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A new human‑based metaheuristic 
algorithm for solving optimization 
problems on the base of simulation 
of driving training process
Mohammad Dehghani, Eva Trojovská & Pavel Trojovský*

In this paper, a new stochastic optimization algorithm is introduced, called Driving Training‑Based 
Optimization (DTBO), which mimics the human activity of driving training. The fundamental 
inspiration behind the DTBO design is the learning process to drive in the driving school and the 
training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the 
driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance 
of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high‑
dimensional multimodal, fixed‑dimensional multimodal, and IEEE CEC2017 test functions types. The 
optimization results show that DTBO has been able to provide appropriate solutions to optimization 
problems by maintaining a proper balance between exploration and exploitation. The performance 
quality of DTBO is compared with the results of 11 well‑known algorithms. The simulation results 
show that DTBO performs better compared to 11 competitor algorithms and is more efficient in 
optimization applications.

Optimization is the process that determines the best solution to a problem with several feasible solutions. An 
optimization problem consists of three parts: decision variables, constraints, and the objective  function1. In 
this case, the purpose of optimization is to quantify the decision variables with respect to the constraints of the 
problem so that the value of the objective function is  optimized2. With the advancement of science and technol-
ogy, the importance and role of optimization in various branches of science have become clearer. Therefore, 
practical tools are needed to address the various optimization challenges. Optimization techniques fall into 
two groups: deterministic and stochastic approaches. Deterministic approaches in both gradient-based and 
nongradient-based groups are effective in linear, convex, uncomplicated, low-dimensional, and differentiable 
problems. However, these approaches lose their effectiveness in dealing with optimization problems that have 
features such as nonlinear, nonconvex, complex, high-dimensional, notdifferentiable, discrete search space, and 
NP-hard problems. The difficulties and inefficiencies of deterministic approaches have led to the emergence of 
stochastic approaches that, using random operators, random search, and trial-and-error processes, are effective in 
optimization applications. Metaheuristic optimization algorithms, known as stochastic approaches, have become 
very popular and widely used due to advantages such as simple concepts, easy implementation, independent of 
the type of problem, no need for objective function-derived information, and efficiency in nonlinear, nonconvex 
environments, and nonlinear search  space3. The optimization process in metaheuristic algorithms starts with 
generating a number of random candidate solutions in the range allowed for the search space. Then, in an itera-
tive process, the candidate solutions are improved by the algorithm steps. After completion of the algorithm 
implementation iterations, the best candidate solution is introduced as the solution to the problem. The nature 
of random search in metaheuristic algorithms leads to the fact that there is no guarantee that this best candidate 
solution is the best solution (known as the global optimal) to a problem. Therefore, the best candidate solution 
is known as a quasi-optimal solution, which is an acceptable solution and close to the global  optimal4. Achiev-
ing better quasi-optimal solutions has become a challenge in optimization studies to motivate researchers to 
introduce and design countless metaheuristic algorithms. In designing optimization algorithms, two indicators 
of exploration and exploitation play an important role in the performance of optimization algorithms in achiev-
ing appropriate quasi-optimal solutions. Exploring indicates the ability of the algorithm to perform a global 
search, and exploitation indicates the ability of the algorithm to perform a local search in the search space. The 
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key to the success of a metaheuristic algorithm in the optimization process is maintaining a suitable balance 
between exploration and  exploitation5. The main research question is whether, given that numerous optimiza-
tion algorithms have been developed so far, is there still a need to design newer algorithms? The answer to this 
question, given the concept of No Free Lunch (NFL)6, is that there is no guarantee that an algorithm will work 
the same in all optimization problems. The NFL states that an algorithm may have a successful implementation 
on some optimization issues but fail to address others. Consequently, a particular algorithm cannot be considered 
the best optimizer for all optimization problems. Influenced by the concept of the NFL theorem, authors are 
encouraged to come up with more effective solutions to optimization problems by introducing new optimizers. 
The NFL theorem also motivated the authors of this paper to develop a new metaheuristic algorithm to address 
optimization applications. The novelty and contribution of this paper are in the design of a new metaheuristic 
algorithm called Driving Training-Based Optimization (DTBO), which is based on the simulation of human 
activity in driving education. The contributions of this paper are as follows:

• DTBO is introduced based on the driving training process in which a person is trained to learn driving skills.
• A set of 53 objective functions is used to analyze the performance of DTBO in optimization applications.
• To evaluate the quality of the performance of DTBO, the results obtained are compared with the results of 

11 well-known optimization algorithms.
• The efficiency of DTBO is evaluated in solving two real-world applications.

The rest of the article is organized in such a way that in the “Lecture review”, the literature review is presented. 
In “Driving training based optimization”, the proposed DTBO approach is introduced and modeled. In “Com-
putational complexity of DTBO”, simulation studies and results are presented. A discussion of the results and 
performance of the DTBO is provided in “Discussion. The application of DTBO in solving real-world problems 
is evaluated in the “DTBO for real-world applications”. The conclusions and several perspectives of the study are 
provided in “Conclusion and future works” section.

Lecture review
Meta-heuristic algorithms have been developed inspired by various natural phenomena, wildlife, animals, birds, 
insects, plants, living organisms, laws of physics, biological sciences, genetics, rules of games, human activities, 
and other natural evolutionary processes. In a grouping based on the design’s primary inspiration, metaheuristic 
algorithms fall into five groups: swarm-based, evolutionary-based, physics-based, game-based, and human-based 
methods.

Swarm-based metaheuristic algorithms have been developed to model the swarming behaviors of animals, 
birds, and living things in nature. Among the famous algorithms that can be mentioned are Particle Swarm 
Optimization (PSO)7, Firefly Algorithm (FA)8, Artificial Bee Colony (ABC)9, and Ant Colony Optimization 
(ACO)10. The natural behavior of a group of birds or fish in search of food, while their movement is influenced 
by personal experience and swarming intelligence, has been the main idea in PSO design. Mathematical mod-
eling of the natural feature of flashing lights in fireflies has been used in the FA design. The primary inspiration 
in ABC design is to simulate the intelligence of swarming bee colonies to find food sources. The ability of an 
ant colony to find the shortest path between the colony and food sources has been the main idea in the design 
of the ACO. Hunting and attacking prey strategy, as well as the process of finding food sources among living 
organisms, has been a source of inspiration in designing various metaheuristic algorithms such as the Tunicate 
Search Algorithm (TSA)11, Reptile Search Algorithm (RSA)12, Whale Optimization Algorithm (WOA)13, Orca 
Predation Algorithm (OPA)14, Marine Predator Algorithm (MPA)15, Pelican Optimization Algorithm (POA)16, 
Snow Leopard Optimization Algorithm (SLOA)17, Gray Wolf Optimization (GWO)  algorithm18, Artificial Gorilla 
Troops Optimizer (GTO)19, African Vultures Optimization Algorithm (AVOA)20, Farmland  Fertility21, Spotted 
Hyena Optimizer (SHO)22, and Tree Seed Algorithm (TSA)23.

Evolutionary-based metaheuristic algorithms have been introduced based on simulations of biological sci-
ences, genetics, and using random operators. Among the most widely used and well-known evolutionary algo-
rithms, you can name the Genetic Algorithm (GA)24 and Differential Evolutionary (DE)25. GA and DE have 
been developed on the basis of mathematical modeling of the reproductive process and the concept of natural 
selection, as well as the employment of random operators of selection, crossover, and mutation.

Physics-based metaheuristic algorithms are designed on the basis of mathematical modeling of various physi-
cal laws and phenomena. Among the well-known physics-based algorithms, one can mention the Simulated 
Annealing (SA)26 and the Gravitational Search Algorithm (GSA)27. SA is based on the physical phenomenon of 
melting and then cooling metals, known in metallurgy as annealing. The modeling of Gravitational Forces in a 
system consisting of objects with different masses and distances from each other has been the main inspiration 
in the design of GSAs. The physical phenomenon of the water cycle and its transformations in nature has been 
a source of inspiration for the design of the Water Cycle Algorithm (WCA)28. Cosmological concepts have been 
the main inspiration in the design of the Multi-Verse Optimizer (MVO)29. Some other physics-based methods are 
as follows: Flow Regime Algorithm (FRA)30, Nuclear Reaction Optimization (NRO)31, Spring Search Algorithm 
(SSA)32, and Equilibrium Optimizer (EO)33.

Game-based metaheuristic algorithms have been developed based on simulation of the rules that govern 
different games and the behavior of players, coaches, and other individuals who influence the games. The design 
of modeling competitions in the volleyball league has been the main idea in the design of the Volleyball Premier 
League (VPL)  algorithm34 and the football league has been the main idea in the design of Football Game-Based 
Optimization (FGBO)35. The strategy and skill of the players to create puzzle pieces has been the main inspiration 
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in designing the Puzzle Optimization Algorithm (POA)36. The effort of the players in tug-of-war was the main 
idea in designing the Tug-of-war Optimization (TWO)  approach37.

Human-based metaheuristic algorithms are introduced on the basis of mathematical modeling of various 
human activities that have an evolution-based process. Teaching-Learning-Based Optimization (TLBO) is the 
most famous human-based algorithm designed based on simulation of the communication and interaction 
between a teacher and students in a  classroom38. The economic activities of the rich and poor in society have 
been the main idea in designing Poor and Rich Optimization (PRO)39. Simulation of human behavior against 
online auction markets to achieve success has been used in the design of Human Mental Search (HMS)40. Inter-
actions between doctors and patients, including disease prevention, check-up, and treatment, have been used 
in the design of  DPO41.

Extensive studies have been conducted in the field of metaheuristic algorithms in various fields such as: 
development of binary  versions42–45, improvement of existing  methods46–50, and combination of metaheuristic 
 algorithms51,52.

Based on the best knowledge gained from the literature review, so far, no optimization algorithm based 
on driving training modeling has been introduced and designed. The driving training process is an intelligent 
process that can be an incentive to design an optimizer. To address this research gap, in this paper, based on 
mathematical modeling of the driving training process and its various stages, a new metaheuristic algorithm is 
designed, which is introduced in the next section.

Driving training based optimization
In this section, the various steps of the proposed Driving Training Based Optimization (DTBO) method are 
presented and then its mathematical modeling is introduced.

Inspiration and main idea of DTBO. Driving training is an intelligent process in which a beginner is 
trained and acquires driving skills. A beginner as a learner driver can choose from several instructors when 
attending driving school. The instructor then teaches the learner driver the instructions and skills. The learner 
driver tries to learn driving skills from the instructor and drive following the instructor. In addition, personal 
practice can improve the driver’s skills of the learner. These interactions and activities have extraordinary poten-
tial for designing an optimizer. Mathematical modeling of this process is a fundamental inspiration in the design 
of DTBO.

Mathematical model of DTBO. DTBO is a population-based metaheuristic whose members consist of 
driving learners and instructors. DTBO members are candidate solutions to the given problem modeled using a 
matrix called the population matrix in Eq. (1). The initial position of these members at the start of implementa-
tion is randomly initialized using Eq. (2).

where X is the population of DTBO, Xi is the ith candidate solution, xi,j is the value of the jth variable determined 
by the ith candidate solution, N is the size of the population of DTBO, m is the number of problem variables, 
r is a random number from the interval [0, 1], lbj and ubj are the lower and upper bounds of the jth problem 
variable, respectively.

Each candidate solution assigns values to the problem variables, which, by placing them in the objective 
function, are evaluated for the objective function. Therefore, a value is computed for the objective function 
corresponding to each candidate solution. The vector in Eq. (3) models the values of the objective function.

where F represents the vector of the objective functions and Fi denotes the value of the objective function deliv-
ered by the ith candidate solution.

The values obtained for the objective function are the main criteria to determine the goodness of the candidate 
solutions. Based on the comparison of the values of the objective function, the member that has the best value 
for the objective function is known as the best member of the population (Xbest) . The best member must also be 
updated, since the candidate solutions are improved and updated in each iteration.
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The main difference between metaheuristic algorithms is the strategy employed in the process of updating 
candidate solutions. In DTBO, candidate solutions are updated in the following three different phases: (i) train-
ing the learner driver by the driving instructor, (ii) patterning the learner driver from instructor skills, and (iii) 
practice of the learner driver.

Phase 1: Training by the driving instructor (exploration). The first phase of the DTBO update is based on the 
choice of the driving instructor by the learner driver and then the training of the driving by the selected instruc-
tor to the learner driver. Among the DTBO population, a select number of the best members are considered 
as driving instructors and the rest as learner drivers. Choosing the driving instructor and learning the skills of 
that instructor will lead to the movement of population members to different areas in the search space. This will 
increase the DTBO’s exploration power in the global search and discovery of the optimal area. Therefore, this 
phase of the DTBO update demonstrates the exploration ability of this algorithm. In each iteration, based on the 
comparison of the values of the objective function, the N members of the DTBO are selected as driving instruc-
tors, as shown in Eq. (4).

where DI is the matrix of driving instructors, DIi is the ith driving instructor, DIi,j is the jth dimension, and 
NDI = ⌊0.1 · N · (1− t/T)⌋ is the number of driving instructors, where t is the current iteration and T is the 
maximum number of iterations.

The mathematical modeling of this DTBO phase is such that, first, the new position for each member is 
calculated using Eq. (5). Then, according to Eq. (6), this new position replaces the previous one if it improves 
the value of the objective function.

where XP1
i  is the new calculated status for the ith candidate solution based on the first phase of DTBO, xP1i,j  is 

its jth dimension, FP1i  is its objective function value, I is a number randomly selected from the set {1, 2} , r is a 
random number in the interval [0, 1], DIki , where ki is randomly selected from the set {1, 2, . . . ,NDI } , represents 
a randomly selected driving instructor to train the ith member, DIki ,j is its jth dimension, and FDIki is its objec-
tive function value.

Phase 2: Patterning of the instructor skills of the student driver (exploration). The second phase of the DTBO 
update is based on the learner driver imitating the instructor, that is, the learner driver tries to model all the 
movements and skills of the instructor. This process moves DTBO members to different positions in the search 
space, thus increasing the DTBO’s exploration power. To mathematically simulate this concept, a new position 
is generated based on the linear combination of each member with the instructor according to Eq. (7). If this 
new position improves the value of the objective function, it replaces the previous position according to Eq. (8).

where XP2
i  is the new calculated status for the ith candidate solution based on the second phase of DTBO, xP2i,j  is 

its jth dimension, FP2i  is its objective function value, and P is the patterning index given by

Phase 3: Personal practice (exploitation). The third phase of the DTBO update is based on the personal practice 
of each learner driver to improve and enhance driving skills. Each learner driver tries to get closer to his best 
skills in this phase. This phase is such that it allows each member to discover a better position based on a local 
search around its current position. This phase demonstrates the power of DTBO to exploit local search. This 
DTBO phase is mathematically modeled so that a random position is first generated near each population mem-
ber according to Eq. (10). Then, according to Eq. (11), this position replaces the previous position if it improves 
the value of the objective function.
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where XP3
i  is the new calculated status for the ith candidate solution based on the third phase of DTBO, xP3i,j  is its 

jth dimension, FP3i  is its objective function value, r is a random real number of the interval [0, 1], R is the constant 
set to the value 0.05, t is the counter of iterations and T is the maximum number of iterations.

Repetition process, pseudo‑Code of DTBO and DTBO flow chart. After updating the population members 
according to the first to third phases, a DTBO iteration is completed. The algorithm with the updated popula-
tion entered the next DTBO iteration. The update process is repeated according to the steps of the first to third 
phases and according to Eqs. (4) to (11) to reach the maximum number of iterations. After the implementation 
of DTBO on the given problem is complete, the best candidate solution recorded during execution is introduced 
as the solution. The pseudocode of the proposed DTBO method is presented in Algorithm 1 and its flowchart 
is presented in Fig. 1.

(10)xP3i,j = xi,j + (1− 2r) · R ·

(

1−
t

T

)

· xi,j ,

(11)Xi =

{

XP3
i , FP3i < Fi;

Xi , otherwise ,
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Computational complexity of DTBO
In this subsection, we discuss the computational complexity of DTBO. The preparation and initialization of 
DTBO for the number of members equal to N and the problem with the number of decision variables equal to 
m have a computational complexity equal to O(N m) . In each iteration, the DTBO members are updated in three 
phases. Therefore, the computational complexity of the DTBO update processes is equal to O(3N mT) , where 
T is the maximum number of iterations of the algorithm. Consequently, the total computational complexity of 
DTBO is equal to O(N m(1+ 3T)).

Simulation studies and results. This section is addressed to analyze the DTBO’s ability in optimization 
applications and provide optimal solutions to these types of problem. To this end, DTBO has been implemented 
on fifty-three standard objective functions of various types of unimodal, high-dimensional multimodal, fixed-
dimensional  multimodal53, and IEEE CEC2017 benchmark  functions54. Furthermore, to evaluate the quality of 
the results obtained from DTBO, the performance of the proposed approach is compared with the performance 

Figure 1.  Flowchart of DTBO.
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of 11 well-known algorithms PSO, WOA, MVO, GA, GWO, GSA, MPA, TLBO, AVOA, RSA, and TSA. DTBO 
and competitor algorithms are used in twenty independent implementations, while each execution contains 
1000 iterations to optimize the objective functions F1 to F23 . The optimization results of the objective functions 
are reported using statistical indices mean, best, worst, standard deviation (std), median, and rank. The per-
formance ranking criterion of optimization algorithms is based on the mean index. The values assigned to the 
control parameters of the competitor algorithms are listed in Table 1.

Evaluation of unimodal benchmark functions. The results of the implementation of DTBO and 11 
competitor algorithms on the unimodal functions F1 to F7 are reported in Table 2. Comparison of statistical 
indicators shows that high-power DTBO has provided the global optimal in optimizing functions F1 , F2 , F3 , F4 , 
F5 , and F6 . Furthermore, DTBO performed better in optimizing the function F7 and is the best optimizer for this 
function. Analysis of the simulation results shows that DTBO performs better in optimizing unimodal functions 
by providing far more competitive results than the other algorithms.

Evaluation of high‑dimensional multimodal benchmark functions. The optimization results of 
high-dimensional multimodal functions F8 to F13 using DTBO and 11 competitor algorithms are presented in 
Table 3. On the basis of the simulation results, it is evident that DTBO has made available the global optima of 
functions F9 and F11 . DTBO is also the best optimizer for handling the functions F8 , F10 , F12 , and F13 . Comparing 
the performance of competitor algorithms against DTBO proves that DTBO, with its high ability, is much more 
efficient in optimizing multimodal functions.

Evaluation of fixed‑dimensional multimodal benchmark functions. The optimization results 
obtained using DTBO and 11 competitor algorithms in optimizing fixed-dimensional multimodal functions 
from F14 to F23 are presented in Table 4. The optimization results show that DTBO is the best of all optimizers 
compared to handle all functions F14 to F23 . Comparison of the performance of DTBO with competing algo-
rithms shows that DTBO has effective efficiency and superior performance in handling fixed-dimensional mul-
timodal functions. The behavior of the convergence curves of DTBO and competitor algorithms in achieving 
solutions for the objective functions F1 to F23 is presented in Fig. 2.

Evaluation of IEEE CEC2017 benchmark functions. The results of the implementation of DTBO and 
competitor algorithms in the CEC 2017 benchmark functions, including 30 objective functions C1 to C30 are 
presented in Tables 5 and  6. What is clear from the optimization results is that DTBO has performed better in 
most CEC 2017 functions than competitor algorithms.

The convergence curves of DTBO and competitor algorithms while obtaining the solution for CEC2017 
functions are shown in Fig. 3.

The analysis of the simulation results shows that the proposed approach in dealing with the CEC2017 
benchmark functions, with acceptable results, has the first rank of the best optimizer, among the 11 algorithms 
compared.

Statistical analysis. To provide statistical analysis of DTBO performance compared to competitor algo-
rithms, the Wilcoxon sum rank  test55 is used. The Wilcoxon sum rank test is a statistical test that, based on an 
indicator called the p value, shows whether the superiority of one method over another is statistically significant. 
The results of implementing the Wilcoxon sum rank test on DTBO in comparison with each of the competitor 
algorithms are presented in Table 7. Based on the results obtained, in each case where the p value is calculated 
less than 0.05, DTBO has a statistically significant superiority over the corresponding competitor algorithm.

Discussion
The optimization mechanism in metaheuristic algorithms is based on a random search in the problem solving 
space. An algorithm will be able to search accurately and effectively in the search space when it scans the various 
search spaces and around promising areas. This fact means that the power of exploration in the global search 
and the power of exploitation in the local search have a significant impact on the performance of optimization 
algorithms. The DTBO update process has three different phases with the aim of providing a global and a local 
search. The first phase of the update based on “training by the driving instructor” scans different parts of the 
search space according to the ability to explore. The second phase of the implementation of DTBO also increases 
the DTBO exploration power by making sudden changes in the population position. The third phase of DTBO, 
called the “practice”, leads to local search and increases the exploitation ability of DTBO. The important thing 
about exploration and exploitation is that, in the initial iterations, priority is given to global search, so that the 
algorithm can scan different parts of the search space. The update equations in the second and third phases are 
designed to make larger changes to the population in the initial iterations. As a result, in initial iterations, the 
DTBO population displacement range is larger, leading to its effective exploration. As the replication of the 
algorithm increases, it is important that the algorithm moves to better areas in the search space and scans the 
search space around promising solutions in smaller steps. The update equations in the second and third phases 
are adjusted to provide smaller changes to the population by increasing the iterations of the algorithm and to 
converge to the optimal solution with smaller and more precise steps. These strategies in the process of updat-
ing the members of the population in DTBO have led to the proposed approach, which in addition to the high 
capability in exploration and exploitation, also has a good balance between these two capabilities. Because they 
have only one optimal solution, unimodal objective functions are suitable options for measuring the exploitation 
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power of optimization algorithms in convergence towards global optimal. The results of optimization of the uni-
modal functions show that DTBO has a high exploitation capability in local search. Therefore, this algorithm has 
converged precisely to the global optimum to solve functions F1 to F6 . High-dimensional multimodal objective 
functions are suitable options for evaluating the exploration power of optimization algorithms in identifying the 
main optimal area because they have many local optimal areas in the search space. The results obtained from the 
optimization of the functions F8 to F13 indicate the high exploration ability of DTBO. In the case of functions F9 
and F11 , after identifying the optimal area, it also converges to the global optimal. Fixed-dimensional multimodal 
objective functions, because they have fewer local optimal solutions (compared to functions F8 to F13 ), are good 
options for analyzing the ability of optimization algorithms to maintain the balance between exploration and 
exploitation. The optimization results of functions F14 to F23 show that DTBO can provide optimal solutions for 
these optimization problems by creating a proper balance between exploration and exploitation.

The IEEE CEC2017 benchmark functions are also suitable to further challenge DTBO in solving more com-
plex optimization problems. The results obtained from the optimization of the functions C1 to C30 indicate the 
high capability of the proposed DTBO to solve complex optimization problems.

Table 1.  Assigned values to the control parameters of competitor algorithms.

Algorithm Parameter Value

AVOA

Probability parameters
P1 = 0.6, P2 = 0.4, P3 = 0.6

(L1, L2) = (0.8, 0.2)

w 2.5

β 1.5

Random numbers

h is random number between −2 and 2

z is random number between −1 and 1

u, v, rand1, . . . , rand6 are any random numbers between 0 and 1

RSA

Sensitive parameter β = 0.01

Sensitive parameter β = 0.1

Evolutionary sense (ES) ES: randomly decreasing values between 2 and −2

MPA

Binary vector U = 0 or U = 1

Random vector R is a vector of uniform random numbers in [0, 1]

Constant number P = 0.5

Fish aggregating devices FADs = 0.2

TSA

c1, c2, c3 Random numbers, which lie in the interval [0, 1]

Pmin 1

Pmax 4

WOA

ℓ is a random number in [−1, 1]

r is a random vector in [0, 1]

Convergence parameter a a: Linear reduction from 2 to 0

GWO Convergence parameter a a: Linear reduction from 2 to 0

MVO
Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1

Exploitation accuracy over the iterations (p) p = 6

TLBO
Random number rand is a random number from the interval [0, 1]

TF : teaching factor TF = round (1+ rand)

GSA

Alpha 20

G0 100

Rnorm 2

Rnorm 1

PSO

Velocity limit 10% of dimension range

Topology Fully connected

Inertia weight Linear reduction from 0.9 to 0.1

Cognitive and social constant (C1,C2) = (2, 2)

GA

Type Real coded

Mutation Gaussian ( Probability = 0.05)

Crossover Whole arithmetic ( Probability = 0.8

Selection Roulette wheel (Proportionate)



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9924  | https://doi.org/10.1038/s41598-022-14225-7

www.nature.com/scientificreports/

Figure 2.  Convergence curves of DTBO and competitor algorithms in optimizing objective functions F1 to F23.
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Figure 3.  Convergence curves of DTBO and competitor algorithms in optimizing objective functions C1 to C30.
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DTBO for real‑world applications
In this section, the ability of DTBO to provide the optimal solution for real-world optimization applications is 
challenged. For this purpose, DTBO and competing algorithms have been implemented in two optimization 
challenges, pressure vessel design and welded beam design.

Pressure vessel design. Pressure vessel design is a real-world optimization theme aimed at minimizing 
design costs, a schematic of which is shown in Fig. 456. The results of the implementation of the proposed DTBO 
and competitor algorithms in this challenge are reported in Tables 8 and  9. Based on the optimization results, 
DTBO has provided the solution to this problem with the values of the design variables equal to (0.7786347, 

Table 2.  Evaluation results of unimodal functions.

GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

F1

Mean 30.502 0.1010 1.3E−16 2.5E−74 0.1496 1.8E−59 1.4E−151 4.6E−47 1.9E−49 0 0 0

Best 17.927 0.0005 5.4E−17 5.9E−77 0.1055 1.5E−61 9.3E−171 1.4E−50 3.8E−52 0 0 0

Worst 56.928 1.3977 3.7E−16 2.6E−73 0.2013 7.7E−59 2.7E−150 3.3E−46 1.7E−48 0 0 0

std 10.463 0.3108 7.1E−17 6.2E−74 0.0278 2.1E−59 6.0E−151 1.0E−46 3.9E−49 0 0 0

Median 28.199 0.0097 1.1E−16 1.7E−75 0.1505 1.1E−59 2.2E−159 4.3E−48 4.2E−50 0 0 0

Rank 10 8 7 3 9 4 2 6 5 1 1 1

F2

Mean 2.7884 0.8955 5.5E−8 6.8E−39 0.2592 1.3E−34 2.5E−105 2.1E−28 7.0E−28 0 7.8E−281 0

Best 1.7454 0.0453 3.5E−8 8.8E−40 0.1601 4.9E−36 7.9E−118 2.0E−30 1.8E−29 0 0 0

Worst 3.8066 2.4933 1.2E−7 2.4E−38 0.3645 7.9E−34 2.7E−104 1.8E−27 4.7E−27 0 1.6E−279 0

std 0.5448 0.7227 1.9E−8 5.6E−39 0.0630 2.0E−34 6.9E−105 5.3E−28 1.1E−27 0 0 0

Med 2.7416 0.5842 5.1E−8 5.0E−39 0.2683 6.5E−35 3.4E−108 2.0E−29 3.5E−28 0 4.8E−298 0

Rank 11 10 8 4 9 5 3 6 7 1 2 1

F3

Mean 2169.0 388.13 475.50 3.8E−24 15.973 2.2E−14 19959. 1.2E−10 2.5E−12 0 0 0

Best 1424.2 21.768 245.96 2.2E−29 5.9743 2.4E−19 2064.9 1.4E−21 6.2E−19 0 0 0

Worst 3458.9 1025.4 1186.3 3.6E−23 48.940 4.1E−13 34688. 2.0E−9 1.4E−11 0 0 0

std 639.69 288.43 220.28 1.1E−23 10.765 9.0E−14 8557.1 4.4E−10 4.4E−12 0 0 0

Median 2100.7 293.04 400.33 4.0E−26 11.879 4.7E−16 20324. 1.1E−13 1.8E−13 0 0 0

Rank 9 7 8 2 6 3 10 5 4 1 1 1

F4

Mean 2.8294 6.2799 1.2359 1.8E−30 0.5471 1.2E−14 51.821 0.0044 3.0E−19 0 1E−269 0

Best 2.2165 2.2903 9.9E−09 5.8E−32 0.2659 6.5E−16 0.9046 9.6E−05 3.02E−20 0 0 0

Worst 3.9927 13.360 4.9277 8.1E−30 0.9630 5.7E−14 91.710 0.0358 9.6E−19 0 2E−268 0

std 0.4669 2.5024 1.3871 2.4E−30 0.1922 1.5E−14 29.615 0.0079 2.3E−19 0 0 0

Med 2.7835 5.8825 0.9069 6.5E−31 0.5310 6.3E−15 55.424 0.0015 2.6E−19 0 1.9E−283 0

Rank 9 10 8 3 7 5 11 6 4 1 2 1

F5

Mean 595.38 4611.9 44.050 26.788 96.222 26.582 27.310 28.477 23.324 4.3483 2.43E−05 0

Best 228.81 26.281 25.885 25.589 27.632 25.567 26.722 25.671 22.809 8.8E−29 1.57E−06 0

Worst 2257.1 901.28 167.2442 28.753 377.90 27.156 28.735 28.892 24.0493 28.990 7.37E−05 0

std 424.99 20117. 44.323 0.9363 101.46 0.5263 0.5777 0.7881 0.3886 10.620 1.77E−05 0

Median 475.57 86.098 26.346 26.328 30.018 26.232 27.087 28.823 23.295 9.7E−29 1.73E−05 0

Rank 11 12 9 6 10 5 7 8 4 3 2 1

F6

Mean 34.147 0.0634 1.1E−16 1.2614 0.1510 0.6608 0.0816 3.6820 1.8E−09 6.6156 3.92E−08 0

Best 15.612 1.9E−6 5.52E−17 0.2331 0.0792 0.2467 0.0105 2.5528 8.1E−10 2.9073 2.34E−09 0

Worst 62.767 0.5417 1.8E−16 2.1648 0.2501 1.2523 0.3267 4.7877 4.80E−09 7.4383 1.07E−07 0

std 13.550 0.1486 3.7E−17 0.4972 0.0474 0.3066 0.1016 0.6934 9.4E−10 1.0998 2.61E−08 0

Med 31.682 0.0021 9.5E−17 1.2174 0.1602 0.7273 0.0317 3.7960 1.6E−9 7.1097 3.33E−08 0

Rank 12 5 2 9 7 8 6 10 3 11 4 1

F7

Mean 0.0106 0.1841 0.0528 0.0015 0.0116 0.0008 0.0013 0.0043 0.0006 4.5E−5 0.000169 1.1E−5

Best 0.0030 0.0690 0.0141 9.0E−05 0.0040 0.0002 2.0E−05 0.0015 0.0001 3.4E−6 6.55E−06 2.1E−6

Worst 0.0219 0.4113 0.0956 0.0029 0.0226 0.0020 0.0054 0.0010 0.0009 0.0002 0.000739 3.4E−5

std 0.0048 0.0790 0.0250 0.0009 0.0050 0.0005 0.0014 0.0023 0.0002 4.8E−5 0.000193 8.9E−6

Median 0.0102 0.1777 0.0518 0.0015 0.0113 0.0008 0.0008 0.0037 0.0005 3.6E−5 9.3E−05 7.7E−6

Rank 9 12 11 7 10 5 6 4 4 2 3 1

Sum rank 71 64 53 34 58 35 45 49 31 20 15 7

Mean rank 10.1429 9.14286 7.5714 4.8571 8.2857 5 6.4286 7 4.4286 2.8571 2.1429 1

Total rank 12 11 9 5 10 6 7 8 4 3 2 1
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0.3853025, 40.34282, 199.5782) and the value of the objective function equal to 5885.3548. Analysis of the simu-
lation results shows that DTBO has performed better than competitor algorithms in providing solutions and 
statistical indicators. The DTBO convergence curve while finding the solution to the pressure vessel design 
problem is shown in Fig. 5.

Welded beam design. Welded beam design is an engineering optimization problem aimed at reducing 
the fabrication cost, the schematic is shown in Fig. 613. The optimization results of this design using DTBO and 
competitor algorithms are presented in Table 10 and Table 11. The results show that DTBO has provided the 
solution to this problem with the values of the design variables equal to (0.20573, 3.4705, 9.0366, 0.20573) and 
the value of the objective function equal to 1.7249. What can be deduced from the simulation results is that 
DTBO has provided a more efficient solution to this problem compared to competitor algorithms by providing 
a better solution and better statistical indicators. The DTBO convergence curve while finding the solution to the 
design problem of welded beams is shown in Fig. 7.

Table 3.  Evaluation results of high-dimensional multimodal functions.

GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

F8

Mean − 8 421.5 − 6547.4 − 2781.3 − 5598.4 − 7833.0 − 6079.6 − 11065.1 − 6139.2 − 9687.5 − 5455.63 − 10317.6 − 12214.2

Best − 9 681.2 − 8244.2 − 3974.4 − 7028.1 − 9188.2 − 6863.4 − 12569.5 − 7319.0 − 10475.5 − 5707.92 − 10474.6 − 12569.5

Worst − 7 029.0 − 4989.0 − 2148.3 − 4550.0 − 6879.6 − 5048.0 − 7740.10 − 4369.9 − 9090.7 − 4906.74 − 8874.13 − 9016.3

std 641.22 748.52 495.55 609.13 728.45 481.88 1735.10 729.88 370.23 258.77 434.05 1093.6

Median − 8399.1 − 6693.1 − 2693.0 − 5613.7 − 7710.8 − 6072.8 − 12040.8 − 6097.6 − 9719.5 − 5543.56 − 10474.6 − 12569.5

Rank 5 7 12 10 6 9 2 8 4 11 3 1

F9

Mean 54.6812 67.714 28.506 0 97.830 1.7E−14 0 173.12 0 0 0 0

Best 23.232 39.798 13.929 0 52.787 0 0 89.745 0 0 0 0

Worst 76.9009 114.56 48.753 0 149.28 1.1E−13 0 288.18 0 0 0 0

std 13.808 18.841 9.1661 0 25.197 3.3E−14 0 51.007 0 0 0 0

Med 52.6144 65.069 26.366 0 97.083 0 0 166.68 0 0 0 0

Rank 4 5 3 1 6 2 1 7 1 1 1 1

F10

Mean 3.5751 2.7272 8.2E−09 4.4E−15 0.5779 1.7E−14 4.1E−15 1.2425 4.3E−15 8.9E−16 8.9E−16 8.9E−16

Best 2.8820 1.6934 4.7E−09 4.4E−15 0.1006 8.0E−15 8.9E−16 8.0E−15 8.9E−16 8.9E−16 8.9E−16 8.9E−16

Worst 4.6420 5.0571 1.5E−08 4.4E−15 2.5152 2.2E−14 8.0E−15 3.3735 4.4E−15 8.9E−16 8.9E−16 8.9E−16

std 0.3966 0.8578 2.3E−09 0 0.6772 3.6E−15 2.3E−15 1.5695 7.9E−16 0 0 0

Median 3.6296 2.7339 7.7E−09 4.4E−15 0.1943 1.5E−14 4.4E−15 2.2E−14 4.4E−15 8.9E−16 8.9E−16 8.9E−16

Rank 10 9 6 4 7 5 2 8 3 1 1 1

F11

Mean 1.4735 0.1853 7.2080 0 0.3997 0.0013 0 0.0088 0 0 0 0

Best 1.2881 0.0024 2.9956 0 0.2541 0 0 0 0 0 0 0

Worst 1.7259 0.8758 12.638 0 0.5360 0.0188 0 0.0205 0 0 0 0

std 0.1239 0.2285 2.7209 0 0.0819 0.0045 0 0.0063 0 0 0 0

Med 1.4477 0.1224 7.3111 0 0.4165 0 0 0.0090 0 0 0 0

Rank 6 4 7 1 5 2 1 3 1 1 1 1

F12

Mean 0.2749 1.5011 0.2100 0.0713 0.9146 0.0399 0.0201 5.7928 2.0E−10 1.2763 3.9E−09 2.5E−14

Best 0.0608 0.0001 4.70E−19 0.0241 0.0010 0.0126 0.0012 1.0369 5.2E−11 0.7294 1.0E−09 1.6E−32

Worst 0.6508 5.2192 0.9318 0.1351 3.8480 0.0868 0.1369 14.136 3.8E−10 1.6297 1.0E−08 4.9E−13

std 0.1386 1.2856 0.3074 0.0210 1.1967 0.0213 0.0400 3.8804 9.6E−11 0.2980 2.4E−09 1.0E−13

Median 0.2644 1.2853 0.0802 0.0687 0.4203 0.0379 0.0058 4.3049 2.1E−10 1.1061 3.4E−09 1.6E−32

Rank 8 11 7 6 9 5 4 12 2 10 3 1

F13

Mean 2.7078 3.6076 0.0567 1.1020 0.0328 0.5138 0.2146 2.7169 0.0025 0.1636 1.0E−08 7.2E−13

Best 1.2920 0.0096 4.7E−18 0.5885 0.0064 4.7E−05 0.0372 2.0125 0.0000 5.7E−32 4.2E−10 1.4E−32

Worst 3.9402 12.586 0.9584 1.5412 0.0916 0.9501 0.7003 3.7139 0.0253 2.6729 3.6E−08 1.5E−11

std 0.7545 3.0310 0.2136 0.2314 0.0248 0.2578 0.1835 0.5575 0.0063 0.6056 8.8E−09 3.2E−12

Med 2.8672 3.3058 1.8E−17 1.1146 0.0236 0.5172 0.1658 2.5352 2.8E−09 5.1E−31 7.9E−09 1.4E−32

Rank 10 12 5 9 4 8 7 11 3 6 2 1

Sum rank 43 48 40 31 37 31 17 49 14 30 11 6

Mean rank 7.1667 8 6.6667 5.1667 6.1667 5.1667 2.8333 8.1667 2.3333 5 1.8333 1

Total rank 9 10 8 6 7 6 4 11 3 5 2 1
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GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

F14

Mean 1.0487 3.5958 3.5613 0.9980 0.9980 3.6952 2.5698 8.6469 1.0477 4.1486 1.4863 0.9980

Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 1.9920 0.9980 1.0702 0.9980 0.9980

Worst 1.9920 12.671 11.87 0.9980 0.9980 10.763 10.763 15.504 1.9920 11.735 10.763 0.9980

std 0.2221 3.7879 2.7541 3.3E−06 5.7E−12 3.7310 2.9463 5.0513 0.2223 2.9540 2.1836 0

Median 0.9980 1.9920 2.8917 0.9980 0.9980 2.9821 0.9980 11.717 0.9980 2.9821 0.9980 0.9980

Rank 5 9 8 3 2 10 7 12 4 11 6 1

F15

Mean 0.0154 0.0025 0.0024 0.0006 0.0026 0.0034 0.0008 0.0164 0.0003 0.0011 0.0004 0.0003

Best 0.0008 0.0003 0.0009 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0006 0.0003 0.0003

Worst 0.0669 0.0204 0.0070 0.0012 0.0204 0.0204 0.0023 0.1103 0.0003 0.0019 0.0006 0.0003

std 0.0162 0.0061 0.0014 0.0004 0.0061 0.0073 0.0005 0.0300 5.1E−11 0.0003 9.5E−05 2.5E−19

Med 0.0143 0.0003 0.0022 0.0003 0.0007 0.0003 0.0007 0.0009 0.0003 0.001 0.0003 0.0003

Rank 11 8 7 4 9 10 5 12 2 6 3 1

F16

Mean − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0301 − 1.0316 − 1.0309 − 1.0316 − 1.0316

Best − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316

Worst − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1 − 1.0316 − 1.0285 − 1.0316 − 1.0316

std 4.8E−06 1.1E−16 1.0E−16 1.7E−06 5.5E−08 8.6E−09 4.0E−11 0.0071 2.4E−12 0.0009 8.8E−15 1.8E−16

Median − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0313 − 1.0316 − 1.0316

Rank 5 1 1 6 4 3 2 8 1 7 1 1

F17

Mean 0.4660 0.7446 0.3979 0.3980 0.3979 0.3979 0.3979 0.3979 0.3979 0.4265 0.3979 0.3979

Best 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Worst 1.7522 2.7912 0.3979 0.3982 0.3979 0.3979 0.3979 0.3982 0.3979 0.6306 0.3979 0.3979

std 0.3027 0.7093 0 6.8E−05 6.6E−08 8.9E−07 7.3E−07 6.8E−05 0 0.0671 0 0

Med 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.4007 0.3979 0.3979

Rank 8 9 1 6 2 4 3 5 1 7 1 1

F18

Mean 7.3029 3 3 3 3 3 3 11.502 3 4.3828 3 3

Best 3 3 3 3 3 3 3 3 3 3 3 3

Worst 34.950 3 3 3 3 3 3 92.035 3 30.651 3 3

std 10.544 3.0E−15 3.6E−15 1.7E−06 4.5E−07 1.5E−05 4.3E−05 26.200 5.5E−08 6.1828 1.8E−06 1.2E−15

Median 3 3 3 3 3 3 3 3 3 3 3 3

Rank 10 2 3 5 4 7 8 11 1 9 6 1

F19

Mean − 3.8626 − 3.8628 − 3.8628 − 3.8617 − 3.8628 − 3.8613 − 3.8604 − 3.8624 − 3.8628 − 3.8251 − 3.8628 − 3.8628

Best − 3.8628 − 3.8628 − 3.8628 − 3.8627 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8617 − 3.8628 − 3.8628

Worst − 3.8618 − 3.8628 − 3.8628 − 3.8549 − 3.8628 − 3.8550 − 3.8549 − 3.856 − 3.8628 − 3.6858 − 3.8628 − 3.8628

std 0.0003 2.1E−15 2.00E−15 0.0023 2.1E−07 0.0026 0.0029 0.0015 2.2E−06 0.0416 2.5E−13 2.3E−15

Med − 3.8628 − 3.8628 − 3.8628 − 3.8624 − 3.8628 − 3.8628 − 3.8619 − 3.8627 − 3.8628 − 3.8406 − 3.8628 − 3.8628

Rank 4 1 1 6 3 7 8 5 1 9 2 1

F20

Mean − 3.2283 − 3.2646 − 3.3220 − 3.2428 − 3.2743 − 3.2590 − 3.2499 − 3.2551 − 3.3220 − 2.7228 − 3.2863 − 3.3220

Best − 3.3216 − 3.3220 − 3.3220 − 3.3159 − 3.3220 − 3.3220 − 3.3220 − 3.3216 − 3.3220 − 3.0794 − 3.3220 − 3.3220

Worst − 2.9972 − 3.1376 − 3.322 − 3.0138 − 3.2023 − 3.084 − 3.0893 − 3.0895 − 3.3220 − 1.7526 − 3.2031 − 3.3220

std 0.0782 0.0750 3.8E−16 0.0802 0.0599 0.0761 0.0839 0.0712 2.9E−08 0.3938 0.0559 4.4E−16

Median − 3.2366 − 3.322 − 3.322 − 3.2918 − 3.322 − 3.322 − 3.3181 − 3.2611 − 3.322 − 2.9059 − 3.322 − 3.322

Rank 10 5 1 9 4 6 8 7 2 11 3 1

F21

Mean − 6.2602 − 5.6238 − 7.1941 − 6.8527 − 8.8855 − 9.3904 − 9.3854 − 5.9252 − 10.153 − 5.0552 − 10.153 − 10.153

Best − 9.7386 − 10.153 − 10.153 − 9.4150 − 10.153 − 10.153 − 10.153 − 10.13 − 10.153 − 5.0552 − 10.153 − 10.153

Worst − 2.3858 − 2.6305 − 2.6829 − 3.2427 − 5.0552 − 5.0552 − 5.0551 − 2.603 − 10.153 − 5.0552 − 10.153 − 10.153

std 2.7111 2.8839 3.4577 2.0775 2.2527 1.862 1.8663 3.2356 7.3E−08 4.1E−07 1.0E−13 2.1E−15

Med − 7.0607 − 5.1008 − 10.153 − 7.314 − 10.153 − 10.153 − 10.151 − 4.9993 − 10.153 − 5.0552 − 10.153 − 10.153

Rank 9 11 7 8 6 4 5 10 3 12 2 1

F22

Mean − 7.3719 − 6.3829 − 10.129 − 7.9498 − 8.4347 − 10.402 − 8.1085 − 6.8844 − 10.403 − 5.0877 − 10.403 − 10.403

Best − 9.9828 − 10.403 − 10.403 − 10.063 − 10.403 − 10.403 − 10.403 − 10.339 − 10.403 − 5.0877 − 10.403 − 10.403

Worst − 2.6768 − 2.7519 − 4.9295 − 4.0484 − 2.7659 − 10.402 − 1.8375 − 1.8328 − 10.403 − 5.0877 − 10.403 − 10.403

std 1.9166 3.4696 1.2239 1.6734 2.7968 0.0004 3.0517 3.5094 1.0E−06 7.5E−07 1.0E−14 3.5E−15

Median − 7.8631 − 5.1083 − 10.403 − 8.3854 − 10.403 − 10.403 − 10.398 − 7.4911 − 10.403 − 5.0877 − 10.403 − 10.403

Rank 9 11 5 8 6 4 7 10 3 12 2 1

Continued
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Conclusion and future works
This paper introduced a new stochastic human-based algorithm called Driving Training-Based Optimization 
(DTBO). The process of learning to drive in a driving school is the fundamental inspiration of the DTBO design. 
DTBO was mathematically modeled in three phases: (i) training by the driving instructor, (ii) patterning of 
students from instructor skills, and (iii) practice. Furthermore, we have shown the performance of DTBO in 
optimizing fifty-three objective functions of a group of unimodal, high-dimensional, fixed-dimensional multi-
modal, and IEE CEC2017. The results obtained from the implementation of DTBO in the objective functions 
F1 to F23 showed that DTBO has a high ability to exploit, explore, and balance them to perform powerfully in 
the optimization process.

The optimization results of the functions C1 to C30 showed the acceptable ability of DTBO to solve complex 
optimization problems.

To analyze the performance of DTBO, we compared its results with the performance of 11 well-known algo-
rithms. A comparison of DTBO performance against competitor algorithms showed that the proposed DTBO, 
with better results, is more effective in optimizing and achieving optimal solutions and is much more competitive 
than the algorithms compared.

The use of DTBO in addressing two engineering design issues demonstrated the effective ability of the pro-
posed approach in solving real-world applications. The authors offer several research pathways for future studies, 
including the development of binary and multi-objective versions of DTBO, which are among the particular study 
potentials of this paper. The application of DTBO in optimization problems in various sciences and real-world 
optimization challenges are other perspectives on the study of the proposed approach.

Although DTBO has provided acceptable results in solving the problems studied in this paper, there are 
some limitations to this method in other applications. The authors do not in any way claim that DTBO is the 
best optimizer in solving optimization problems because according to the concept of the NFL theorem, such a 
hypothesis is completely and definitively rejected. Therefore, DTBO may not be effective in solving some optimi-
zation applications. Furthermore, the main limitation of any metaheuristic algorithm, including DTBO, is that 
there is always the possibility that new optimization approaches may be developed in the future that perform 
better in the handling of optimization applications.

Table 4.  Evaluation results of fixed-dimensional multimodal functions.

GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

F23

Mean − 6.3602 − 6.4208 − 10.287 − 8.0861 − 9.4619 − 10.536 − 8.5835 − 7.4150 − 10.536 − 5.1285 − 10.536 − 10.536

Best − 10.185 − 10.536 − 10.536 − 9.6908 − 10.536 − 10.536 − 10.536 − 10.481 − 10.536 − 5.1285 − 10.536 − 10.536

Worst − 2.3823 − 2.4217 − 5.5559 − 4.2682 − 5.1285 − 10.535 − 1.6765 − 2.4201 − 10.536 − 5.1285 − 10.536 − 10.536

std 2.6086 3.8479 1.1137 1.6609 2.2049 0.0003 3.2621 3.4729 4.7E−07 2.1E−06 5.0E−15 2.8E−15

Med − 6.8883 − 3.8354 − 10.536 − 8.6793 − 10.536 − 10.536 − 10.534 − 10.290 − 10.536 − 5.1285 − 10.536 − 10.536

Rank 11 10 5 8 6 4 7 9 3 12 2 1

Sum rank 82 67 39 63 46 59 60 89 21 96 28 10

Mean rank 8.2 6.7 3.9 6.3 4.6 5.9 6 8.9 2.1 9.6 2.8 1

Total rank 10 9 4 8 5 6 7 11 2 12 3 1
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Table 5.  Evaluation results of IEEE CEC 2017 objective functions C1 to C18.

GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

C1

avg 9838.1 3966.4 297.27 2.0E+07 3.3E+05 8.5E+06 296.63 3408.0 156.74 2470.2 1286.7 100.00

std 7142.0 5216.8 323.19 4.8E+06 1.2E+05 2.8E+07 319.69 4267.2 4.2E+04 313.50 421.05 578.82

Rank 9 8 4 12 10 11 3 7 2 6 5 1

C2

avg 5632.2 7083.8 7949.3 1.2E+04 314.27 461.55 216.36 220.06 201.05 201.77 201.25 200.00

std 5026.0 2575.9 2480.6 7271.1 8461.6 8039.9 881.98 773.38 84.706 108.37 59.590 12.462

Rank 9 10 11 12 7 8 5 6 2 4 3 1

C3

avg 8726.3 301.28 1.1E+04 2.8E+04 1547.3 2.3E+04 1.1E+04 300.15 302.47 1512.9 909.45 300.00

std 6770.9 2.3E−10 1826.6 1.0E+04 2212.3 4216.3 1865.2 0 56.73 29.63 14.99 1.2E−10

Rank 8 3 10 12 7 11 9 2 4 6 5 1

C4

avg 411.24 407.76 409.03 549.07 410.66 2400.3 408.11 406.27 403.46 405.62 402.33 400.00

std 21.137 3.9187 3.3874 18.377 8.8624 495.94 3.3628 12.183 109.22 9.3258 4.9026 0.0687

Rank 10 6 8 11 9 12 7 5 3 4 2 1

C5

avg 518.51 515.04 557.94 742.32 516.28 902.00 558.92 523.44 532.17 514.44 513.35 510.00

std 7.9381 7.5534 9.4864 41.477 7.1429 90.488 9.9242 12.120 67.685 27.985 16.614 4.4700

Rank 6 4 9 11 5 12 10 7 8 3 2 1

C6

avg 601.85 600.85 623.21 666.16 603.01 691.78 622.08 611.98 682.39 600.70 600.57 600.00

std 0.0807 1.1129 10.276 49.802 1.0411 12.857 10.690 9.8197 41.598 1.6668 0.8165 7.4E−04

Rank 5 4 9 10 6 12 8 7 11 3 2 1

C7

avg 731.22 721.29 717.50 1280.6 733.15 1866.8 717.09 744.50 716.04 714.69 719.37 723.00

std 8.3149 6.1026 1.7615 50.912 9.8460 109.27 1.8717 19.642 1.8781 5.0727 4.6767 4.6518

Rank 8 6 4 11 9 12 3 10 2 1 5 7

C8

avg 824.26 812.04 823.68 955.00 816.53 1070.5 823.59 824.90 829.74 812.60 809.23 809.00

std 10.297 6.4292 5.3985 22.133 9.3912 50.750 5.5979 11.555 61.983 9.2155 6.4796 3.5578

Rank 8 3 7 11 5 12 6 9 10 4 2 1

C9

avg 913.14 902.37 900.41 6811.1 914.85 2.9E+04 902.21 946.36 4672.3 914.08 907.99 900.00

std 17.270 7.0E−14 6.9E−15 1538.0 22.409 9978.6 0 126.19 2413.0 22.847 11.509 0.0193

Rank 6 4 2 11 8 12 3 9 10 7 5 1

C10

avg 1728.4 1472.2 2697.8 5291.0 1530.3 7484.5 2699.0 1867.3 2600.2 1411.2 1426.9 1440.0

std 304.01 248.58 351.42 774.76 332.5 1542.4 344.85 348.83 489.35 40.891 100.08 161.60

Rank 6 4 9 11 5 12 10 7 8 1 2 3

C11

avg 1131.4 1111.2 1132.1 1276.0 1140.4 1923.3 1134.6 1183.7 1110.5 1112.1 1105.1 1100.0

std 28.320 7.4178 12.650 47.856 61.623 2193.9 12.737 70.729 29.361 12.658 7.3046 1.4925

Rank 6 4 7 11 9 12 8 10 3 5 2 1

C12

avg 3.7E+04 1.5E+04 7.0E+05 2.2E+07 6.3E+05 1.8E+08 7.1E+05 2.0E+06 1637.2 1.5E+04 8226.7 1250.0

std 4.1E+04 1.3E+04 4.9E+04 2.4E+07 1.3E+06 2.0E+09 4.8E+05 2.3E+06 233.16 3234.1 1550.0 64.192

Rank 6 4 8 11 7 12 9 10 2 5 3 1

C13

avg 1.1E+04 8623.9 1.1E+04 4.2E+05 9871.7 1.9E+08 1.1E+04 1.6E+04 1324.2 6853.0 4076.8 1310.0

std 1.1E+04 6042.0 2392.3 1.5E+05 6566.9 1.6E+08 2444.4 1.3E+04 91.485 5075.5 2476.7 3.1148

Rank 7 5 8 11 6 12 9 10 2 4 3 1

C14

avg 7054.8 1486.6 7171.9 4.1E+05 3406.5 2.0E+06 7164.4 1514.5 1456.6 1454.9 1430.2 1400.0

std 9713.5 49.535 1796.7 2.7E+05 2238.9 8.3E+06 1692.7 58.251 64.798 26.870 15.687 4.6010

Rank 8 5 10 11 7 12 9 6 4 3 2 1

C15

avg 9346.1 1716.2 1.8E+04 4.8E+04 3813.6 1.4E+07 1.8E+04 2248.3 1512.7 1581.1 1545.2 1500.0

std 1.0E+04 342.51 6264.2 1.8E+04 4450.9 2.4E+07 6368.3 645.63 19.341 150.50 77.146 0.6144

Rank 8 5 9 11 7 12 10 6 2 4 3 1

C16

avg 1793.8 1860.6 2153.7 3513.3 1738.0 3004.2 2156.4 1732.1 1821.3 1734.5 1670.3 1600.0

std 150.65 145.90 125.90 273.70 148.24 1426.7 122.66 151.72 276.80 137.49 72.936 1.1817

Rank 6 8 9 12 5 11 10 3 7 4 2 1

C17

avg 1750.3 1761.9 1865.1 2632.2 1764.1 4346.1 1861.7 1774.0 1832.2 1732.3 1725.0 1710.0

std 46.452 56.813 124.00 226.70 37.236 380.86 124.57 41.396 204.39 41.375 26.497 11.404

Rank 4 5 10 11 6 12 9 7 8 3 2 1

C18

avg 1.6E+04 1.5E+04 8754.2 7.5E+05 2.6E+04 3.8E+07 8756.6 2.3E+04 1830.2 7464.9 4640.2 1800.0

std 1.5E+04 1.4E+04 5915.6 4.3E+05 1.9E+04 5.6E+07 6084.8 1.7E+04 15.698 5099.5 2629.4 0.6111

Rank 8 7 5 11 10 12 6 9 2 4 3 1
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Table 6.  Evaluation results of the IEEE CEC 2017 objective functions C19 to C30.

GA PSO GSA TLBO MVO GWO WOA TSA  RSA MPA AVOA DTBO

C19

avg 9731.0 2605.8 1.4E+04 6.1E+05 9892.8 2.3E+06 4.5E+04 2926.0 1925.8 1952.9 1930.9 1900.0

std 7858.3 2581.0 2.2E+04 6.6E+05 7399.9 1.8E+07 2.2E+04 2196.8 33.850 62.668 31.866 0.5177

Rank 7 5 9 11 8 12 10 6 2 4 3 1

C20

avg 2060.5 2098.1 2280.2 2880.4 2084.0 3805.4 2277.5 2090.0 2493.9 2025.1 2026.6 2020.0

std 68.762 75.043 92.511 245.57 59.512 532.00 97.367 57.113 286.71 28.694 19.776 11.056

Rank 4 7 9 11 5 12 8 6 10 2 3 1

C21

avg 2301.9 2281.0 2364.7 2580.4 2320.2 2580.6 2371.7 2255.0 2328.3 2233.5 2225.6 2200.0

std 50.749 65.303 32.539 71.887 8.0010 217.34 33.053 72.501 78.370 50.003 37.064 23.769

Rank 6 5 9 11 7 12 10 4 8 3 2 1

C22

avg 2307.9 2312.5 2308.9 7208.1 2316.1 1.4E+04 2301.3 2308.6 3534.3 2287.8 2290.5 2280.0

std 2.8287 76.143 0.0826 1545.5 19.061 1188.7 0.0846 13.699 972.08 15.320 30.114 44.375

Rank 5 8 7 11 9 12 4 6 10 2 3 1

C23

avg 2634.3 2632.1 2751.7 3124.3 2631.3 3826.7 2751.3 2630.7 2730.2 2612.6 2622.4 2610.0

std 15.619 10.570 45.031 96.724 9.5706 250.98 46.255 10.124 284.18 4.9156 4.5501 4.6847

Rank 7 6 10 11 5 12 9 4 8 2 3 1

C24

avg 2764.1 2696.7 2748.1 3342.0 2742.6 3480.6 2753.4 2740.3 2701.6 2626.3 2574.3 2520.0

std 17.772 124.54 6.5110 189.89 9.8817 250.01 6.4110 76.566 86.826 95.951 70.877 43.496

Rank 10 4 8 11 7 12 9 6 5 3 2 1

C25

avg 2955.5 2929.2 2943.2 2920.6 2940.6 3920.2 2950.1 2932.1 2936.3 2923.4 2917.2 2900.0

std 23.363 30.274 17.686 21.231 27.954 288.36 18.086 28.773 23.595 14.650 7.8934 0.5732

Rank 11 5 9 3 8 12 10 6 7 4 2 1

C26

avg 3110.6 2952.4 3.4E+04 7886.1 3222.1 7105.4 3454.4 2904.0 3462.6 3125.2 2991.1 2850.0

std 396.58 300.50 752.69 1099.0 492.04 3364.5 723.62 43.795 699.89 337.31 222.65 111.56

Rank 5 3 12 11 7 10 8 2 9 6 4 1

C27

avg 3126.2 3121.7 3273.6 3419.8 3114.9 4827.4 3271.4 3098.9 3149.0 3116.0 3100.4 3090.0

std 21.882 29.347 48.343 98.368 24.965 736.161 48.582 3.303 25.373 23.812 12.238 0.5212

Rank 7 6 10 11 4 12 9 2 8 5 3 1

C28

avg 3325.4 3330.3 3472.5 3413.4 3392.5 5107.4 3465.8 3217.9 3413.1 2303.3 2709.2 3100.0

std 150.94 141.55 39.174 140.03 117.32 374.55 40.862 131.96 153.87 140.48 71.968 7.7E−05

Rank 5 6 11 9 7 12 10 4 8 1 2 3

C29

avg 3260.6 3205.6 3452.2 4562.6 3196.3 8920.8 3463.9 3216.3 3218.5 3216.4 3191.4 3150.0

std 97.691 60.193 197.37 583.47 51.265 1691.3 206.57 61.883 128.70 67.701 40.254 15.064

Rank 8 4 9 11 3 12 10 5 7 6 2 1

C30

avg 5.4E+05 3.5E+05 1.3E+06 4.0E+06 3.0E+05 1.9E+07 9.4E+05 4.2E+05 3.1E+05 3.0E+05 1.5E+05 3410.0

std 7.2E+05 6.1E+05 4.1E+05 1.9E+06 6.3E+05 1.59E+08 4.1E+05 6.4E+05 5.3E+05 2.6E+04 1.3E+04 31.986

Rank 8 6 10 11 4 12 9 7 5 3 2 1

Sum rank 211 160 252 323 202 351 240 188 177 112 84 40

Mean rank 7.0333 5.3333 8.4 10.767 6.7333 11.7 8 6.2667 5.9 3.7333 2.8 1.3333

Total rank 8 4 10 11 7 12 9 6 5 3 2 1



17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9924  | https://doi.org/10.1038/s41598-022-14225-7

www.nature.com/scientificreports/

Table 7.  p values from Wilcoxon sum rank test.

Compared algorithms

Test function type

Unimodal High-multimodal Fixed-multimodal IEEE CEC2017

DTBO vs. GA 1.01E−24 1.97E−21 0.005203 2.06E−16

DTBO vs. PSO 1.01E−24 1.97E−21 1.23E−13 5.68E−18

DTBO vs. GSA 6.24E−18 2.70E−18 4.05E−05 1.21E−12

DTBO vs. TLBO 1.01E−24 6.98E−15 9.67E−18 4.68E−16

DTBO vs. MVO 1.01E−24 1.97E−21 3.88E−12 1.61E−19

DTBO vs. GWO 5.71E−24 5.34E−16 3.88E−07 1.37E−10

DTBO vs. WOA 6.91E−24 0.003366 0.010621 3.82E−07

DTBO vs. TSA 1.01E−24 1.31E−20 1.44E−34 6.32E−25

DTBO vs. MPA 1.23E−09 0.550347 1.16E−10 5.34E−08

DTBO vs. RSA 0.004063 4.33E−08 1.37E−30 6.33E−28

DTBO vs. AVOA 7.03E−05 6.42E−04 0.005203 3.13E−02

Table 8.  Performance of optimization algorithms in pressure vessel design.

Algorithms

Optimum variables

Optimum costh l t b

DTBO 0.778635 0.385303 40.34282 199.5782 5885.355

AVOA 0.778949 0.385038 40.35999 199.1993 5891.422

RSA 0.840909 0.419378 43.42455 161.7172 6040.794

MPA 0.815064 0.445655 42.24451 176.7981 6119.433

TSA 0.788364 0.389911 40.84104 200.2000 5922.697

WOA 0.789199 0.389678 40.85395 200.2000 5926.513

GWO 0.819006 0.441004 42.43535 178.0534 5928.544

MVO 0.856754 0.424026 44.38794 158.4219 6049.427

TLBO 0.828244 0.423385 42.29410 185.9678 6176.079

GSA 1.099967 0.962004 49.98904 171.6986 11623.14

PSO 0.762178 0.404753 40.98030 199.5860 5927.478

GA 1.113869 0.918407 45.03642 182.0029 6591.333

Table 9.  Statistical results of optimization algorithms in the design of pressure vessels.

Algorithms Best Mean Worst Std. Dev. Median

DTBO 5885.3548 5887.8210 5897.107 21.02136 5889.619

AVOA 5891.4220 5891.4240 5891.738 31.16894 5894.294

RSA 6040.7940 6048.0930 6051.960 31.23574 6046.182

MPA 6119.4330 6127.3280 6138.652 38.30140 6125.140

TSA 5922.6970 5898.0470 5902.933 28.98210 5896.829

WOA 5926.5130 5902.1340 5905.239 13.93506 5901.258

GWO 5928.5440 6075.9400 7407.905 66.73857 6427.669

MVO 6049.4270 6488.9700 7263.975 327.5960 6409.002

TLBO 6176.0790 6338.1550 6524.083 126.8370 6329.696

GSA 11623.140 6852.8620 7172.184 5801.053 6849.947

PSO 5927.4780 6275.2860 7018.367 497.0215 6123.699

GA 6591.3330 6655.9520 8019.857 658.7072 7599.671
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Table 10.  Performance of optimization algorithms in the design of welded beams.

Algorithms

Optimum variables

Optimum costh l t b

DTBO 0.205730 3.470500 9.036600 0.205730 1.724900

AVOA 0.205936 3.473962 9.045661 0.205936 1.726578

RSA 0.144825 3.517514 8.934025 0.211832 1.674273

MPA 0.218678 3.513750 8.881413 0.225135 1.867986

TSA 0.205769 3.478321 9.044835 0.206017 1.729384

WOA 0.205884 3.478878 9.046000 0.206435 1.730721

GWO 0.197608 3.318376 10.00800 0.201596 1.824323

MVO 0.205817 3.475574 9.049972 0.205915 1.729194

TLBO 0.204900 3.539827 9.013294 0.210235 1.762968

GSA 0.147245 5.496235 10.01000 0.217943 2.177546

PSO 0.164335 4.036574 10.01000 0.223871 1.878014

GA 0.206693 3.639508 10.01000 0.203452 1.840211

Table 11.  Statistical results of optimization algorithms in the design of welded beams.

Algorithms Best Mean Worst Std. Dev. Median

DTBO 1.724910 1.728057 1.730148 0.004332 1.727332

AVOA 1.726578 1.728851 1.729280 0.005128 1.727550

RSA 1.674273 1.705118 1.763902 0.017442 1.728144

MPA 1.867986 1.893952 2.018394 0.007968 1.885424

TSA 1.729384 1.730591 1.730826 0.000287 1.730549

WOA 1.730721 1.731893 1.732330 0.001161 1.731852

GWO 1.824323 2.236462 3.056641 0.325421 2.250856

MVO 1.729194 1.734452 1.746456 0.004881 1.732185

TLBO 1.762968 1.822671 1.878577 0.027619 1.825149

GSA 2.177546 2.551258 3.011943 0.256565 2.501997

PSO 1.878014 2.125086 2.326525 0.034916 2.102834

GA 1.840211 1.367289 2.040862 0.139871 1.941088

Figure 4.  Schematic of pressure vessel design.
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Figure 5.  DTBO’s performance convergence curve in the design of a pressure vessel.

Figure 6.  Schematic of welded beam design.

Figure 7.  DTBO performance convergence curve for the welded beam design.
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Data availability
All data generated or analyzed during this study are included directly in the text of this submitted manuscript. 
There are no additional external files with datasets.

Code  availability
The source code of the DTBO algorithm is available at:  https:// uk. mathw orks. com/ matla bcent ral/ filee xchan ge/ 
110755- drivi ng- train ing- based- optim izati on.
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