Acquisition of hub genes by PPI network analysis. 
	Expression verification and survival analysis of the hub genes. 
	Tumor immune infiltration analysis. 
	Single cell sequencing data processing. 
	Inference and analysis of intercellular communication using CellChat. 
	Database applied to analyze genes and immune cell infiltration correlation. 

	Conclusions
	References
	Acknowledgements


