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Building reliable radiomic models 
using image perturbation
Xinzhi Teng1, Jiang Zhang1, Alex Zwanenburg2,3,4,5, Jiachen Sun1, Yuhua Huang1, Saikit Lam1, 
Yuanpeng Zhang1, Bing Li1, Ta Zhou1, Haonan Xiao1, Chenyang Liu1, Wen Li1, Xinyang Han1, 
Zongrui Ma1, Tian Li1 & Jing Cai1*

Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using 
test–retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to 
develop a novel image perturbation-based method (IPBM) for the first of its kind toward building a 
reliable radiomic model. We first developed a radiomic prognostic model for head-and-neck cancer 
patients on a training (70%) and evaluated on a testing (30%) cohort using C-index. Subsequently, 
we applied the IPBM to CT images of both cohorts (Perturbed-Train and Perturbed-Test cohort) to 
generate 60 additional samples for both cohorts. Model reliability was assessed using intra-class 
correlation coefficient (ICC) to quantify consistency of the C-index among the 60 samples in the 
Perturbed-Train and Perturbed-Test cohorts. Besides, we re-trained the radiomic model using reliable 
RFs exclusively (ICC > 0.75) to validate the IPBM. Results showed moderate model reliability in 
Perturbed-Train (ICC: 0.565, 95%CI 0.518–0.615) and Perturbed-Test (ICC: 0.596, 95%CI 0.527–0.670) 
cohorts. An enhanced reliability of the re-trained model was observed in Perturbed-Train (ICC: 0.782, 
95%CI 0.759–0.815) and Perturbed-Test (ICC: 0.825, 95%CI 0.782–0.867) cohorts, indicating validity 
of the IPBM. To conclude, we demonstrated capability of the IPBM toward building reliable radiomic 
models, providing community with a novel model reliability assessment strategy prior to prospective 
evaluation.

Radiomics is a flourishing field in which machine learning is used to associate cancer imaging phenotypes 
with cancer genotypes or clinical outcomes for precision medicine1–3. Radiomics strives to characterize the 
differences in tumor phenotypes based on non-invasive medical images, such as computed tomography (CT), 
magnetic resonance imaging, and positron emission tomography. Furthermore, radiomics can be used to capture 
the heterogeneity of a tumor4, associate heterogeneity with tumor characteristics for diagnosis5 and treatment 
prognostication6, and improve the overall decision-making during treatment7.

Despite the potential of radiomics, the unknown reliability of reported radiomic features and signatures 
against the variability of image acquisition, reconstruction, and segmentation is one of the major challenges in 
translating radiomic models from bench to bedside8,9. Lafata et al.10 reported the variability of a classification 
model for non-small-cell lung cancer histology with respect to free-breathing 3D-CT and phases of 4D-CT 
imaging. In addition to radiomic model applications, the deep-learning model variability caused by variations 
in analyzed images should be considered. Blazis et al.11 reported the impact of CT reconstruction parameters 
on the performance of a lung nodule computer-aided diagnosis (CAD) system based on deep learning. They 
found that the performance of the CAD system increased when the iterative reconstruction levels or the image 
quality were also increased. Both publications suggest that the impact of imaging variations on the reliability of 
radiomic models need to be better understood.

To our knowledge, no study has compared the reliability of radiomic models with that of features—against 
imaging variations. Multiple scans of the same patients obtained within a short interval are necessary to conduct 
a model reliability study, where the predicted outcomes from different scan sets could reflect the model vari-
ability. As obtaining such datasets is resource-intensive and increases the burden on the patient, they are only 
obtained for research purposes. To obtain multiple datasets, Zwanenburg et al.12 proposed perturbing the images 
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and contours to simulate the acquisition of multiple image sets. They validated this method by comparing the 
feature robustness with that in two test–retest datasets.

Following this idea, we propose a reliability assessment method of the radiomic model using perturbations. 
In addition to traditional radiomic modeling methods, we simulated multiple internal validation datasets by 
adding plausible perturbations to the original images and segmentations. The perturbed data were then used to 
validate the reliability of the radiomic model against randomization, and reliability was indicated by the intraclass 
coefficient of correlation (ICC), which was used to describe the consistency of model prediction outcomes within 
the same patient across all perturbations.

Results
First, the optimal features and associated characteristics for model building are reported. Second, the model’s 
performance on the original and perturbed dataset are evaluated. Third, the reliability of the radiomic model 
is computed.

The first step was to identify the features relevant to the outcome and remove redundant features. After fil-
tering, 17 of 5486 features were selected. Then, a backward recursive feature elimination based on a penalized 
Cox proportional hazard model was used to find the optimal feature set for model building. Figure 1 shows the 
changes in training and validation C-indexes of a 10-times-repeated, three-fold cross-validation of the training 
dataset with respect to the number of features in the recursive feature elimination process. The feature set with 
the highest validation C-index was identified as the optimal feature set, and thus six features were identified as 
the optimal feature set and used for model building. The characteristics of these six selected features are tabu-
lated in Table 1.

After identifying the six optimal features, the radiomic survival model was constructed and validated. The 
C-indexes of the survival radiomic model in the training and testing cohorts were 0.742 and 0.769, respectively. 
The averaged model performance C-indexes (standard deviation) over the perturbed training and testing cohorts 
were 0.686 (0.038) and 0.678 (0.065), respectively.

The model performance on the original and perturbed cohorts is visualized in Fig. 2, which shows that the 
original training and testing C-indexes probably overestimate the model’s performance compared with the 
perturbed cohort evaluation. Furthermore, the model performance variations on the perturbed cohorts are 
significant, with C-indexes ranging from 0.609 to 0.758 in training and from 0.514 to 0.794 in testing.

Figure 1.   Changes in the training and validation C-indexes with respect to feature numbers in the step-wise 
backward feature elimination method under three-fold cross-validation, repeated 10 times. The points indicate 
the averaged C-index over cross-validation folds, and the shaded area indicates the range of one standard 
deviation (std).

Table 1.   The characteristics of selected features for model building. The univariate C-index, p-value, and 
ICC were tabulated. Feature names indicate the feature, the bin count (if applicable), and the image used to 
compute it.

Features C-index p-value ICC

Log-sigma-6-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis_64_binCount 0.619 0.045 0.747

Wavelet-HHL_glrlm_LongRunLowGrayLevelEmphasis_128_binCount 0.587 0.169 0.454

Original_glszm_LargeAreaLowGrayLevelEmphasis_128_binCount 0.614 0.066 0.610

Wavelet-LLL_glrlm_RunEntropy_128_binCount 0.608 0.064 0.900

Wavelet-LHL_glszm_LowGrayLevelZoneEmphasis_64_binCount 0.572 0.091 0.491

Wavelet-HLL_glszm_SmallAreaHighGrayLevelEmphasis_128_binCount 0.604 0.085 0.542
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Figure 2.   Visualization of model performance on the original and perturbed data.

Figure 3.   The feature map of wavelet-LLL_glrlm_RunEntropy (left) and wavelet-HLL_glszm_
SmallAreaHighGrayLevelEmphasis_128_binCount (right). The window is fixed between 1 and 99 percentile of 
the feature map to eliminate the effects of noise.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10035  | https://doi.org/10.1038/s41598-022-14178-x

www.nature.com/scientificreports/

The feature maps of feature wavelet-LLL_glrlm_RunEntropy and wavelet-HHL_glrlm_LongRunLowGray-
LevelEmphasis were calculated across perturbed images to interpret the results visually. As shown in Fig. 3, the 
feature map of RunEntropy showed a homogeneous pattern across perturbed images than the feature map of 
LongRunLowGrayLevelEmphasis, which is consistent with the feature robustness ICC calculated using pertur-
bation images.

After evaluating the model’s discriminatory power, the quantified model performance using ICC was cal-
culated with a 95% confidence interval. The model reliability ICC was 0.565 (0.518–0.615) on the training 
set and 0.596 (0.527–0.670) on the testing set. According to convention13, this model’s reliability is moderate 
(0.5 < ICC < 0.75), and it is consistent with the significant variations in model performance with the perturbed 
datasets, as shown in Fig. 3.

An additional experiment was performed to validate the sensitivity of the reliability ICC, using the highly 
reliable features (ICC > 0.75) to repeat the radiomic modeling process. After prescreening the reliable features, 
67% (3667/5486) of features were retained; these were reduced to four optimal features for model building after 
feature selection. The new model performance C-indexes for the original training and testing cohorts were 0.711 
and 0.641, respectively, while the averaged perturbed training and testing C-indexes (standard deviation) were 
0.640 (0.029) and 0.625 (0.042). The model reliability ICC values, with a 95% confidence interval, were 0.782 
(0.749–0.815) and 0.825 (0.782–0.867) for the perturbed training and testing sets, respectively. The univariable 
analysis result has been tabulated in Table 2.

An additional experiment, starting with highly reliable features, led to a significant increase in the model 
reliability ICC values from moderate to good. This result demonstrated the sensitivity of our method to input 
reliability.

The subgroup analysis based on filtered images was also performed. The median value radiomic feature ICC 
(range) for the original image group, log-sigma image group, and wavelet image group is 0.87 (0.42–1.00), 0.91 
(0.35–0.99), and 0.77 (0.14–0.99). Table 3 showed the subgroup analysis results based on the filtered image 
groups. In general, the trend of improving model reliability is maintained, which also indicates that our method 
can be used to quantify radiomic model reliability for quantitative analysis using filtered or non-filtered images.

The cross-validation analysis was also performed to validate the generalizability of our model reliability assess-
ment method. The averaged model reliability ICC (standard deviation) in testing cohorts over cross-validations 
are 0.83 (0.13), whereas the averaged training C-index (standard deviation) over cross-validation is 0.77 (0.07) 
and the averaged testing C-index (standard deviation) is 0.67 (0.13). The results indicates that our reported result 
based on single split does not have significant bias in splitting. Besides, we also performed sensitivity analysis by 
initially removing low-robust features (ICC < 0.75) and re-run the radiomic analysis. The averaged training and 
testing C-index over cross-validation are 0.75 (0.04) and 0.67 (0.08), whereas the averaged model robustness ICC 
over cross-validation improved to 0.93 (0.04). The improvement of the model reliability (p < 0.05) has shown that 
our method is also sensitive to the change of input reliability under cross-validation.

Figure 4.   The general workflow of the study.

Table 2.   The characteristics of selected features for model building in sensitivity analysis. The univariate 
C-index, p-value, and ICC were tabulated. Feature names indicate the feature, the bin count (if applicable), and 
the image used to compute it.

Feature names C-index p value ICC

Log-sigma-6-0-mm-3D_glszm_GrayLevelNonUniformity_128_binCount 0.653 0.00001 0.97

Wavelet-HHL_glszm_GrayLevelNonUniformity_64_binCount 0.656 0.00001 0.91
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Table 3.   The model performance in discrimination and reliability. An improvement in model reliability is 
observed after removing non-robust radiomic features.

Training C-index Testing C-index Model robustness ICC

No filtering

Original features 0.67 0.71 0.72

Log-sigma features 0.72 0.54 0.59

Wavelet features 0.80 0.56 0.51

Feature ICC > 0.75

Original features 0.65 0.74 0.85

Log-sigma features 0.58 0.54 0.91

Wavelet features 0.62 0.55 0.89

Discussion
This study proposed a radiomic model reliability evaluation method using data perturbations. We demonstrated 
this method using a publicly available dataset and by building radiomic models to predict distant metastasis-free 
survival. To our knowledge, this is the first study to describe a method to assess the reliability of radiomics mod-
els based on image perturbation. Our method evaluates model reliability against randomization in a radiomic 
workflow using the perturbation method. This study may provide a new perspective on model assessment for 
the radiomic community. Our results showed that model performance can be overestimated, despite the decent 
model predictability achieved using an independent testing set. Moreover, simulated perturbation data can serve 
as an internal validation method for a model reliability assessment.

This study is also the first to assess radiomic model reliability. Currently, there is no radiomic model reli-
ability assessment method, despite consensus on the importance of building reliable radiomic models within the 
community14. This paradox may be due to several reasons. First, the reliability of a model covers a wide range 
of aspects, as radiomics is a multi-step process and uncertainties may be introduced in each step8,15. Therefore, 
it is challenging to characterize the stability of radiomic models. Second, limited medical resources, such as 
re-scanned images, prevent the internal validation of model reliability. If multiple scanned image sets obtained 
over a short time interval and inter-observer delineations of different scans were available, the model could 
be validated internally to account for random variations in parameters such as patient positioning and inter-
observer delineation. Third, it is challenging to characterize a model’s reliability against controllable factors, such 
as different scanners and acquisition parameters, because such medical resources are inaccessible. These factors 
have been shown to affect radiomic feature reproducibility and, potentially, model reliability. To tackle some of 
these challenges, our study used the perturbation method to simulate perturbed datasets, thereby accounting 
for randomized factors in the radiomic workflow. For example, rotation and translation mimic variations in the 
patient’s positioning during the scans and resampling uncertainties, noise addition mimics fluctuations in the 
voxel values caused by statistical uncertainties, and contour randomization mimics inter-observer uncertainty in 
region-of-interest delineation. These simulated datasets play a crucial role in assessing radiomic model reliability.

This study also evaluated the robustness of the model against randomness. The majority of reliability studies 
in radiomics publications have focused on the reproducibility and robustness of controllable factors, such as 
the scanner brand16, image acquisition parameters17, reconstruction kernels18, and preprocessing parameters19. 
However, the effects of these controllable factors can be minimized with sufficiently transparent reporting. In 
contrast, random and natural variations persist in every radiomic study and are difficult to address by harmoni-
zation or standardization. Therefore, understanding the impact of randomness on radiomic features and models 
is crucial for establishing clinical radiomic applications.

Our method also has the potential in real clinical situations. Firstly, this method could help commission the 
radiomic model’s reliability before its routine application. The evaluation material should be the institution’s past 
data and make sure the evaluation is institution-specific. Secondly, this method could be used to calculate the 
patient-specific prediction outcome variability by simulating the perturbed images of the patient. The prediction 
outcome variability from the perturbation features expressed the random error of the prediction outcome, which 
also helps the decision-making process. The key of this method is that it could help to address the random error 
in radiomic model development and application.

Our results revealed the vulnerability of our radiomic model to randomness. In our results, the model per-
formance evaluation using perturbed data showed lower training and testing C-indexes for the survival model 
and considerable variability in its distribution under perturbations. The lower training C-index for the perturbed 
data reveals that evaluating models using their original data results in overfitting to noise in the original data and 
over-estimation of the model’s learning. If a model is unable to achieve a similar performance using the same 
data with plausible randomization, it is unlikely that it could be translated to the clinic. Careful assessment of 
radiomic models’ reliability is therefore essential.

A potential solution to this issue is to evaluate the reliability of features under randomization and integrate 
this information into radiomic modeling. Despite plenty of discussion and studies of radiomic feature robustness 
and reliability under various circumstances, only two methods have been implemented in a few clinical studies. 
The first method uses a test–retest dataset and evaluates radiomic feature reliability using two consecutive scans 
in a short interval, followed by incorporating this reliability into the dataset. This method may reflect realistic 
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feature reliability under test and retest settings. However, the acquisition of test–retest imaging is rarely conducted 
outside of a research context, and most medical imaging datasets therefore lack complimentary test–retest image 
data. Although some studies have adopted the test–retest RIDER Lung dataset20 to assess feature robustness in 
an attempt to build reliable models, the generalizability of feature robustness from the RIDER Lung data to the 
dataset being studied has been criticized21. The second method assesses feature robustness using inter-observer 
variability on the contours. The region of interest on the images is delineated multiple times by independ-
ent oncologists, and feature robustness is evaluated from the inter-observer consistency of feature values. This 
method is more practically accessible than test–retest images to assess feature robustness. However, this method 
also has limitations in terms of the insufficient identification of non-robust features and high medical person-
nel costs. The shortcomings of these two methods for assessing feature robustness limit their effectiveness for 
removing non-robust radiomic features during radiomic modeling, potentially resulting in radiomic models that 
are vulnerable to randomization. Therefore, simulated randomization of a dataset via the perturbation method 
may enable estimation of the impact of randomness on radiomic modeling. Multiple perturbed datasets can be 
generated with perturbations, and their feature values can be determined. Feature robustness can be quantified 
using the ICC for each feature by considering its variability within a single subject and across the dataset. Then, 
removing the less reliable features can improve the reliability of radiomic models against randomizations. In 
contrast to test–retest and inter-observer variability, simulation methods may be more versatile for evaluating 
feature robustness with no additional clinical resource costs and could enable data-specific feature robustness 
evaluations. Moreover, perturbations can provide additional validation data to evaluate model reliability and 
safeguard it against randomization.

In addition to these contributions, some aspects of our approach could be explored to enhance the impact of 
this study. First, image and contour perturbation via simulation is a new method in radiomics, so comparisons 
between this and established methods (e.g., test–retest and inter-observer variability) could be studied further to 
identify their respective advantages and disadvantages. Second, our validation results showed a decline in model 
predictability performance from the testing data when poorly and moderately reliable features were removed. A 
future study could investigate how to balance the model’s predictive performance with its reliability. Furthermore, 
it is also worth mentioning the sensitivity of the model robustness after feature robustness screening is relative 
to the characteristics of the original feature group. For example, the median (range) feature robustness ICC in 
the morphological category is 0.99 (0.94–1.00) among 14 features. The median (range) feature robustness ICC 
in the intensity category is 0.89 (0.14–0.99) among 216 features. The median (range) feature robustness ICC in 
the texture category is 0.82 (0.16–1.00) among 5256 features. The improvement of model robustness after filter-
ing is likely to be more significant in the intensity and texture features categories. In addition, this study lacks a 
comparison between the perturbation method and the test–retest method. Although the perturbation method has 
been proved to replace test–retest data in the feature level, further studies comparing the perturbation method 
and test–retest method in the radiomic model level is warranted in the future.

Conclusions
This study proposed a radiomic model reliability assessment method using perturbations. This method identifies 
unreliable models by comparing the model’s performance on the training dataset with the performance achieved 
on random perturbations of the training dataset. Using this approach could help the radiomics community to 
build more reliable models for future clinical applications.

Materials and methods
Overview.  The overview of the workflow used to demonstrate our model reliability assessment method is 
illustrated in Fig. 4. First, we collected pre-treatment CT images and clinical outcomes from a publicly available 
head-and-neck cancer (HNC) dataset and randomly split the data into training (70%) and testing cohorts (30%), 
with similar outcome ratios between the two cohorts. Second, a radiomic survival model was built to assess 
distant metastasis-free survival. Third, internal validation datasets (Perturbed-Train and Perturbed-Test) with 
perturbations were simulated12. The simulated perturbation datasets were used to extract perturbed radiomic 
features and validate the survival model’s reliability against randomizations, as shown in Fig. 4b. Finally, the ICC 
was used to quantify the model’s reliability, reflecting its prediction consistency when using the perturbed data. 
The experiment is approved by the department of health technology and informatics, the Hong Kong Polytech-
nic University. The developing and reporting method of the radiomic survival model are carried out in con-
cordance with transparent reporting of a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD)22. All methods were carried out in accordance with relevant guidelines and regulations.

Materials.  The dataset, Head-Neck-PET-CT14, was collected in The Cancer Image Archive23. This data-
set consists of 298 patients with head-and-neck squamous cell carcinoma (HNSCC) with a median follow-up 
of 43 months. The patients were treated at four different centers and received only radiation (n = 48, 16%) or 
chemo-radiation (n = 250, 84%) with curative intent. The patients’ characteristics and image reconstruction 
parameters are summarized in Supplementary Tables 1 and 2. Due to the nature of the retrospective study and 
the publicity of the dataset, the informed consent was waved by the Institutional Review Board of the Hong Kong 
Polytechnic University.

The region of interest for feature extraction was the primary gross tumor volume (GTV), which was the pri-
mary treatment target of radiation therapy. The GTV is the most reliable region for predictive feature extraction24 
and has been used in several predictive radiomics studies of HNSCC1,25,26.

Distant metastasis-free survival, defined as the interval from the first day of treatment to the date of the event, 
was the clinical endpoint in this study to demonstrate the reliability assessment of the radiomic model27. Previous 
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studies of binary classification models of HNC25,28 have achieved good prediction results but were limited because 
the time-to-event was neglected during model development.

Image preprocessing and radiomic feature extraction.  The CT images and their GTV contours were 
preprocessed before their features were extracted to maintain the features’ reproducibility and consistency29,30. 
First, the GTV contours were interpolated to a voxel-based segmentation mask. Second, an isotropic resam-
pler (1 mm × 1 mm × 1 mm) was applied to the images and masks, with B-spline interpolation on the image 
and nearest-neighbor interpolation on the mask to enhance the reproducibility of the radiomic features31. The 
preprocessing steps were implemented on Python v3.8 using the SimpleITK v1.2.432 and OpenCV33 packages.

The radiomic features were then extracted using the Pyradiomics v2.2.034 package, which is Image Biomarker 
Standardization Initiative-compliant35,36. A total of 5,486 radiomic features were extracted from the GTV of each 
patient’s CT scan. Twelve images were included in the feature extraction, including one unfiltered image, three 
Laplacian-of-Gaussian filtered images (with sigma values of 1 mm, 3 mm, and 6 mm), and eight Coiflet1 wavelet 
filtered images (LLL, HLL, LHL, LLH, LHH, HLH, HHL, HHH). In addition to the 14 shape features from GTV 
segmentation, 18 first-order and 73 s-order features were extracted from the region of interest of each filtered 
image. A re-segmentation of the soft-tissue range (− 150 to 180)12 and discretization, with fixed bin counts of 4, 
8, 16, 32, 64, and 128, were specified for the texture feature extraction. The detailed feature extraction parameters 
can be found in Supplementary 3.

Radiomic modeling.  Patients were randomly assigned to the training and testing cohorts (70/30 split) with 
stratification by distant metastasis status6,37. The data in the training cohort were used for feature selection and 
subsequent model training, while the data in the testing cohort were used to evaluate the model’s performance. 
The radiomic features are standardized using the z-score method using a training cohort before feature selection 
to assure a similar scale in training and testing data.

Feature selection.  A filter-based feature selection method was adopted in our analysis38. This process has 
two steps: feature–outcome relevance filtering and feature–feature redundancy filtering. Identifying the most 
relevant and less redundant features is a common practice in radiomics studies, regardless of the evaluation 
metric39.

Relevance filtering.  Relevance filtering aims to identify the radiomic features that are correlated with the 
outcomes25. First, the outcome relevance of each feature was repeatedly evaluated by log-rank test p-values under 
downsample bootstrapping (imbalanced-learn 0.8.040) without replacement over 100 iterations on the training 
dataset. Downsampling can be used to capture useful information in an imbalanced dataset41. Second, features 
with p-values less than 0.1 were selected in each iteration and ranked by their frequencies, with the top 10% of 
features with the highest frequencies selected.

Redundancy filtering.  Redundancy filtering aims to remove features correlated with each other42. First, the 
feature pairs with Pearson correlation coefficients higher than 0.6 were identified. Then, the features with higher 
mean correlation coefficients than the rest of the features were removed. The removal of these redundant features 
should improve the predictive ability of the classifiers43.

Model building.  To build the survival model, the optimal features for the model building were identified 
using backward recursive feature elimination based on the penalized Cox proportional hazard model44. This 
approach maximizes the validation concordance index (C-index) curve by using repeated three-fold cross-val-
idation in the training set. After identifying the optimal features, a penalized Cox proportional hazard survival 
model was built for distant metastasis-free survival. The hyperparameter of the model was fine-tuned with five-
fold cross-validation to maximize the C-index for the survival model. Thus, the model’s performance with the 
training and testing cohorts was evaluated.

Reliability assessment.  This section describes the method to evaluate the model reliability using pertur-
bations and the workflow shown in Fig. 4b. First, the internal validation datasets were simulated with the per-
turbations by adding plausible randomizations to the original images and segmentations. Second, the survival 
model was evaluated using both the perturbed training and testing data. Third, the model reliability against 
simulated randomization was quantified using the reliability index ICC.

Validation data simulation.  The internal validation data sets were simulated using the perturbation method12,45. 
For each perturbation, both the image and mask were translated and rotated simultaneously by a random amount. 
This simulation aimed to mimic variations in the patient’s position during imaging. Then, a random Gaussian 
noise field was added to the image to mimic the noise level variations between different image acquisitions46. 
All the perturbed datasets are simulated before preprocessing, and the perturbation model for each simulation 
is purely random. The detailed perturbation parameters are presented in Supplementary Table 3. Next, the GTV 
mask was also perturbed by a randomly generated deformable vector field, which aimed to simulate uncertain-
ties in inter-observer delineations on the same target47. The parameters of generating deformable vector fields 
were tuned to ensure the simulation of plausible randomized GTV contours. The averaged dice similarity coef-
ficient and the averaged Hausdorff distance over perturbed patients are around 0.85 and 5 mm respectively. 
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In total, 60 sets of perturbed images and contours were simulated, with the corresponding radiomic features 
extracted as the internal validation sets to evaluate the model reliability under randomization.

Model validation.  The model performance was validated and reported on the original and perturbed data-
sets using the C-index as the evaluation metric. Two observations may warrant attention. First, the model per-
formance consistency between the original and perturbed datasets might be a qualitative indicator of model 
performance reliability against the simulated randomizations. Second, the model performance variance with 
perturbed datasets may reflect the model’s sensitivity to slight fluctuations. A qualitative assessment of model 
reliability could be performed by comparing the model performance on the original and perturbed data.

Model reliability quantification.  In addition to the qualitative analysis of model reliability, a quantification met-
ric, the ICC, was proposed to evaluate model reliability under randomization. The ICC is often used as a reli-
ability index for inter-rater reliability analysis48, and several radiomic studies have used this measure to quantify 
feature reproducibility13,49,50.

The model reliability ICC reflects the extent to which the measurements can be replicated. We aimed to 
determine whether model predictions can be repeatedly measured/produced after adding plausible randomiza-
tions to the images and segmentations both for the same patient and across the entire dataset. As each perturbed 
dataset was simulated randomly and the model was expected to yield an identical outcome, the one-way random 
effects with absolute agreement, ICC(1, 1), were calculated to quantify the model’s reliability, with patients as the 
subjects and perturbations as the raters48. ICC values range between 0 and 1, with values closer to 1 represent-
ing more robust reliability. Typically, ICC values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and 
greater than 0.9 indicate poor, moderate, good, and excellent reliability, respectively48.

Model reliability validation.  To validate the calculation of model robustness, the same experiment was repeated 
with highly reliable features (ICC > 0.75). This validation aimed to verify the sensitivity of the ICC in response 
to changes in model input reliability. An increase in feature robustness was expected to increase the model ICC. 
It is likely that observation in improved model robustness could be expected due to the removal of low robust 
features.

Subgroup analysis for filtered images.  A subgroup analysis for each filtered image family is performed to vali-
date if our method can be implemented in the radiomic analysis with filtered image features. Furthermore, many 
radiomic studies only used features from original images, and this subgroup analysis can also validate if the 
method is appropriate in current radiomic studies.

Cross‑validation analysis.  A cross-validation analysis is performed to validate the generalizability of our 
method under different train-test splits. A stratified threefold, 20 repetitions cross-validation was used to split 
patients into training and testing pairs. And the same modeling and evaluation method were used. The model’s 
discriminatory power was evaluated using averaged C-index and the model’s reliability was quantified using 
averaged ICC.

Data availability
The raw image dat is available in the cancer image archive (https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​
Head-​Neck-​PET-​CT). Our analysis data is shared in Github repository (https://​github.​com/​vivix​inzhi/​Build​
ing-​Robust-​Radio​mic-​Model-​Using-​Pertu​rbati​on).
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