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Electron transport properties 
of graphene quantum dots 
with non‑centro‑symmetric 
Gaussian deformation
A. Poszwa

A theoretical investigation on electron transport properties of rectangular graphene quantum dots 
(GQDs) with non‑centro‑symmetric out‑of‑plane Gaussian deformation of elliptic type is presented. 
Different levels of deformation are explored to estimate system geometry optimal for potential 
electronic applications. Electronic properties of deformed GQDs are studied in terms of local density 
of states (LDOS), band‑gap opening and equilibrium ballistic conductance. In particular, it was 
observed that the symmetry of spatial LDOS structure is directly linked with the symmetry of properly 
defined local strain field (LSF) map, for a wide energy range. The relationship confirms qualitatively 
predictions obtained on the basis of the concept of a pseudomagnetic field, used in continuum models 
of graphene, including strain induced effects. The conductance spectra of deformed GQD as a device 
connected to semi‑infinite graphene armchair nanoribbons as reservoirs are studied in a frame of 
tight‑binding (TB) model in combination with non‑equilibrium Green’s‑functions technique (NEGF).

Geometry-induced effects in 2D materials has emerged in recent years as an active area of research due to poten-
tial use for electronic purposes. The coupling of geometrical and electronic properties seems to be a promising 
tool for the design of electronic devices with a desired electric transport properties. A representative example 
of the interplaying between geometry and the electronic band structure in graphene systems are graphene 
nanoribbons (GNRs) and carbon nanotubes (CNTs)1,2. In the former, the electronic states largely depend on the 
edge structure and on the width of the GNR, in the latter the electrical properties depend on the shape of the 
edges and on the diameter of the CNT. Dependence of the electron transport on the geometry has been studied 
theoretically and experimentally in many structures characterized by non-uniform geometry, in particular in 
the ballistic regime. The motion of charge carriers can be considered ballistic, when the constriction length of 
the device is on the scale of mean-free path length of the material. One of the most known devices of this type is 
the geometric  diode3,4. The geometric diode is a ballistic transport device providing electric rectification due to 
geometrical asymmetry. In many materials, energy bands exhibit a discrete number of inequivalent local minima 
or maxima for specific values of momenta, usually known as valleys5,6. These valleys seem to be ideal candidates 
for components of a binary variable or pseudospin. In the case of graphene in particular, different schemes have 
been proposed to achieve valley-electronic filtering depending on geometrical deformation, also referred to as 
valley polarization, i.e. generating a charge current composed of electron states from only one valley. Strain-
induced effects in graphene has been the topic of a large number of theoretical works aimed at understanding 
the impact of controlled geometrical deformations on electronic  properties7–12. Most of theoretical study focus 
on strain produced by a centrosymmetric Gaussian out-of-plane  deformation12–15. They have been already pro-
duced experimentally on suitable  substrates16 and also with STM  methods17. Confining states within deformed 
GNR, symmetry properties of LDOS, conductance spectra and pseudospin polarization have been studied in 
the frame of TB  approximation18. The effects of an external electric field, the influence of edge roughness on 
conduction properties of deformed GNRs with centrosymmetric Gaussian bump have been studied using TB 
model and NEGF transport  formalism19.

In this work, I investigate the impact of anisotropic Gaussian deformation on static electronic properties of 
GQDs and on electron transport in armchair graphene system given in Fig. 1. I consider three types of Gaussian 
bumps illustrated in Fig. 2. The example profiles of GQD with elliptic Gaussian deformation are given in Fig. 3. 
The main goal of this paper is to estimate optimal geometric configuration of the central part of the structure 
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GNR-GQD-GNR giving appropriate profile of conductance as function of energy, suitable for electronic pur-
poses. Considering this system as a main structural element of the nanotransistor one expect to obtain high 
conductance in on state and low conductance in off state. The necessary condition to achieve such a conductance 
property is the existence of sufficiently large energy gap and relatively high conductance outside the gap. We note 
that recent studies on electron transport properties of GNRs, focused on the energy gap opening  mechanism19 
and valley filtering  mechanism6, are limited to centrosymmetric Gaussian bumps or pure Gaussian folds. In par-
ticular, it has been shown that centrosymmetric Gaussian deformation strongly modifies the electronic properties 

Figure 1.  The schematic view of the armchair graphene nanoribbon system. The linear sizes of the rectangular 
GQD are defined as W = (M − 1)

√
3/2× a0 and L = (3N − 2)× a0/2 , where a0 = 1.42 Å is the carbon-

carbon distance. The numbers M, N are integers.

Figure 2.  Rectangular GQDs (M=60, N=40) with elliptic Gaussian bumps in the center: (a) hG = 2 nm,

σx = 1 nm, σy = 1 nm ; (b) hG = 2 nm, σx = 0.5 nm, σy = 1 nm ; (c) hG = 2 nm, σx = 1 nm, σy = 0.5 nm.
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of all types of ribbon structures and leads to a strong reduction of electron transmission in high-energy  regions19. 
Investigations presented in this paper show that for the systems with comparable number of transmission modes 
as considered in the  paper19, fundamental requirements related to transport properties (large transport gap and 
good conductance for higher energies) can be satisfied simultaneously for properly deformed GQD as an effect 
of geometric anisotropy, modeled by Gaussian deformation, of an elliptic type.

Model
In order to investigate transport properties of any system, it is convenient to use some discrete representation of 
the Hamiltonian, such as that obtained within the finite difference method or in TB approximation. The discrete 
representation allows for easily determination of contact operators describing couplings between the device and 
leads. Also, using such a representation, the calculation of appropriate Green’s functions reduces to performing 
numerical operations directly on matrices. In the case of graphene systems, a commonly used and the most 
suitable for transport purposes is a single-orbital TB model for the π-electron network. The single orbital is 
the pz atomic orbital of carbon, that is decoupled from the in-plane σ orbitals (formed by s, px and py orbitals). 
Using the first-nearest-neighbors (1NN) approximation the single-orbital, semi-empirical TB Hamiltonian reads

where εi is the on-site energy and tij is the transfer (hopping) energy. For a bulk system, in order to simplify 
the formulation, on-site energies are conventionally set as the reference energy εi = 0 . Using the restriction of 
electron hopping only between first-nearest neighbors, the hopping parameters are supposed to be all equal 
and reduced to tij = t0 = 2.8eV. However, the representation of a finite system by an atomistic model ultimately 
requires the introduction of a limited simulation domain (at least in one spatial direction), of which the surface 
needs to be treated with a specific boundary condition (BC)20–26. One of the choice in representing a finite simula-
tion domain is the abrupt termination of the simulation domain with a hard-wall BC. Such abrupt termination 
in the atomistic basis set results in the creation of dangling  bonds25. The dangling bonds will form surface states 
that typically cover a broad energy range and often litter the central energy region of the fundamental band gap. 
To model GNRs in a more realistic treatment we can the easiest assume that edge carbon atoms are passivated 
with hydrogen, so that there are no dangling bonds at the edge and parasitic boundary condition induced states 
are eliminated. On the other hand, this treatment requires some modification of TB parameters corresponding to 
edge atoms since the presence of C–H bonds introduces carbon atoms on edge with a different nature. One should 
be noted here that the edge effects can be taken into account simply by modifying the transfer energy tij and the 
on-site energy εi in the Hamiltonian (Eq. 1)23. However, as it has been shown in the  paper27 the modification of 
band structure introduced by edge corrections is small, though some of metallic armchair nanoribbons become 
semiconducting. This, however, works to the advantage of our search, as we are looking for effects leading, among 
other, to increasing of the energy gap. For this reason, further calculations are performed using the Hamiltonian 
(Eq. 1) without any modifications, related to edge effects. To obtain band structure and Green’s functions of leads, 
periodic boundary conditions along the ribbon axes are supposed with properly defined unit cell. The energy 
spectrum and Green’s function of the device region are calculated with open boundary conditions imposed at 
zigzag edges of central GQD, resulting from contacts self-energies described by non-hermitian operators.

In the presence of the Gaussian deformation the system is described by the Hamiltonian (Eq. 1), in which 
the hopping energy between two lattice sites ith and jth is modified  to12,19,28

where a0 = 1.42 Å is the carbon-carbon distance and the dimensionless coefficient β = 3.37 is defined by the 
strain  theory28. t0 = 2.8 eV is defined above hopping energy between the two nearest sites in the unstrained region 
and dij =

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the distance between the ith and jth sites. The on-site energies 
are supposed to be unchanged and εi = 0 , for all sites. At this point, one should be noted that hopping renor-
malization given in Eq. (2) is commonly used in theoretical investigation of strain-induced effects in graphene 
but it can not be treated as a general rule. For instance, in TB models with sp3d5s∗ parametrization also diagonal 
corrections are  considered29,30. The source of these corrections however is the presence of d-orbitals in the TB 
model that is not the case of graphene.

(1)H = −
∑

i,j∈1NN

tij|i��j| +
∑

i

εi|i��i|,

(2)tij = t0e
−β(dij/a0−1)

,

Figure 3.  Profiles of elliptic Gaussian bump illustrated in Fig. 2b: (a) zy; (b) zx.
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The coordinate z of atoms within an elliptic Gaussian deformed region is defined as

where in general, the standard deviations σx and σy of the Gaussian shape are different for x- and y-directions. The 
Gaussian bump defined in Eq. (3) is centred on the position with coordinates x0, y0 . In our study x0 = 0, y0 = 0 , 
which coincides with the origin of the coordinate system chosen at the center of the GQD. The GQD is taken 
as a finite rectangular piece of armchair GNR limited by the zigzag edges (see Fig. 1). The geometrical size of 
the GQD is defined using commonly known  convention31. For the system given in Fig. 1, the width W of the 
GQD is given by the integer M, where M stands for the number of dimer lines counted along the zigzag edge, 
W = (M − 1)

√
3/2× a0 and the length L of the GQD is determined by the integer N, where N is the number 

of the zigzag lines along the armchair edge, L = (3N − 2)× a0/2 . In further part of the work the linear sizes of 
the GQDs are given in terms of the integers M and N.

The quantum transport properties are studied using TB model coupled to the NEGF  formalism32,33. As we 
can see in Fig. 1, all system is divided into three parts: semi-infinite left lead, the central region (device) and 
semi-infinite right lead. The leads are taken in the form of armchair GNRs with the width equal to the width 
of the central region. The device has the form of rectangular GQD with elliptic Gaussian bump, in the center. 
The length of the device is taken large enough to ensure smooth connection to the leads, that are supposed to 
be strictly periodic structures, in the transport direction. The Hamiltonian matrix of the entire system, in TB 
representation, can be written in the block form

where HL(R) and HD mean the Hamiltonian matrix of the left (right) lead and the device Hamiltonian, respectively. 
The coupling between the device and the left (right) lead is described by the operator TDL(R) . According to the 
NEGF method the electron transmission function at energy E is given  by33

where ŴL(R) = i(�L(R) −�
†
L(R)) and �L(R) = TDL(R)G

(0)

L(R)T
†
DL(R) denotes self-energy matrix, representing the 

effect of coupling to the left (right) lead. G(0)

L(R) represents the Green’s function of the isolated left (right) lead. GD 
is the Green’s function of the device including the coupling to reservoirs

where η is an infinitesimal positive number introduced to incorporate appropriate boundary conditions for 
retarded Green’s  function33. The LDOS at the jth lattice site is given  by33

where GD(j, j,E) is relevant matrix element of the retarded Green’s function given in Eq. (6). The Green’s func-
tions of the semi-infinite leads and the device region were calculated using recursive techniques presented  in34. 
We note that equilibrium conductance is obtained from transmission simply as G(E) = (e2/h)T(E) . We will 
consider in this paper transport properties of armchair GNR systems classified into three groups, based on the 
classification scheme applied to perfect armchair GNRs: M = 3p+ 2, 3p+ 1, 3p where p is an integer number. 
The first group contains semimetalic GNRs, the two remaining groups correspond to semiconducting GNRs. In 
the present study M is taken as an odd number.

Results and discussion
In Fig.  4a,b are given LDOS maps for GQD with centrosymmetric Gaussian deformation 
( hG = 2 nm, σx = σy = 1 nm ) corresponding to the electron states with energies E = 0 and E = 3 eV, respec-
tively. We note that one of the most peculiar properties of the graphene nanoribbons is that the states at E = 0 
are spatially located on the zigzag edges of the  ribbon20–22. This property remains valid for a finite unstrained 
system, like the rectangular GQD, considered in this study. We can see in Fig. 4a that for deformed system, the 
low-energy states are localized partially at the zigzag edges but also in the center of the dot inside the bump with 
characteristic flower-like structure. The petals of this flower are located on armchair directions of the GQD. On 
the other hand, we can see in part b of Fig. 4 that the states with higher energy occupy the zigzag directions of 
the GQD and partially are localized outside the bump. This can be explained by noting that at low energy there is 
strong confinement inside the bump near the strain maximum. At higher energy, confinement is weaker as more 
states are found outside the bump. In the present study, the flower-like structure of LDOS with 60◦ symmetry 
reflects the presence of local extrema in the local strain field. Details of calculations are given in the “Appendix”. 
We can see that low (high) energy states occupy mostly minima (maxima) in the LSF distribution. The map of 
LSF is given in Fig. 4c. The symmetry analysis is qualitatively consistent with results obtained using the concept 
of strain-induced pseudomagnetic field, introduced in continuum model of  graphene6.

In Fig.  5a,b are given LDOS maps for GQD with non-centrosymmetric Gaussian deformation 
( hG = 2 nm, σx = 0.8 nm, σy = 1nm ) corresponding to the electron states with energies E = 0 and E = 3 eV, 
respectively. In particular, we can see in Fig. 5a that the zigzag edge zero-energy states decreases gradually with 

(3)z(x, y) = hGe
−[(x−x0)

2
/2σ 2

x+(y−y0)
2
/2σ 2

y ],

(4)H =





HL T†
DL 0

TDL HD TDR

0 T†
DR HR



,

(5)T(E) = Tr(ŴLGDŴRG
†
D),

(6)GD = [E + iη −HD −�L −�R]
−1

,

(7)D(E, rj) = −
1

π

Im[GD(j, j,E)],
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increasing of anisotropy of deformed region with approximately fixed strain. We can also see in Fig. 5c that direc-
tions of LSF extrema are rotated relatively armchair and zigzag directions, that is a consequence of anisotropy 
introduced by the deformation geometry.

In Fig. 6 are given conductance spectra of semimetalic armchair GNR ( M = 41 ) with centrosymmetric Gauss-
ian bump in the central region ( M = 41,N = 200 ). For centrosymmetric case, the Gaussian bump parameters 
are fixed on values hG = 2.527 nm, σ = 4.615 nm corresponding to the strain intensity equal to 15% , consid-
ered in the  paper19. Figure 6a present the evolution of the conductance with increasing size of the bump in the 
x-direction. The bump size in the y-direction is fixed on the value corresponding to the centrosymmetric case. 
We can see that due to elliptical deformation the energy gap increases with decreasing σx and the peaks of the 
conductance in the gap region, appearing when the deformation is centrosymmetric, disappear. In Fig. 6b the 
dependence of the conductance on increasing size of the Gaussian bump, along the y-direction, is given. In this 
case, a larger band-gap is created, however the conductance is strongly suppressed outside the gap. Conductance 
spectra given in Fig. 6a,b correspond to the kind of deformation sketched in Fig. 6c,d, respectively.

In Fig. 7a,b are given conductance spectra of semiconducting GNR ( M = 39 ) with elliptically deformed GQD 
( M = 39,N = 300 ) in the center. The deformation parameter σy(σx ) is fixed and the conductance is given as a 
function of the parameter σx(σy ). We can see that both kinds of the deformation induce a wide transport gap, but 
simultaneously the conductance becomes weak outside the gap, in contrary to the system with centrosymmetric 
deformation. In Fig. 7c,d similar dependence are given for deformed semiconducting GNR ( M = 37 ). In this 
case a large band-gap is created but also, in opposite to the centrosymmetric case, the conductance is suppressed 
at higher energies. Conductance spectra given in Fig. 7a,c and Fig. 7b,d correspond to the kind of deformation 
sketched in Fig. 7e,f, respectively.

In Fig. 8a are given conductance spectra of semimetalic GNR ( M = 41 ) system. The Gaussian deformation 
of the central GQD is largely extended in one direction. The deformation generates the hopping energy profile 
given in Fig. 8f. We can see that in the case of the Gaussian fold oriented in the transport direction (large σy/σx 

Figure 4.  The LDOS maps for GQD with centrosymmetric Gaussian bump for electron energies: (a) E = 0 and 
(b) E = 3eV; (c) local strain field (LSF) corresponding to the geometry: hG = 2 nm, σ = 1 nm . The LDOS have 
been generated with the help of Pybinding Python  package35.

Figure 5.  The LDOS maps for GQD with non-centrosymmetric Gaussian bump for electron energies: (a) E = 0 
and (b) E = 3 eV; (c) local strain field (LSF) corresponding to the geometry: hG = 2nm, σ = 1 nm, σx = 0.8 nm

.
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quotient) the transport gap is wider and the conductance becomes higher outside the gap, comparing to the 
centrosymmetric case. The conductance spectra given in Fig. 8b correspond to configuration given in Fig. 8e. 
This kind of the deformation leads to the large transport gap, however the conductance becomes very poor 
outside the gap. The conductance spectra of semiconducting systems ( M = 39 ) with the Gaussian deforma-
tion generating hopping profile given in Fig. 8f are presented in Fig. 8c,d. We can see in Fig. 8c that the case of 
Gaussian bump ( hG/σ = 2 ) with low modulation in the transport direction σy = 20σ gives wide energy gap 
and good conductance for higher energies, comparable to the ballistic conductance of non-deformed GNR. 
On the other hand, as we can see in Fig. 8d, the system with lower deformation ( hG/σ = 1 ) generates smaller 
band-gap, however the conductance becomes higher outside the gap. Both these configurations are optimal for 
practical electronic purposes, particulary from the point of view of sharp switching between on and off states in 
the field-effect nano-transistor, with GQDs built in.

Summary
In this paper I studied static electronic properties and equilibrium transport properties of rectangular graphene 
quantum dots with non-centrosymmetric Gaussian deformation. Quantum transport has been studied within 
NEGF formalism for system with deformed GQD as a central scattering region connected to semi-infinite GNRs 
as leads, having perfect geometry. The connection between symmetry of spatial LDOS structure and the symme-
try of local strain field has been observed, for a wide energy range. By investigating several types of deformation, 
I estimated optimal configuration of the armchair GNR system with elliptic Gaussian deformation, suitable for 
potential electronic applications. The optimal configuration corresponds to the extended elliptic deformation 
having a geometry of a gutter with decreasing depth, oriented along the transport direction. Contrary to the 
centrosymmetric bumps or strictly Gaussian-fold deformations considered in many papers, this kind of the 
deformation provides a large transport gap and high transmission outside the gap, that is comparable with the 
transmission of perfect GNRs. These two features are fundamental from the point of view of practical nanoscale 
electronics applications. In the case of field-effect transistors in particular, the achievement of a high on/off 
ratio is directly dependent on these characteristics. One should be also added that discussed in this paper cases 
are representative examples of whole family of armchair GNR systems having the form GNR-GQD-GNR and 

Figure 6.  Conductance spectra of semimetalic armchair GNR with the central scattering region in form of 
deformed GQD ( M = 41,N = 200 ) for several configurations of elliptic Gaussian deformation. Parameters 
of centrosymmetric Gaussian deformation ( hG = 2.527 nm, σ = 4.615 nm ) are fixed on values considered in 
the  paper19. Solid black lines correspond to perfect armchair GNR. Conductance spectra given in part (a,b) 
correspond to the kind of deformation sketched in part (c,d), respectively.
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obtained results are universal in the sense that they do not depend on particular integer number M, defining 
one of the three family members.

Figure 7.  Conductance spectra of semiconducting armchair GNR with the central scattering region in form 
of deformed GQD: (a,b) ( M = 39,N = 300 ); (c,d): ( M = 37,N = 300 ), for several configurations of elliptic 
Gaussian deformation. Conductance spectra given in parts (a,c) (left panel) and (b,d) (right panel) correspond 
to the kind of deformation sketched in part (e,f), respectively.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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