Abstract
Unsupervised clustering of singlecell RNA sequencing data (scRNAseq) is important because it allows us to identify putative cell types. However, the large number of cells (up to millions), the highdimensionality of the data (tens of thousands of genes), and the high dropout rates all present substantial challenges in singlecell analysis. Here we introduce a new method, named singlecell Clustering using Autoencoder and Network fusion (scCAN), that can overcome these challenges to accurately segregate different cell types in large and sparse scRNAseq data. In an extensive analysis using 28 real scRNAseq datasets (more than three million cells) and 243 simulated datasets, we validate that scCAN: (1) correctly estimates the number of true cell types, (2) accurately segregates cells of different types, (3) is robust against dropouts, and (4) is fast and memory efficient. We also compare scCAN with CIDR, SEURAT3, Monocle3, SHARP, and SCANPY. scCAN outperforms these stateoftheart methods in terms of both accuracy and scalability. The scCAN package is available at https://cran.rproject.org/package=scCAN. Data and R scripts are available at http://sccan.tinnguyenlab.com/
Similar content being viewed by others
Introduction
Advances in microfluidics have enabled the isolation of cells, making it possible to profile individual cells using singlecell sequencing technologies^{1,2}. This transcriptome profiling of individual cells holds enormous potential for both basic biology and clinical applications, including the identification of new cell types^{3,4}, resolution of the cellular dynamics of developmental processes^{5}, and identification of gene regulatory mechanisms that vary between cell subtypes^{6}.
Unsupervised clustering of scRNAseq data is one of the most important analyses because it allows us to identify putative cell types. However, the large number of cells (up to millions) and the highdimensionality of the data (tens of thousands of genes or features) present substantial challenges to computational methods^{7}.
One prominent strategy is to reduce the dimensionality of the data before performing cluster analysis. Methods in this category include SC3^{8}, CIDR^{9}, pcaReduce^{10}, SEURAT2^{11}, SIMLR^{12}, and SHARP^{13}. These methods typically apply dimension reduction techniques such as PCA^{14}, tSNE^{15} and UMAP^{16} to obtain a lowerdimensional representation of the data. Deeplearningbased approaches, including scDeepCluster^{17}, scAIDE^{18}, SCA^{19}, AAESC^{20}, and scGMAI^{21}, often use autoencoders to select important features and to project the data onto a lowdimensional latent space. Next, these clustering methods partition the cells using established clustering algorithms (e.g., kmeans, spectral clustering, etc.). Since these dimension reduction techniques are sensitive to sequencing platforms^{22} and dropouts^{23}, the quality of clustering results also varies accordingly.
Another strategy is to iteratively search for hierarchical structures over both cells and genes. Methods using this strategy include BackSPIN^{24}, SAIC^{25}, and Panoview^{26}). These methods attempt to iteratively divide cells and genes into subgroups to maximize cell similarity within each cluster. These methods, however, require excessive computational power (due to the iteration), and overestimate the number of cell types.
Many singlecell methods also utilize community detection algorithms such as Louvain^{27} and Leiden^{28}. SEURAT3^{29}, SCANPY^{30}, and Monocle3^{31} embed community detection algorithms in their analysis pipeline. These methods first convert scRNAseq data into networks in which cells are nodes and the edges represent similarity among them. Next, they partition the network using community detection algorithms that are known to be fast. The quality of clustering results strongly depends on the construction of the similarity network. Further, although community detection algorithms can produce reasonable results, they often overestimate the number of cell communities (cell types).
Lastly, cluster ensemble is another strategy that aims to aggregate results from multiple clustering models. Methods of this class include SAFE^{32}, SAME^{33}, and ScGPE^{34}; these methods selectively combine the results obtained from multiple clustering algorithms, including SC3, CIDR, SEURAT, CIDR, SIMLR, SNNcliq^{35}, SSNNLouvain^{36}, and MPGSLouvain^{37}. One of the main drawbacks of clustering ensemble methods is that they do not scale well for large datasets. Moreover, evaluating the quality of clustering results obtained from each individual method is a difficult task because there is no universally agreed standard on what constitutes good quality clusters in the first place^{38}.
Here we introduce scCAN, a singlecell clustering approach that consists of three modules: (1) a nonnegative kernel autoencoder to filter out uninformative features, (2) a stacked, variational autoencoder to generate multiple lowdimensional representations of singlecell data, and finally (3) a graphbased technique to determine cell groups from multiple representations. In an extensive analysis using 28 scRNAseq datasets, we demonstrate that scCAN significantly outperforms stateoftheart methods in separating cells of different types. We further assess the clustering methods with regards to scalability and robustness against dropouts using simulated datasets. Overall, scCAN is the most robust and accurate method and can analyze most datasets in minutes.
Methods
The workflow of scCAN is shown in Fig. 1. This workflow consists of three modules. The first module (Fig. 1A) filters the genes and compresses the input data into a lowdimensional space using two autoencoders. Given the compressed data from module 1, the second module (Fig. 1B) is used to cluster small data, and the third module (Fig. 1C) is used to cluster big data.
Data compression using autoencoders (Module 1)
Module 1 aims at compressing the original data into a compact representation. This module consists of three main steps: (1) data rescaling, (2) feature selection, and (3) multiple latent variables generation. The first step rescales the data, while the second step removes genes that are not informative. The third step transforms the data obtained from step 2 into a lowdimensional space using a stacked Bayesian autoencoder. The details of each step are presented in the following sections.
Minmax scaling
The input of Module 1 is an alreadynormalized expression matrix in which rows represent cells while columns represent genes. Given the input matrix, we rescale the data to a range of 0 to 1 as follows:
where M is the input matrix and X is the normalized matrix. Note that this minmax scaling is not a scRNAseq normalization method. This minmax scaling added to our method is used on top of the already normalized data provided by users. Such scaling is frequently used in deep learning models^{39,40,41,42,43} with the common purpose of reducing standard deviation and suppressing the effect of outliers without altering the transcriptome landscape (see Supplementary Section 8 and Figure S11).
Feature selection using nonnegativekernel autoencoder
After the rescaling, we further process the data using an 1layer autoencoder to filter out genes that do not significantly contribute to differentiating cells. Autoencoder is a selflearning neural network that consists of two core components: an encoder and a decoder. The encoder projects the input onto a lowerdimensional space (compressed data) while the decoder tries to reconstruct the original data from the compressed data. Optimizing this process can theoretically result in a compact representation of the original data. By default, we set the dimension of the compressed data (bottleneck layer) to 50. The low number of dimensions ensures that the data obtained from the bottleneck layer is a compact representation of the original input, highdimensional data.
We also constrain the weights of the encoder to be nonnegative, so that each latent variable in the compressed space is a partbased, additive combination of the input. This technique shrinks the coefficients of less important features to zero while maintaining the nonnegative coefficients of the significant features. From the weight distribution of the encoder, scCAN only keeps genes that have nonzero coefficients in the partbased representation. In essence, this set of genes can be considered the optimal set (sufficient and necessary) to represent the original data. This set is “necessary” because removing any gene from this set would greatly damage the reconstruction ability of the decoder. Concurrently, the set is “sufficient” because adding any other genes would not improve the quality of the compressed data. By default, scCAN selects the top 5000 genes that have nonzero coefficients with the highest coefficient variances.
After this feature selection step, we obtain a new matrix with the same number of cells (rows), but the columns consist of only the optimal set of genes. This matrix serves as the input of another autoencoder to generate multiple lowdimensional representations of the data.
Dimensionality reduction using Stacked Variational Autoencoder
After the feature selection step, we obtain a denoised data matrix that consists of important genes. Although a significant number of genes have been removed, there are still thousands of genes. To reduce the computational resources required for clustering, we further reduce the size of the data by conducting an additional step of dimensional reduction using a modified version of Variational Autoencoder (VAE)^{44}. We call it Stacked Variational Autoencoder because we generate multiple latent spaces instead of generating only one as in the original VAE.
The VAE has the same structure as a standard autoencoder, which consists of an encoder and a decoder. The encoder (\(f_E\)) projects the input to a lowdimensional space while the decoder (\(f_D\)) reconstructs the original input from the compressed data. Given an expression profile of a cell x, we have \(e=f_E(x)\), where e is the lowdimensional representation of x in the bottleneck layer. Instead of using e directly to reconstruct the data, VAE adds two transformations \(f_\mu\) and \(f_\sigma\) to generate the parameters \(\mu\) and \(\sigma\). The new vector z is now sampled from the distribution \(N(\mu ,\sigma ^2)\). The decoder uses z to reconstruct the data: \(\bar{x}=f_D(z)\). Adding randomness to z will help the VAE model to avoid overfitting without losing the ability of learning a generalized representation of the input.
Here we modify the VAE model to generate multiple compressed spaces with multiple realizations of z. The goal is to further diminish overfitting and to increase the robustness of the model. Given a list of latent variables, we use a reparameterization trick^{44} to obtain multiple realizations of z as follows: \(z = \mu + \sigma *N(0,1)\). This strategy ensures the VAE model can be backpropagated. In our model, we limit the size of the latent layer to a low number of dimensions (d = 15 by default). We keep d small to force the neural network to be as compressed as possible.
After finishing the training stage, the input data is processed through the encoder to generate multiple representative latent variables of the original data. As described in the next section, these compressed representations of the data are used for cell segregation (clustering).
Network fusion and spectral clustering for cell segregation (Module 2)
This section describes the workflow for analyzing datasets with a moderate number of cells (\(n<=5000\) by default). When the number of samples is large (over 5000 up to millions of cells), we use a different procedure (see Module 3 in “Big data analysis (Module 3)” section).
The input of Module 2 is multiple lowdimensional representations (matrices) of the input data. We use a network fusionbased approach to cluster scRNAseq data via multiple steps: (1) building a cellsimilarity network for each of the representations, (2) fusing the networks, and (3) clustering using spectral clustering.
For each latent matrix, we construct a cellsimilarity network \(G = (V,E)\) where each vertex V corresponds to a cell and each edge E represents a link between two cells. Edges are weighted and stored in a \(m \times m\) matrix W with \(W_{ij}\) represents the weight between cells \(x_i\) and \(x_j\). To determine the weight for each pair of cells, we first compute the Euclidean distance \(\rho _{ij}\) between the cells \(x_i\) and \(x_j\). Next, we calculate the average value of the distances between the cell \(x_i\) and its neighbors \(\rho _{i\_} = \frac{\sum _{j=1...k} (\rho (x_i, n_j))}{k}\) . We repeat this step for the cell \(x_j\) to obtain \(\rho _{j\_}\). We keep the number of neighbors small (k = 30 by default) to preserve local cells relationship, but users are free to set their own values. We denote \(\varepsilon _{ij} = \frac{\rho _{ij} + \rho _{i\_} + \rho _{j\_}}{3}\) as an average distance among cells \(x_i\), \(x_j\) and neighbour cells to calculate \(W_{ij}=exp\left( \frac{\rho ^2(x_{i}x_{j})}{\mu \varepsilon _{ij}}\right)\) where \(\mu\) is a Gaussian similarity kernel (\(\sigma = 0.5\)). Finally, we repeat this process for every pair of cells to obtain the similarity matrix W for the current latent matrix to obtain a similarity network. Here, each network is a graph representation of a single latent matrix.
Next, we perform network fusion to aggregate multiple similarity networks obtained from their corresponding latent matrices into a consolidated one. The network fusion approach is adapted from SNF method^{45,46,47} by first calculating the full and sparse kernel for each vertex V in the network G. The full kernel is the normalized weight matrix P obtained from G. The sparse kernel S is a matrix that contains local affinity of cells and their neighbors. This step maintains the weights for cells in the same group while suppressing the weights of nonneighbouring cells to zero. That means cell similarities in the same community are more trustworthy than the remote ones. We repeatedly calculate the full and sparse kernel for all n similarity networks to get the lists of updated weight matrices and encoded neighbour similarity matrices. Then, those matrices are iteratively fused together to obtain the final fused network P as follows:
Given the fused network P, we use the eigengap method^{48} to determine the number of clusters. First, we compute adjacency matrix A and degree matrix D to get Laplacian matrix \(L = DA\). Here, eigen values (\(\lambda\)) and eigen vectors (x) are calculated by \(Lx = \lambda x\). Next, eigengap is defined as \(eigengap_{i} = \lambda _{i+1}  \lambda _{i}\) where \(\lambda _{i}\) is the ith eigenvalue of the matrix L. In our method, i is usercontrol hyperparameter that is set from 2 to 15 by default. From the list of eigengap values, we sort them in ascending order and select the two highest eigengap values. Among those two, we select the eigengap that yields a minimum i to prevent overestimating the number of clusters. This i value is considered as the optimal number of clusters. Given the number of clusters, we use spectral clustering^{49} to partition the cells in the fused network P.
Big data analysis (Module 3)
When the number of cells is large (\(n > 5000\)), we split the cells into two sets: a training set of 5000 randomly selected cells and a testing set that consists of the remaining cells^{50}. We then use the same procedure presented in Module 2 to cluster the training data. After this step, we obtain a training cluster assignment. We annotate the remaining cells in each latent matrix as testing data, and we aim to classify them using the cells labels obtained from the training data.
We perform the classification process on testing data in only one latent matrix among multiple ones obtained from Module 1. In order to do that, we select the best latent matrix that is a closed representation of other matrices. First, we use knearest neighbor adaption of spectral clustering algorithm (knn SC) to quickly get the clusters assignments for every latent matrix. Given the list of obtained clusters, we use weightedbased metaclustering (wMetaC) implemented in SHARP^{13} to determine the final cluster assignment. The wMetaC algorithm is conducted through 5 steps: (1) calculating cellcell weighted similarity matrix W, \(w_{ij} = s_{ij}(1s_{ij})\) where \(s_{ij}\) is the chance that cell i and j are in the same cluster, (2) calculating cell weight, which is the sum of all cellcell weights related to this cell, (3) generating clustercluster similarity matrix \(C\times C\), where C is the union of all the clusters obtained in each replicate, (4) performing hierarchical clustering on clustercluster similarity matrix, and (5) determining final clustering result by voting scheme. One note of caution is that the final clustering results obtained from this step are only used to determine the best latent matrix. Then, we measure the adjusted Rand index (ARI) value between the final cluster and the cluster obtained from knn SC on each input latent. The latent matrix that yields the highest ARI value will be selected for classification.
Given the final latent matrix, we use kNN algorithm to classify the remaining cells using cluster’s labels obtained from the training data. Lastly, we merge the cluster assignments from the training data and the testing data to get the final clustering result.
Note that the default value of 5000 allows us to have a sufficiently large sample size to properly determine the cell types which in turns will lead to a proper classification of the remaining cells. At the same time, 5000 is a reasonable small number of samples that allows users to perform the analysis efficiently using personal computers. However, this default value might hinder the process of detecting rare cell types in large datasets. To enhance the method’s capability to detect rare cell types, users can either increase the sample size or perform multistage clustering. More details are provided in Supplementary Section 9 and Figure S12.
Results
In this section, we assess the performance of scCAN in the following capabilities: (1) correct estimation of the number of cell types, (2) proper segregation of cells of different types, (3) robustness against dropout events, and (4) scalability against the increasing number of cell types. For this purpose, we analyze 28 real scRNAseq datasets and simulations in various scenarios. We compare scCAN with five stateoftheart clustering methods that are widely used for singlecell analysis: CIDR^{9}, SEURAT3^{29}, Monocle3^{31}, SHARP^{13}, and SCANPY^{30}.
Table 1 shows the number of datasets used in our analysis. Supplementary Table S1 reports more details of the 28 scRNAseq datasets and Supplementary Table S2 reports the download link. The largest dataset, Brain 1.3M, has 1,300,774 cells. The datasets Guo, Kanton, Brann, and Miller were downloaded from the European Bioinformatics Institute (https://www.ebi.ac.uk/gxa/sc/experiments/). The datasets Slyper, Zilionis, Orozco, and Kozareva were downloaded from Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell). The datasets Montoro, Hrvatin, Darrah, Cao were downloaded from NCBI^{51}. The Brain 1.3M dataset was downloaded from the 10X Genomics website (https://support.10xgenomics.com/singlecellgeneexpression/datasets/1.3.0/1M_neurons). The remaining 15 datasets were downloaded from Hemberg Group’s website https://hemberglab.github.io/scRNA.seq.datasets. We removed samples with ambiguous labels from these datasets. Specifically, we removed cells with the label “zothers” from Chen,“dropped” from Wang, “not applicable” from Segerstolpe, and “Not available” from Guo, Kanton, and Miller. The only processing step we did was to perform a log transformation (base 2) to rescale the data if the range of the data is larger than 100. All datasets except Brain 1.3M have true cell type information and thus can be used to assess the accuracy of the clustering methods. Each of the Cao and Brain 1.3M datasets has more than a million of cells and thus can be used to assess the scalability of the methods.
We use CIDR^{9}, SEURAT3^{29}, Monocle3^{31}, SHARP^{13}, SCANPY^{30}, and scCAN to partition each of the 28 real scRNAseq datasets. CIDR, SEURAT3, Monocle3, and SHARP cannot perform clustering when the dataset has more than 45,000, 30,000, 160,000, and 100,000 cells, respectively. These methods run out of memory in 7, 9, 3, and 5 datasets, respectively (the memory limit is set to 200GB of RAM). Only scCAN and SCANPY can analyze all datasets. Below, we use different metrics to assess the performance of each method.
Estimating the number of true cell types
We use CIDR^{9}, SEURAT3^{29}, Monocle3^{31}, SHARP^{13}, SCANPY^{30}, and scCAN to partition each of the 27 real scRNAseq datasets. To evaluate how well each method estimates the number of cell types, we compare the number of clusters produced by each method against the number of true cell types using the absolute logmodulus^{52}: \(L(x) = sign(x)*log10(x+1)\) where x is the difference between the number of clusters and the number of cell types. The lower the L(x) value, the more similar the number of clusters and the true number of cell types. L(x) equals to zero denotes a perfect estimation.
Figure 2 shows the absolute logmodulus values obtained using the six clustering methods. Each box represents the absolute logmodulus values across 27 scRNAseq datasets for a method. We observe that Monocle3 and SCANPY frequently overestimate the number of clusters. Both methods have the highest absolute logmodulus values. Overall, scCAN is the best method in estimating the number of true cell types. The average log modulus of scCAN is 0.59 whereas those of Monocle3, SCANPY, SHARP, SEURAT3, and CIDR are 1.35, 1, 0.72, 0.64, and 0.63, respectively. A onesided Wilcoxon test also confirms that the absolute logmodulus values obtained from scCAN are significantly smaller than other methods with a pvalue of \(9\times 10^{4}\). We report the absolute logmodulus values for each method and each dataset in Supplementary Table S3.
Segregating cells of different types
To assess the accuracy of each clustering method, we also compare the clustering results against the true cell labels. For this purpose, we use three evaluation metrics: adjusted Rand index (ARI)^{53}, adjusted mutual information (AMI)^{54}, and Vmeasure^{55}. Details of each metric are provided in Supplementary Section 3.
Figure 3A shows the ARI values obtained from the six clustering methods. Each box represents the ARI values across 27 datasets for a method. The results show that scCAN significantly outperforms other stateoftheart methods by having the highest ARI values (\(p=6\times 10^{12}\) using Wilcoxon test). The average ARI value of scCAN is 0.81 which is substantially higher than those of other methods (0.50, 0.55, 0.23, 0.41, and 0.40 for CIDR, Seurat3, Monocle3, SHARP, and SCANPY, respectively). More importantly, scCAN has the highest ARI values in 24 out of 27 datasets (Supplementary Table S4).
Figure 3B shows the AMI values of each method. The AMI values of scCAN are significantly higher than those of other methods (\(p=9 \times 10^{10}\) using Wilcoxon test). The average AMI value of scCAN is 0.77 while the average AMI values of CIDR, Seurat3, Monocle3, SHARP, and SCANPY are 0.52, 0.64, 0.43, 0.41 and 0.55, respectively. scCAN also has the highest AMI values in 23 out of 27 datasets (Supplementary Table S5).
Figure 3C shows a similar trend using Vmeasure. The Vmeasure values of scCAN are significantly higher than those of other methods (\(p=2\times 10^{8}\)). The average Vmeasure value of scCAN is 0.81 while the average AMI values of CIDR, Seurat3, Monocle3, SHARP, and SCANPY are 0.57, 0.72, 0.56, 0.50 and 0.66, respectively. scCAN also has the highest Vmeasure values in 23 out of 27 datasets (Supplementary Table S6). The visualizations of cell transcriptomic landscape for 27 datasets using original cell types and cluster assignments generated by scCAN are shown in Supplementary Figures S1–S5 and Supplementary Figures S6–S10.
Robustness against dropouts
One of the prominent challenges in singlecell data analysis is the prevalence of dropouts. To assess how robust each method is against dropouts, we simulate a number of datasets. There are a number of tools that generate simulated data, including Splatter^{56} and SymSim^{57}. Though powerful, these tools cannot completely emulate realworld situations. The simulators do not preserve expression levels and gene correlation structure of real genes^{58}. Therefore, instead of generating completely new expression values, we simulate different dropout scenarios using the 27 real datasets listed above. For each dataset, we gradually increase the number of dropouts by randomly replacing nonzero expression values with zeros. The dropout rates are set to 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% and 90%. In summary, we generate 243 simulated datasets (27 real datasets with 9 different dropout rates per dataset).
For each dataset, the true cell label of each cell is known and thus can be used a posteriori to assess the robustness of each clustering method. We analyze each of the 243 datasets using the six clustering methods and then calculate the ARI values. Figure 4 shows the ARI values for each method across datasets of varying dropout rates. Overall, scCAN consistently outperforms other methods in clustering cell populations regardless of dropout rates. A onesided Wilcoxon test also confirms that the ARI values obtained from scCAN are significantly higher than those of CIDR, SEURAT3, Monocle3, SHARP, SCANPY (\(p<2.2 \times 10^{16}\)).
Time and space complexity
In order to assess the scalability of the clustering methods, we record the running time that each method uses to analyze the 28 real datasets. Figure 5 shows the running time of the methods with varying numbers of cells. The time complexity of CIDR increases exponentially with respect to sample size. Supplementary Table S7 shows the detailed running time of each method for all 28 datasets. The cell with “NA” indicates out of memory or error. The memory of our machine is limited to 256 GB. scCAN and SCANPY can cluster all datasets in minutes. The scalability of scCAN and SCANPY for big data analysis is shown at Supplementary Section 10 and Supplementary Figures S13 and S14. CIDR, SEURAT3, Monocle3, and SHARP are unable to cluster datasets with more than 48,000, 17,000, 600,000, and 140,000 cells, respectively.
Conclusion
In this article, we introduce a new clustering method named scCAN that can accurately segregate cells of different types from largescale scRNAseq data. The contribution of scCAN is threefold: (1) effective noise detachment and dimension reduction using a nonnegativekernel and a Stacked Variational Autoencoder, (2) accurate clustering of cells using network fusion and graphbased analysis, and (3) scalable analysis of large number of cells using sampling and knearest neighbor. In an extensive analysis using 28 real scRNAseq datasets and various simulation scenarios, we demonstrate that scCAN outperforms the current stateoftheart methods, CDIR, SEURAT3, Monocle3, SHARP and SCANPY. The method can: (1) accurate estimate the number of cell types, (2) properly segregate cells of different types, (3) is robust against dropouts, and (4) is able to analyze datasets with more than a million cells in minutes. We also provide a CRAN R package with documentation for users. The tool can be seamlessly embedded into other singlecell analysis pipelines.
Data availability
In this manuscript, we analyzed 28 publicly available datasets. The Accession numbers are reported in Supplementary Table S1. The link to each dataset is available in Supplementary Table S2. The scCAN package is available at https://cran.rproject.org/package=scCAN. Processed data and R scripts are available at http://sccan.tinnguyenlab.com/
References
Saliba, A.E., Westermann, A. J., Gorski, S. A. & Vogel, J. Singlecell RNAseq: Advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).
Tran, D., Tran, B., Nguyen, H. & Nguyen, T. A novel method for singlecell data imputation using subspace regression. Sci. Rep. 12, 2697 (2022).
Villani, A.C. et al. Singlecell RNAseq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
Jaitin, D. A. et al. Massively parallel singlecell RNAseq for markerfree decomposition of tissues into cell types. Science 343, 776–779 (2014).
Li, L. et al. Singlecell RNAseq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873 (2017).
Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPRpooled screens with singlecell RNAseq. Cell 167, 1883–1896 (2016).
Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of singlecell RNAseq data. Nat. Rev. Genet. 20, 273–282 (2019).
Kiselev, V. Y. et al. SC3: Consensus clustering of singlecell RNAseq data. Nat. Methods 14, 483–486 (2017).
Lin, P., Troup, M. & Ho, J. W. K. CIDR: Ultrafast and accurate clustering through imputation for singlecell RNAseq data. Genome Biol. 18, 59. https://doi.org/10.1186/s1305901711880 (2017).
žurauskienė, J. & Yau, C. pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinform. 17, 1–11 (2016).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of singlecell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
Wang, B. et al. SIMLR: A tool for largescale genomic analyses by multikernel learning. Proteomics 18, 1700232 (2018).
Wan, S., Kim, J. & Won, K. J. SHARP: Hyperfast and accurate processing of singlecell RNAseq data via ensemble random projection. Genome Res. 30, 205–213 (2020).
Pearson, K. L. I. I. I. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).
Van der Maaten, L. & Hinton, G. Visualizing data using tSNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018).
Tian, T., Wan, J., Song, Q. & Wei, Z. Clustering singlecell RNAseq data with a modelbased deep learning approach. Nat. Mach. Intell. 1, 191–198 (2019).
Xie, K., Huang, Y., Zeng, F., Liu, Z. & Chen, T. scAIDE: Clustering of largescale singlecell RNAseq data reveals putative and rare cell types. NAR Genomics Bioinform. 2, lqaa082 (2020).
Alessandri, L. et al. Sparselyconnected autoencoder (SCA) for single cell RNAseq data mining. NPJ Syst. Biol. Appl. 7, 1–10 (2021).
Wu, Y., Guo, Y., Xiao, Y. & Lao, S. AAESC: A scRNAseq clustering framework based on adversarial autoencoder. IEEE Access 8, 178962–178975 (2020).
Yu, B. et al. scGMAI: A Gaussian mixture model for clustering singlecell RNASeq data based on deep autoencoder. Brief. Bioinform. 22, bbaa316 (2020).
Mereu, E. et al. Benchmarking singlecell RNAsequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).
Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to singlecell RNAsequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by singlecell RNAseq. Science 347, 1138–1142 (2015).
Yang, L., Liu, J., Lu, Q., Riggs, A. D. & Wu, X. SAIC: An iterative clustering approach for analysis of single cell RNAseq data. BMC Genomics 18, 9–17 (2017).
Hu, M.W. et al. PanoView: An iterative clustering method for singlecell RNA sequencing data. PLoS Comput. Biol. 15, e1007040 (2019).
Blondel, V. D., Guillaume, J.L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: Guaranteeing wellconnected communities. Sci. Rep. 9, 1–12 (2019).
Stuart, T. et al. Comprehensive integration of singlecell data. Cell 177, 1888–1902 (2019).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Largescale singlecell gene expression data analysis. Genome Biol. 19, 15 (2018).
Cao, J. et al. The singlecell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
Yang, Y. et al. SAFEclustering: Singlecell aggregated (from ensemble) clustering for singlecell RNAseq data. Bioinformatics 35, 1269–1277 (2019).
Huh, R., Yang, Y., Jiang, Y., Shen, Y. & Li, Y. SAMEclustering: S inglecell A ggregated Clustering via M ixture Model E nsemble. Nucleic Acids Res. 48, 86–95 (2020).
Zhu, X., Li, J., Li, H.D., Xie, M. & Wang, J. ScGPE: A graph partitioningbased cluster ensemble method for singlecell. Front. Genet. 11, 1606 (2020).
Xu, C. & Su, Z. Identification of cell types from singlecell transcriptomes using a novel clustering method. Bioinformatics 31, 1974–1980 (2015).
Zhu, X. et al. Singlecell clustering based on shared nearest neighbor and graph partitioning. Interdiscip. Sci. Comput. Life Sci. 12, 117–130 (2020).
Zhu, X., Li, H.D., Guo, L., Wu, F.X. & Wang, J. Analysis of singlecell RNAseq data by clustering approaches. Curr. Bioinform. 14, 314–322 (2019).
Alqurashi, T. & Wang, W. Clustering ensemble method. Int. J. Mach. Learn. Cybern. 10, 1227–1246 (2019).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4700–4708 (2017).
Szegedy, C. et al. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1–9 (2015).
Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Vol. 97, 6105–6114 (Long Beach, California, USA, 2019).
Tran, D., Nguyen, H., Tran, B., La Vecchia, C., Luu, Hung N. & Nguyen, T. Fast and precise singlecell data analysis using a hierarchical autoencoder. Nat. Commun. 12, 1–10 (2021).
Kingma, D. P. & Welling, M. Autoencoding variational Bayes. arXiv:1312.6114 [cs, stat] (2013).
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).
Nguyen, T., Tagett, R., Diaz, D. & Draghici, S. A novel approach for data integration and disease subtyping. Genome Res. 27, 2025–2039 (2017).
Nguyen, H., Shrestha, S., Draghici, S. & Nguyen, T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics 35, 2843–2846 (2019).
Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).
Ng, A. Y. et al. On spectral clustering: Analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2002).
Nguyen, H., Tran, D., Tran, B., Roy, M., Cassell, A., Dascalu, S., Draghici, S. & Nguyen, T. SMRT: Randomized data transformation for cancer subtyping and big data analysis. Front. Oncol. 11, 1–11 (2021).
Barrett, T. et al. NCBI GEO: Archive for functional genomics data setsupdate. Nucleic Acids Res. 41, D991–D995 (2013).
John, J. & Draper, N. R. An alternative family of transformations. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 29, 190–197 (1980).
Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).
Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).
Rosenberg, A. & Hirschberg, J. Vmeasure: A conditional entropybased external cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLPCoNLL) 410–420 (2007).
Zappia, L., Phipson, B. & Oshlack, A. Splatter: Simulation of singlecell RNA sequencing data. Genome Biol. 18, 1–15 (2017).
Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability in single cell RNA sequencing. Nat. Commun. 10, 1–16 (2019).
Sun, T., Song, D., Li, W. V. & Li, J. J. scDesign2: A transparent simulator that generates highfidelity singlecell gene expression count data with gene correlations captured. Genome Biol. 22, 1–37 (2021).
Acknowledgements
This work was partially supported by NIH NIGMS under grant number GM103440, and by NSF under grant numbers 2001385 and 2019609. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any of the funding agencies.
Author information
Authors and Affiliations
Contributions
B.T. and T.N. conceived of and designed the approach. B.T. performed the data analysis and all computational experiments. B.T., D.T. implemented the method in R. H.N. and S.R. helped with data preparation and some data analysis. B.T., D.T., H.N., S.R. and T.N. wrote the manuscript. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tran, B., Tran, D., Nguyen, H. et al. scCAN: singlecell clustering using autoencoder and network fusion. Sci Rep 12, 10267 (2022). https://doi.org/10.1038/s41598022142186
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598022142186
This article is cited by

Integrative singlecell analysis: dissecting CD8 + memory cell roles in LUAD and COVID19 via eQTLs and Mendelian Randomization
Hereditas (2024)

Anticorrelated feature selection prevents false discovery of subpopulations in scRNAseq
Nature Communications (2024)

A robust and accurate singlecell data trajectory inference method using ensemble pseudotime
BMC Bioinformatics (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.