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Water quality assessment 
of east Tiaoxi River, China, based 
on a comprehensive water quality 
index model and Monte‑Carlo 
simulation
Wei Jin1, Yuan Li1, Li Lu1,2*, Dong Zhang3, Shanying He1, Jiali Shentu1, Qiwei Chai1 & 
Lei Huang1

The comprehensive water quality index (CWQI) reflects the comprehensive pollution status of 
rivers through mathematical statistics of several water quality indicators. Using computational 
mathematical simulations, high‑confidence CWQI predictions can be obtained based on limited water 
quality monitoring samples. At present, most of the CWQI reported in the literature are based on 
conventional indicators such as nitrogen and phosphorus levels, and do not include the petroleum 
hydrocarbons levels. This article takes a typical river in eastern China as an example, based on the 
1‑year monitoring at 20 sampling sets, a CWQI containing five factors, TN,  NH4

+‑N, TP, ∑n‑Alks, and 
∑PAHs was established, and further predicted by a Monte‑Carlo model. The predicted CWQI for each 
monitoring section is above 0.7, indicating that most of the monitoring sections are moderately 
polluted, and some sections are seriously polluted. The Spearman rank correlation coefficient analysis 
results show that TN, ∑PAHs, and ∑n‑Alks are the main factors influencing the water quality, especially 
the petroleum hydrocarbons have a significant impact on the middle and lower reaches due to 
shipping. In the future, more attention should be paid to petroleum hydrocarbon organic pollutants in 
the water quality evaluation of similar rivers.

River as important fresh water resources on land, bear important missions in people’s daily life, but at the same 
time, river pollution, as a serious problem worldwide, threatens environmental safety and people’s  healthy1. The 
collection of river water quality related data can be used as the basis for river  management2. Collection of data 
on river water pollutants is generally based on several aspects. The first is an indicator system based on eutrophi-
cation of water bodies, especially nitrogen, phosphorus, dissolved oxygen and other indicators have important 
impacts on river ecology. River assessment system based on indicators is widely  used3–5. The second is about trace 
pollutants including PAHs, antibiotics, etc. These pollutants are extremely low in water, but their hard-to-degrade 
and cumulative properties will undoubtedly affect the ecological environment at a higher  concentration6,7. It has 
an important impact, and the collection of trace pollutant data has a longer-term direction for the formulation 
of river ecological management plans. The other is the collection of some related indicators of particulate mat-
ter and microorganisms. After a thorough understanding of the concentration level of pollutants in the basin, 
water quality assessment can be used to simulate the assessment of the pollution situation in the area. As a kind 
of water quality index (WQI), The Comprehensive Water Quality Index (CWQI) Method has the advantages of 
being able to process long series of data and comprehensive water quality for multi-point and multi section water 
 bodies8. CWQI assigns water quality levels based on pollution classification standards. CWQI is in the range of 
(0, 0.4], which is a clean water body, and the water quality is better; in the range of (0.4, 0.7], the water quality is 
slightly pollution; in (0.7, 1], the water quality is moderate pollution; (1, 2], the water quality is a serious pollu-
tion; at (2, + ∞), the water quality pollution is very  serious9. The selected water quality index will be calculated 
according to the following formula:
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In the formula, n is the number of participating water quality indicators;  Pi is the single factor pollution index. 
The larger the value, the higher the degree of pollution.

For non-dissolved oxygen indicators:

In the formula,  Ci is the measured value of an evaluation index; C0 is the standard value of an evaluation index.
Farzadkia et al.10 used CWQI to model 14 pollutant indicators, including (temperature, electrical conductivity 

(EC), turbidity, total dissolved solids (TDS), total suspended solids (TSS), nitrate, nitrite, phosphate, dissolved 
oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), pH, and total coliforms 
(TCs) and fecal coliforms (FCs). Use this to assess the water quality of the Yamchi Dam basin and identify the 
main source of water pollution in the basin. Davies et al.11 used CWQI simulation analysis was performed under 
the conditions of 17 pollutant indicators (including TP,  NH4

+-N, DO, etc.), and it was found that the value of 
CWQI can reflect the change of the sample. It can be seen that CWQI is mainly targeted at conventional indicators 
in previous studies, and CWQI can only obtain corresponding water quality conditions from monitoring data 
during use. Once the number of samples is too small, the significance of its evaluation will be greatly reduced.

The Monte Carlo model can make up for the shortcomings of CWQI when the amount of data is insufficient. 
Monte Carlo simulation belongs to a branch of computational mathematics. Through random sampling, the 
average value of a random variable or the probability of this event occurring is used as a solution to the problem. 
By performing thousands of Monte Carlo sampling simulations on the basic data of river water quality obtained 
by sampling a limited number of times, all possible comprehensive pollution indexes and their probabilities can 
be obtained under uncertain conditions of river water quality evaluation parameters, and the credibility and sta-
tistics of the simulation results Significantly higher than the result obtained from a limited number of  samples12.

In this study, 20 sampling sites were set up in East Tiaoxi River to collect data for one year. And a Monte 
Carlo-CWQI model with 5 pollutant indicators including TN,  NH4

+-N, TP, ∑n-Alks, ∑PAHs is established to 
evaluate the water quality. The aim of this article is to further improve the database of pollutants in Esat Tiaoxi 
River and analyze the comprehensive pollution level of the river and obtain the main pollutants and main influ-
encing factors.

Material and methods
Study area. The East Tiaoxi River is a typical basin of the river network in Southeast China. It is one of 
the largest inflow systems of Lake Taihu. The length of the main stream is 151.4 km (30° 05′ ~ 30° 57′ N, 119° 
28′ ~ 120° 08′ E), and the basin area reaches 2267  km2 (Fig. 1). The upper stream of East Tiaoxi River is a moun-
tain river, which is composed of three tributaries of North Tiaoxi River, Mid Tiaoxi River, and North Tiaoxi 
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Figure 1.  The catchments and sampling points (ArcGIS10.1, ESRI).
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River. The middle reaches of the river are narrow and are flooded areas. The lower reaches of the Hangjiahu 
Plain, with wide rivers, slow rivers, and advanced shipping. It is an important shipping area with a developed fish 
breeding industry. As an important water source in this region, the water quality of East Tiaoxi River is related 
to the ecological security of the basin and people’s health.

According to the distribution of water systems in the basin, we use GIS (ArcGIS 10.1, ESRI Company, Red-
lands, California, USA) to divide the whole basin into 20 catchments, and set up a water quality monitoring 
section on the main channel in each catchment (Fig. 1). A total of 20 sampling points (set to P1–P20) were set, 
including 6 tributary monitoring points (P1; P2; P3; P4; P5; P18) and 14 main stream monitoring points. The land 
type data and population data of each catchment were collected and listed in Supplementary Materials (Table S1).

Sample collection and laboratory analysis. From September 2018 to August 2019, monthly sampling 
of 20 river water quality monitoring sections of East Tiaoxi River was conducted. Each month, sample collec-
tion for all sections was completed in two consecutive daytime hours. The surface water sample is collected in 
the middle of each monitoring section and 0.5 m away from the water surface, each sample is 10 L. After the 
samples were collected, they were acidified by adding sulfuric acid to a pH of less than 2 and shaken and stored 
in a refrigerator.

Standard Methods recommended by Ministry of Ecology and Environment of China were used for ammonia 
nitrogen (NH4-N, HJ 535-2009), total nitrogen (TN, HJ 636-2012), and total phosphorus (TP, GB 11893-89) 
analysis. Specifically, NH4-N was determined using a Nessler’s reagent spectrophotometric method; TN was 
determined using an alkaline potassium persulfate digestion UV spectrophotometric method; TP was determined 
using ammonium molybdate spectrophotometric  method13,14. Water samples of 16 kinds of PAHs were passed 
through a LC-C18 cartridge for solid-phase extraction (SUPELCO Visiprep), eluted with dichloromethane, 
and after nitrogen blowing, the volume was adjusted with acetonitrile and determined by High Performance 
Liquid Chromatography (Agilent 1260, USA)15. 33 kinds of n-Alkanes (C8–C40) water samples were also passed 
through a LC-C18 cartridge for solid phase extraction and eluted with ethyl acetate. After nitrogen blowing, they 
were further eluted through a silica gel column with n-hexane and then nitrogen Blow, make up to volume with 
n-hexane, and measure by Gas Chromatography (Agilent 7890, USA)16.

Monte Carlo‑CWQI Index model and spearman correlation coefficient. In this study, Monte 
Carlo simulation was used, combined with CWQI, CWQI was used as a predictive variable, and random vari-
ables were set as  Pi for each evaluation index to establish a Monte Carlo-CWQI water quality evaluation model. 
The methods of establishing the comprehensive pollution index and Monte Carlo simulation are introduced in 
“The comprehensive pollution index method” and “Monte Carlo simulation method”, respectively.

The comprehensive pollution index method. Based on the monitoring data of the above five pollutants, we estab-
lished a comprehensive pollution index model for TN,  NH4

+-N, TP, ∑n-Alks and ∑PAHs, and established the 
standard values of the single factor indicators for the five pollutants according to the formula (2). TN,  NH4

+-N 
and TP are based on the standard value of class III water in environmental quality standards for surface water 
in China (GB3838-2002). Compared with some European standards, the concentration of TN we set is at the 
same level as that of the category III (0.75 ~ 1.5 mg  L−1) of the UNECE (the United Nations Economic Commis-
sion for Europe) ambient water quality standard, and the concentration of  NH4

+-N is between the level of class 
III and class IV of the ICPDR (International Commission for the Protection of the Danube River) water quality 
classification (0.6 ~ 1.5 mg  L−1). The concentration of TP is at the ICPDR standard class II level (0.2 mg  L−1)17. In 
the U.S., EPA divided the whole area into 14 distinct eco-regions, and proposed recommended ambient water 
criteria for each region. The TN standard selected here is comparable to the higher levels in the 14 regions (eg. 
eco-region XII, 0.9 mg  L−1), while the TP standard is significantly lower than those in all 14  regions18.

The standard value of ∑n-Alks here is based on the standard value of class III water in petroleum hydrocar-
bons in GB3838-2002. However, prior to this study, there is no suitable standard value for ∑PAHs. In this study, 
the standard value of benzoapyrene (BaP) 2.8 ng  L−1 in GB3838-2002 was expanded by a hundred times (280 ng 
 L−1) as the standard value for ∑PAHs. The specific standard values are shown in Table 1.

Monte Carlo simulation method. Based on the standard values of the above indicators, the single factor pollu-
tion index of each indicator is calculated by the formula (2). In order to ensure that the data is in a normal distri-
bution, the obtained single-factor pollution index is subjected to natural logarithmic transformation, and SPSS 
22.0 is used for Kolmogorov–Smirnov test. The relevant data of the single factor pollution index can be found in 

Table 1.  Calculated standard values of the five single-factor pollution indexes. a The standard value of class III 
water in environmental quality standards for surface water in China (GB3838-2002). b One hundred times the 
standard value of 2.8 ng  L−1 of benzo(a)pyrene (BaP) in GB3838-2002. c The standard value of class III water in 
petroleum hydrocarbons in GB3838-2002.

Index TN NH4
+-N TP ∑PAHs ∑n-Alks

Unit mg  L−1 mg  L−1 mg  L−1 ng  L−1 μg  L−1

Standard value 1.0a 1.0a 0.2a 280b 50c
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the supplementary materials (Table S2). Monte Carlo simulation was performed in Crystal Ball software in the 
Microsoft Excel environment. Edit the formula (1) in the Monte Carlo model, use CWQI as the predictive vari-
able, and use the single factor pollution index as the random variable. Enter the mean and standard values of the 
single-factor pollution index into the Monte Carlo model and perform 10,000 sampling simulation.

In order to characterize the impact of various water quality indicators on the degree of water pollution, Spear-
man rank correlation coefficient (SRCC ) will be calculated according to the following formula:

In the formula, m is the number of simulations;  xi is the ranking value of the input parameter;  yi is the ranking 
value of the output result; x and y are the means of the  xis and the  yis. The value of SRCC  ranges from − 1 to 1. 
The higher the SRCC  value, the greater the influence of the input variable on the target variable.

Results and discussion
Concentration levels and distribution characteristics of the typical pollutants. According to the 
monitoring results, the annual average concentration of TN,  NH4

+-N are 0.80–1.50 mg  L−1 and 0.03–0.61 mg 
 L−1, respectively. The TN concentration in East Tiaoxi River is relatively stable throughout the year, with a high 
concentration in December and an average concentration of 1.74 mg  L−1 in the basin (Fig. 2a). The variation 
trend of TN concentration in the river within one year is basically consistent with the change of runoff. The high-
est annual concentration appears in P4 of Mid Tiaoxi River monitoring section, with an average concentration 
of 1.50 mg  L−1 and a maximum concentration of 2.58 mg  L−1. There may be a large number of pollution sources 
of fertilization or discharge in this area. The highest annual concentration of  NH4

+-N is found in monitoring 
section P11, with an average concentration of 0.61 mg  L−1 and a maximum concentration of 1.24 mg  L−1. Since 
monitoring section P11, the concentration of  NH4

+-N in East Tiaoxi River began to rise, and the concentration 
in the middle and lower reaches of East Tiaoxi River was generally higher than that in the middle and upper 
reaches; the concentration of  NH4

+-N reached the highest in August and September, with an average concentra-
tion of 0.40 mg  L−1 and 0.38 mg  L−1 (Fig. 2b).

The annual average concentrations of TP are 0.07 ~ 0.26 mg  L−1. The highest annual concentration of TP is 
found in monitoring section P17 at the lower reaches of East Tiaoxi River, with an average concentration of 
0.13 mg  L−1 and a maximum concentration of 0.44 mg  L−1. The abnormal value of TP occurred in December 
2018. From monitoring section P11 to monitoring section P20 at the inlet of the lake, the concentration increased 
to varying degrees, with an average concentration of 0.24 mg  L−1(Fig. 2c).

In the monitoring of 16 kinds of PAHs, it is found that the ∑PAHs s in each monitoring section of East Tiaoxi 
River basin is 0.19–0.28 μg  L−1, which is lower than other rivers in  China19–21, but the analysis on time scale 
shows that the concentration of PAHs in February is generally high, with an average concentration of 0.47 μg 

(3)SRCC =

∑m
i=1

(xi − x)(yi − y)

[
∑m

i=1
(xi − x)2

∑m
i=1

(yi − y)2]
1/2

Figure 2.  Annual average concentration and distribution of the typical pollutants in each monitoring section 
along the East Tiaoxi River. (a) TN, (b)  NH4-N, (c) TP, (d) ∑PAHs, (e) ∑n-Alks (C8 ~ C40).
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 L−1, and some sections also have high concentrations in January and March. To determine the source of PAHs, 
more long-term monitoring is needed (Fig. 2d).

As the middle and lower reaches of East Tiaoxi River are widely used in shipping, n-alkanes (the n-alkanes 
with carbon chain lengths from 8 to 40, which are denoted by C8 to C40) was monitored to explore the impact 
of shipping on water quality. In the monitoring of n-alkanes (C8 ~ C40), it was found that ∑n-Alks concentration 
of 20 monitoring sections in East Tiaoxi River was 24.92–127.10 μg  L−1. In terms of average concentration, the 
areas with higher concentration are mainly concentrated in the middle and lower reaches of East Tiaoxi River, 
which coincides with the shipping area. In terms of time, the high concentration points are mainly in July and 
August, with the average concentrations of 178.02 μg  L−1 and 202.42 μg  L−1. At this time, the rainfall is large, the 
water level rises, and the shipping is relatively frequent (Fig. 2e).

Analysis of types and characteristics of the organic pollutants. The characteristics of 16 types of 
PAHs were analyzed. Overall, the low loops (2 to 3 loops) accounted for about 98% of the total PAHs (Fig. 3a). 
Three monitoring sections (P4, P14 and P20) were selected in the upstream, middle and lower reaches of East 
Tiaoxi River for more detailed analysis. NA and Phen are the PAHs that mainly exist in East Tiaoxi River. AC, 
Flour, and Py also exist. The concentration of Phen in the river basin as a whole did not change much. The con-
centration of NA in the upper and middle reaches is higher, which may be caused by the disturbance of the river 
in the upper and middle reaches. The concentration of AC is higher in the upper reaches of East Tiaoxi River 
(Fig. 3b–d).

Three monitoring sections (P2, P15 and P20) were also selected for the analysis of 33 types of n-alkanes in 
the upper, middle and lower reaches of East Tiaoxi River. C22 is the main pollutant in the upstream region of 
East Tiaoxi River, and C39 is the main pollutant in the middle and lower reaches (Supplementary Fig. S1). From 
the perspective of monthly distribution, the production of high-density n-alkanes in some months is the cause 
of excessively high n-alkanes concentration in the East Tiaoxi River.

The carbon preference index (CPI) was selected to conduct a qualitative analysis of the origin of n-alkanes 
in the East Tiaoxi River. CPI is the concentration ratio of the sum of odd-numbered alkanes to the sum of even-
numbered alkanes. When CPI > 5, n-alkanes comes from plant wax source; when CPI≈1, n-alkanes is considered 
to come from fossil  fuel22,23.
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Figure 3.  Distribution characteristics of the 16 PAH in the monitoring sections of P4, P14 and P20. (a) ∑PAHs, 
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According to the formula (4), the CPI values of the monitoring sections P2, P15, and P20 are 1.37, 2.43, and 
1.94, respectively. The CPI is higher than 1 but much lower than 5, and the n-alkanes in the East Tiaoxi River 
mainly come from fossil fuels.

Monte Carlo‑CWQI for water quality evaluation. According to the water quality monitoring data of 
each section, a series of single-factor pollution index values were calculated by formula (2) and then the natural 
logarithmic transformation was performed. After the Kolmogorov–Smirnov test, the transformed single-factor 
pollution indices all obeyed normal distribution, and their mean values and probability distribution parameters 
are shown in Table S2.

Although the number of sampling times for water quality monitoring of any river is always limited, Monte 
Carlo simulation can obtain all possible comprehensive pollution indices and parameters under uncertain condi-
tions of river water quality evaluation parameters by randomly sampling the limited basic  data24–26. In this study, 
the above-mentioned single-factor pollution index was set as a random variable, and the probability distribution 
parameters of each random variable were input. For each section, randomly sample 10,000 times within the range 
of the probability distribution, and the cumulative frequency distributions of CWQI for 20 monitoring sections, 
the CWQI prediction average value, and the probability of different degrees of pollution in each monitoring 
section can be obtained (Table. 2).

The results show that the average predicted CWQI of each monitoring section in East Tiaoxi River is above 0.7 
(Table. 2). The water quality in North Tiaoxi River (monitoring section P5) is the best. Monte Carlo simulation 
shows that the probability of water pollution in monitoring section P5 is 54%, and the average CWQI predic-
tion is 0.72. The water quality in the middle and lower reaches of the East Tiaoxi River is significantly inferior 
to that in the upper reaches. Judging from the predicted average values, the predicted CWQI average values of 
monitoring sections P11–P12 and P14–P16 are all greater than 1, which is a serious pollution. Among them, the 
probability of severe pollution in monitoring section P15 reached 57%, and the predicted average value of CWQI 
was 1.14. The water quality in this area was the worst. In summary, the overall water quality of the East Tiaoxi 
River is relatively poor, mainly with moderate pollution, and some monitoring sections in the lower reaches of 
the East Tiaoxi River are serious pollution, which requires attention (Fig. 4).

The results of SRCC  analysis are shown in Fig. 5. The higher the SRCC  value, the greater the influence of the 
input variable on the target variable. Results show that the water quality parameters that have a greater impact 
on the comprehensive pollution index in the middle and upper reaches of the East Tiaoxi River are ∑PAHs s and 
TN. The middle and lower reaches of the East Tiaoxi River are mainly affected by TN and ∑n-Alks. Compared to 
the upper reaches, the impact of ∑n-Alks on the comprehensive pollution index of lower reaches has increased 
significantly, which indicates that the impact of shipping on n-alkanes pollution is obvious. Organic pollution 
in the East Tiaoxi River needs more attention.

(4)

CPI = (C9+ C11+ C13+ C15+ C17+ C19+ C21+ C23+ C25+ C27+ C29+ C31+ C33+ C35+ C37+ C39)/

(C8+ C10+ C12+ C14+ C16+ C18+ C20+ C22+ C24+ C26+ C28+ C30+ C32+ C34+ C36+ C38+ C40)

Table 2.  Probability distributions of the CWQI for the different sampling locations in the East Tiaoxi River.

Sampling sites Average predicted CWQI value Clean water (%) Slight pollution (%) Moderate pollution (%) Serious pollution (%) Highly severe pollution (%)

P1 0.76 1 47 38 13 1

P2 0.89 0 28 44 26 2

P3 0.84 1 40 38 19 2

P4 0.98 0 25 39 33 3

P5 0.72 1 54 35 9 1

P6 0.81 0 40 42 17 1

P7 0.82 0 45 37 16 2

P8 0.78 0 43 44 12 1

P9 0.88 0 30 44 24 2

P10 0.86 0 26 52 22 1

P11 1.08 0 10 39 48 3

P12 1.00 0 12 46 40 2

P13 0.98 0 22 44 31 3

P14 1.03 0 17 38 42 3

P15 1.14 0 6 34 57 3

P16 1.13 0 10 34 29 4

P17 0.95 0 20 45 34 1

P18 0.94 0 18 49 32 1

P19 0.90 0 25 47 27 1

P20 0.84 0 29 52 18 1
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Correlation analysis of the CWQI prediction values of 20 sections with the paddy field, dry land, economic 
forest land, construction land, water area, grassland and other areas of the catchments did not show obvious 
correlation with a certain land type (correlation coefficients Less than 0.5). Obviously, the pollution sources and 
pollutant distribution trends of the 20 sections have been affected by multiple factors, and there is no consist-
ent pattern. However, for the cross-sections (P3, P5, P6, P7, P9 and P18) with PAHs as main pollution factor 
(SRCC > 0.5), the CWQI prediction values of these sections have a certain positive correlation with the water 
area of the catchments, and the correlation coefficient was 0.71(Fig. 6). This shows that the PAHs pollution in 
East Tiaoxi River may also have a certain relationship with water navigation.
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Conclusions
The concentration levels and spatial–temporal distributions of TN,  NH4

+-N, TP, ∑n-Alks and ∑PAHs in the 
East Tiaoxi River were obtained, which supplemented and improved the database of pollutants in the river and 
provides some support for East Tiaoxi River water quality management and further improvement plans.

A Monte Carlo-CWQI model was established to predict the comprehensive pollution level of the river, two 
organic pollution indicators, ∑PAHs and ∑n-Alks were incorporate into CWQI, and the weight of each pollution 
indicator in the comprehensive pollution assessment was analyzed by SRCC  analysis. The established model 
makes up for the limited data in the sampling study and the insufficient attention to organic pollution in the 
previous comprehensive pollution assessment methods. The prediction and evaluation results of the model for 
East Tiaoxi River also provide data and theoretical support for the formulation of PAHs and n-alkanes concen-
tration standards in surface water.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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