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Combined with one‑time pad encryption scheme, quantum key distribution guarantees the 
unconditional security of communication in theory. However, error correction and privacy 
amplification in the post‑processing phase of quantum key distribution result in high time delay, 
which limits the final secret key generation rate and the practicability of quantum key distribution 
systems. To alleviate this limitation, this paper proposes an efficient post‑processing algorithm based 
on polar codes for quantum key distribution. In this algorithm, by analyzing the channel capacity of 
the main channel and the wiretap channel respectively under the Wyner’s wiretap channel model, 
we design a codeword structure of polar codes, so that the error correction and privacy amplification 
could be completed synchronously in a single step. Through combining error correction and privacy 
amplification into one single step, this efficient post‑processing algorithm reduces complexity of 
the system and lower the post‑processing delay. Besides, the reliable and secure communicaiton 
conditions for this algorithm has been given in this paper. Simulation results show that this post‑
processing algorithm satisfies the reliable and secure communication conditions well.

Combined with one-time pad encryption scheme, quantum key distribution (QKD) can guarantee the uncon-
ditional security of communication system in  theory1–9. Unlike the traditional encryption schemes such as RSA 
and Elliptical Curves whose security is based on the complexity of certain mathematical problems and hence 
will be influenced by the computing power of computing devices, QKD’s security is based on physics law and 
the degree of the perfection of practical devices, which will not be influenced by computing power. Hence, in the 
post-quantum era during which most of the traditional encryption schemes are challenged with the formidable 
computing power of quantum computation, researchers have attached great attention to QKD. However, most 
practical QKD systems take photons as secret key  carriers10–13, which makes these systems susceptible to device 
defect and results in bit error and information  leakage14,15. Therefore, it’s necessary to perform error correction 
(also known as secret-key reconciliation) and privacy amplification in the post-processing phase to correct the 
error bit and eliminate the information leakage. Unfortunately, these two steps increase system overhead and 
introduce high time delay, which has become a bottleneck of realizing high-speed QKD and limits the further 
practicability of QKD  systems16,17. The earliest error correction algorithm for QKD post-processing is BBBSS 
 algorithm18 which iteratively applies dichotomic parity check. Based on BBBSS algorithm, Brassard and Salvail 
proposed the Cascade  algorithm19 which improves the error correction efficiency of BBBSS. However, both of 
these two algorithms need repetitive exchange of the checking information between Alice (information sender) 
and Bob (information receiver) in the public channel, which leads to low error correction efficiency and high 
time delay in the post-processing phase. To reduce this repetitive information exchange in the public channel, 
Winnow  algorithm20, in which the checking information only needs transmitting for once, was proposed in 
2003. However, within the security threshold of qubit error rate (QBER), Winnow still has low error correction 
efficiency. In 2004, Pearson proposed to apply LDPC codes in QKD post  processing21. This idea has been followed 
by researchers for many  years22–26. Though LDPC codes do improve the efficiency of error correction, its parity-
check matrix relies on QBER and hence the error correction performance is quite sensitive to QBER. To overcome 
this shortcoming, Elkouss, Martinez-Mateo and  Martin23 proposed auto-adaptive LDPC for QKD system, but 
the iterative decoding of LDPC still results in high decoding overhead. In 2014, Joduget and Kunz-Jacques27 first 
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applied polar codes, whose code rate has been proved to achieve Shannon limit, to QKD, and discussed the feasi-
bility. Later  research28 shows under short code length, the efficiency of polar codes is higher than LDPC codes’. In 
the past several years, the application of polar codes in QKD system has drawn the attention of  researchers29–36.

In the aspect of privacy amplification, at present, a universal class of hash  functions37 was widely used in infor-
mation compression to guarantee the security of secret key. However, due to its high computation complexity, 
this scheme has high time delay. To lower the time delay, researchers applies Toeplitz hashing, which becomes 
the most widely used privacy amplification method in recent  years25,38–40. By combining Toeplitz hashing with 
fast Fourier transform, researchers has reduced the computation complexity of Toeplitz hashing to O(nlogn).

To provide a new idea to reduce the complexity and lower the time delay of the post-processing phase in 
QKD systems, a polar-code-based efficient QKD post-processing algorithm is proposed in this paper. Using 
Wyner’s wiretap channel model, we design a codeword structure of polar codes which satisfies the reliability 
and security for QKD post-processing. This idea has been applied to different communication systems in recent 
 years41,42. By doing this, the error correction and privacy amplification which are the most time-consuming 
steps in the QKD post-processing could be completed synchronously in a single encoding and decoding process. 
Therefore, the complexity and time delay of post-processing can be reduced, and the final key generation rate 
can be improved. This will help with breaking through the bottleneck of realizing high-speed QKD system and 
promote practicability of QKD.

In 2019, we proposed polar codes-based one-step post-processing for quantum key distribution in our previ-
ous  work43. However, there are three main drawbacks in our previous work. First, the security condition (see 
Eq. (5)  in43) is inaccurate and ambiguous. Thus we modify the security condition in this paper (see Eq. (5) in 
this paper). Second, the protocol  in43 is incomplete which may result in decoding failure and insecurity (see the 
steps 1 to 10 and Fig. 3  in43). In this paper, we modify the protocol (see the steps 1 to 10 and Fig. 4 in this paper), 
which makes it more reliable and secure. The last but the most important point is that our previous work lacks 
experimental verification, since we only calculated the coding rate, and analyzed the reliability and security in 
theory. In this paper, we verify the reliability and security of the protocol through a large number of simulation 
experiments (see the whole section—“Simulation results”).

The rest of this paper is organized as follows. In second section, we introduce the basic theory about Wyner’s 
wiretap channel model, the secrecy capacity of discrete variable QKD (DVQKD) systems and polar codes. Then 
in third section, polar-code-based efficient QKD post-processing algorithm is introduced, after which we illus-
trate the reliability and security for the polar-code-based efficient QKD post-processing algorithm. The fourth 
section gives the simulation experiment result on code rate, decoding reliability and com1munication security. 
In last section, we summarize our work.

Basic theory
Wyner’s wiretap channel model. The goal of secret communication is to realize reliable and secure 
information transmission between two authentic communication sides even under eavesdropping. The channel 
under eavesdropping can be depicted by Wyner’s wiretap channel  model44 which is shown in Fig. 1. Authentic 
information sender Alice encodes the original information U of length k to code X of length n and sends code X 
to authentic information receiver Bob through the main channel W, after which Bob gets information Y. In the 
meantime, eavesdropper Eve eavesdrops through the wiretap channel W∗ and gets information Z. After decod-
ing, Bob gets the estimation Û ′ of original information U and Eve gets the estimation Û ′′.

In the Wyner’s wiretap channel model, when the wiretap channel W∗ is degenerative with respect to the 
main channel W (that is to say, the channel capacity of the wiretap channel C(W∗) is smaller than the channel 
capacity of the main channel C(W)), with the code length tending to infinite, one can design a secure coding 
scheme which satisfies the communication reliability and security. Furthermore, the largest code rate is equal 
to the secrecy capacity Csec which is defined by Csec ≡ C(W)− C(W∗) . In other words, for all ǫ > 0 , there exist 
coding schemes of rate R ≥ Csec − ǫ that asymptotically achieve both the reliability and the security  objectives45. 
Here, the reliability is measured by the decoding bit error rate (BER) of Bob, and the security is measured by the 
mutual information of Û ′′ and U. Reliable communication means that

(1)lim
n→∞

Pr(Û ′
i �= Ui) = 0,

Figure 1.  Wiretap channel model.
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where the subscript i means the ith bit in Û ′ and U. Secure communication means that

where I(Û ′′
i ;Ui) is the mutual information between Alice and Eve, Û ′′

i  is the ith bit in Û ′′ . Combining Eq. (2) 
with the relation between mutual information I(Û ′′

i ;Ui) and conditional entropy H(Ui|Û
′′
i ) depicted by Eq. (3), 

and the definition of conditional entropy depicted by Eq. (4),

we can rewrite eqaution (2) to

Equation (1) is the reliable communication condition and Eq. (5) is the secure communication condition. They imply 
that a reliable and secure coding scheme demands that, with code length tending to infinite, Bob asymptotically 
achieves 0 and the decoding BER of Eve asymptotically achieves 0.5.

Channel capacity of DVQKD post‑processing systems under Wyner’s wiretap channel 
model. In QKD systems, after qubit transmission and sifting, Alice obtains sifted key KAsifted and Bob 
obtains sifted key KBsifted . Due to the defect of devices, channel noise and possible eavesdropping in the practi-
cal QKD system, in general, KAsifted  = KBsifted . Namely, there are error bits. Denote the bit error rate in practical 
QKD system by p.

DVQKD is the maturest and the most widely used QKD system. For those DVQKD systems which apply 
BB84 protocol, their qubit transmission channel can be regarded as binary symmetric channel (BSC). Under 
this assumption, the mutual information between Alice and Bob is

where h2(·) is binary entropy  function22. Considering the maximum safety of communication, we can regard 
all the noise in practical systems results from eavesdropping. Hence, all information Eve can obtain is at most

If we adopt Wyner’s wiretap channel model to depict QKD system, the channel capacity of main channel W is

the channel capacity of the wiretap channel is

and the secrecy capacity is

The secrecy capacity is equal to the secure final key generation rate kth2.
Practical DVQKD systems require that kth = 1− 2h2(p) ≥ 0 . This means that the value range of QBER p 

is [0, 0.11] and C(W) ≥ C(W∗) . Hence, according to the Wyner’s wiretap channel model theory, within this 
range of p, channel W∗ between Alice and Eve is degenerative to channel W between Alice and Bob, and we can 
design a coding scheme which achieves the secrecy capacity. The rest of this paper is based on this prerequisite.

Polar codes. Polar codes are the only coding scheme which has been proved in theory that their code rate 
can achieve Shannon  limit46. Besides, the encoding and decoding complexity of polar codes is relatively small 
compared with LDPC  codes46. Through recursively polarizing N independent identically distributed (i.i.d.) 
channels whose capacity are all C, one can get N coordinate subchannels whose capacity polarizes - with the 
growth of code length N, the capacity of N · C coordinate subchannels asymptotically tends to 1, while the 
capacity of the other N · (1− C) coordinate subchannels asymptotically tends to 0. That is to say, the former 
N · C coordinate subchannels are optimized and the latter N · (1− C) coordinate subchannels are degraded. 
The optimized channels will be used to transmit information bits and the degraded ones will be used to transmit 
frozen bits. Hence, the code rate asymptotically achieves the channel capacity which equals to N · C.

Denote the original N i.i.d. channels by W. As shown in Fig. 2, through channel combining in a recursive 
way, we get the combining channel WN of all N i.i.d. channels. Then through channel splitting, we can obtain N 
coordinate subchannels W (i)

N
46. The superscript (i) means the ith subchannel. In the rest of this paper, 1 ≤ i ≤ N.

Under finite code length N, we need to evaluate the channel quality of each coordinate subchannel. Accord-
ing to the channel quality, we rank all coordinate subchannels in descending order. Then, the first K of them 
are chosen to transmit information bits according to concrete error correction requirement. In this way, the 
construction of polar codes is fulfilled. It’s noticeable that the determination of K will impact the reliability and 

(2)lim
n→∞

I(Û ′′
i ;Ui) = 0,

(3)I(Û ′′
i ;Ui) ≡ H(Ui)−H(Ui|Û

′′
i ) = 1−H(Ui|Û

′′
i ),

(4)
H(Ui|Û

′′
i ) ≡ −

∑

a∈Ui

∑

b∈Û ′′
i

p(a, b)logp(a|b),

(5)lim
n→∞

Pr(Û ′′
i �= Ui) = lim

n→∞
Pr(Û ′′

i = Ui) = 0.5.

(6)IAB = 1− h2(p),

(7)IAE = h2(p).

(8)C(W) = IAB = 1− h2(p),

(9)C(W∗) = IAE = h2(p),

(10)Csec = C(W)− C(W∗) = 1− 2h2(p).
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the code rate of the code structure we design - if K is too high, the decoding reliability will be unacceptable; if it 
is too low, the channel-capacity-reachable characteristic of polar code cannot be fully used and hence the code 
rate will be unsatisfactory. K can be determined by setting target frame error rate (TFER, it is a predefined value 
which Alice and Bob try to make the practical frame error rate of their communication lower than through error 
correction), which is used in our algorithm in “Simulation results”.

At present, there are several ways to realize the construction of polar  codes46–49. In this paper, we adopt Tal’s 
 method47 to construct polar codes, in which the probability of error Pe(W (i)

N ) under maximum-likelihood deci-
sion is used to measure the quality of each coordinate subchannel W (i)

N  . Through a asymptotic method called 
channel  degradation47, we calculate the upper bound of each Pe(W (i)

N ) which will be used to construct polar codes.

Polar‑code‑based efficient post‑processing algorithm
Error correction and privacy amplification are two crucial steps in QKD post-processing. The goal of error cor-
rection is to eliminate the difference between Alice’s sifted key KAsifted and Bob’s sifted key KBsifted through infor-
mation exchange between Alice and Bob, so that they can obtain the information which is equal to the capacity 
C(W∗) of the main channel. The goal of privacy amplification is to compress the exchanged information between 
Alice and Bob to remove the information Eve can obtain, which is equal to the capacity C(W∗) of wiretap channel.

Aiming at these two functions of the two crucial steps, we propose an efficient post-processing algorithm 
which can fulfill error correction and privacy amplification at the same time. This algorithm is called polar-code-
based efficient post-processing (PCEP) algorithm. The concrete steps of PCEP are as follows. Denote the TFER 
by FERtarget , the target privacy amplification index (TPAI, it is a predefined value which Alice and Bob try to 
make the practical privacy amplification index lower than. Privacy amplification index is the leaked informa-
tion rate, which is equal to the amount of leaked information leaked in a single code block divided by the code 
block length) by PAItarget.

Steps of PCEP algorithm. Step 1: Parameter estimation
Alice and Bob compare the bases they use in the qubit transmission phase and get their own sifted key 

KAsifted and KBsifted . Then they choose some bits from their own sifted key to estimate the bit error rate pm (to 
distinguish the indexes of main channel and wiretap channel, we write an “m” in the subscript to represent that 
this index belongs to “main channel” or a “w” to represent that this index belongs to “wiretap channel”) in the 
main channel as in other common post-processing algorithm . If pm exceeds the security threshold, they abort 
this key distribution, or else they enter into next step.

Step 2: Polarization of the main channel
Alice and Bob polarize the main channel W by Arikan’s  method46 and obtain N coordinate subchannels W (i)

N .
Step 3: Channel quality evaluation in the main channel
Denote the code length that Alice and Bob use by N, Alice and Bob take pm as the channel quality index of 

the main channel, according to which they adopt Tal’s polar code construction  algorithm47 to calculate the upper 
bound UPe,m(W (i)

N ) (not necessarily the supremum) of the decoding error rate Pe,m(W (i)
N ) under maximum-

likelihood decision of each coordinate subchannel W (i)
N  . UPe,m(W (i)

N ) are used to evaluate the channel quality of 
each coordinate subchannel, the lower the better.

Figure 2.  Channel polarization. RN is the bit-reversal operation. When N = 1 , W1 is the original channel W.
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Step 4: Optimized coordinate subchannels selection in the main channel
Alice and Bob sort all coordinate subchannels W (i)

N  according to UPe,m(W
(i)
N ) in ascending order, and 

chooses the first Km coordinate subchannels which satisfy Eq. (11) to compose the optimized channel set 
GN (W , FERtarget) . The rest of coordinate subchannels compose the degraded channel set BN (W , FERtarget).

That is to say, Alice and Bob divide all coordinate subchannels in the main channel to two sets:

From Eqs. (12) and (13), we can see that GN and BN are functions of W and FERtarget . This is why we write GN as 
GN (W , FERtarget) and BN as BN (W , FERtarget) . For convenience, GN and BN will be used in the rest of this paper.

Step 5: Polarization of the wiretap channel
Alice and Bob polarize the wiretap channel W∗ by Arikan’s  method46 and obtain N coordinate subchannels 

W
(i)
N .

Step 6: Channel quality evaluation in the wiretap channel
Alice and Bob calculate the bit error rate pw of wiretap channel according to IAE = 1− h2(pw) = h2(pm) as 

mentioned in “Polar-code-based efficient post-processing algorithm”. Then they take pw as the channel qual-
ity index of the wiretap channel, according to which they adopt Tal’s polar codes construction  algorithm47 to 
calculate the upper bound UPe,w(W∗(i)

N ) (not necessarily the supremum) of the probability of error Pe,w(W∗(i)
N ) 

under maximum-likelihood decision of each coordinate subchannel W∗(i)
N  in wiretap channel. Using Eq. (14), 

Alice and Bob calculate the channel capacity of Cw(W
∗(i)
N ) each coordinate subchannel.

The channel capacity Cw(W
∗(i)
N ) is used to evaluate the channel quality of each coordinate subchannel, the higher 

the better.
Step 7: Optimized coordinate subchannels selection in the wiretap channel
Alice and Bob sort all coordinate subchannels W∗(i)

N  according to Cw(W
∗(i)
N ) in ascending order and chooses 

the first Kw ones which satisfy Eq. (15) to compose degraded channel set B∗N (W∗, PAItarget) with respect to Eve. 
The rest of coordinate subchannels compose optimized channel set G∗

N (W
∗, PAItarget) with respect to Eve.

That is to say, Alice and Bob divide all coordinate subchannels in the wiretap channel to two sets:

From Eqs. (16) and (17), we can see that B∗N and G∗
N are functions of W∗ and PAItarget . This is why we write G∗

N as 
G∗
N (W

∗, PAItarget) and B∗N as B∗N (W∗, PAItarget) . For convenience, G∗
N and B∗N will be used in the rest of this paper.

Step 8: Determination of code structure
After the above steps, Alice and Bob obtain four sets of coordinate subchannels. The first set GN is the 

optimized coordinate subchannels to Bob, the second set BN is the degraded ones to Bob, the third set G∗
N is 

the optimized ones to Eve, and the last set B∗N is the degraded ones to Eve. As shown in Fig. 3, the subchannels 
which belong to BN must belong to B∗N , and the ones which belong to G∗

N must belong to GN . This is because 
that the wiretap channel is degenerative with respect to the main channel. Therefore, those subchannels which 
are degraded to Bob must be degraded to Eve, and those which are optimized to Eve must be optimized to Bob. 
Hence, GN and B∗N have intersection.

Based on the above analysis of the four sets GN , BN , G∗
N , and B∗N , Alice and Bob can redivide all subchannels 

into three sets without intersection as follows.

Alice and Bob choose the subchannels in A to transmit the information bits (in this situation, they are the bits of 
secret key), the subchannels in R to transmit random bits, and the subchannels in B to transmit frozen bits. By 
this redivision, the code structure is determined. Notice that, actually, all the code construction work, including 

(11)
∑

i

UPe,m(W
(i)
N ) ≤ FERtarget.

(12)GN (W , FERtarget) ≡ {i|1 ≤ i ≤ N} ∩ {i|
∑

i

UPe,m(W
(i)
N ) ≤ FERtarget},

(13)BN (W , FERtarget) ≡ {i|1 ≤ i ≤ N} \ GN (W , FERtarget).

(14)Cw(W
∗(i)
N ) = 1− h2(Pe,w(W

∗(i)
N )).

(15)
∑

i

Cw(W
∗(i)
N ) ≤ PAItarget.

(16)B∗N (W
∗, PAItarget) ≡

{
i|1 ≤ i ≤ N} ∩ {i|

∑

i

Cw(W
∗(i)
N ) ≤ PAItarget

}
,

(17)G∗
N (W

∗, PAItarget) ≡ {i|1 ≤ i ≤ N} \ B∗N (W
∗, PAItarget).

(18)R ≡ G∗
N ,

(19)A ≡ B∗N ∩ GN ,

(20)B ≡ BN .
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steps 4 to steps 8, can be done by Alice alone. Once Alice finish this work, she will transmit the code structure 
to Bob. Hence, Fig. 4 has not shown that Bob joins in the code construction work.

Step 9: Code transmission
Alice randomly generates the bits which belong to R, sets all bits which belong to B to zero, and puts KAsifted 

into the bits which belong to A. Then she connects them according to the order of corresponding coordinate 
subchannels to form the original code. After encoding the original code by systematic polar coding  algorithm50, 
Alice gets code CWenc . As shown in Fig. 4, CWenc is composed of CWchk1

enc  , CWfinal
enc (under systematic polar cod-

ing, CWfinal
enc = KAsifted ) and CWchk2

enc  , which are the systematic polar encoding results of the bits belong to R, A, 
and B, respectively. Alice only sends the check bits CWchk1

enc  and CWchk2
enc  to Bob through classical public channel.

Step 10: Error correction
Bob puts his sifted key KBsifted into the bits which belong to A, puts CWchk1

enc  into the bits which belong to R, 
and puts CWchk2

enc  into the bits which belong to B. Then he decodes this bit string to get ĈW
final

enc  . At last, Alice 
and Bob take CWfinal

enc  and ĈW
final

enc  as their final key respectively. The reliable communication condition Eq. (21) 
asks that

Figure 3.  Code construction. The two columns which are colored by gradient represent the coordinate 
subchannels of the main channel and the wiretap channel. The deeper the color is, the worse the channel quality 
is.

Figure 4.  Polar-code-based efficient post-processing algorithm.
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Reliability and security for PCEP algorithm. In PCEP algorithm, Bob gets CWchk1
enc  , CWchk2

enc  and KBsifted 
which is obtained through the quantum channel with bit error rate pm . Assume Eve has full access to the classical 
channel, and all that she can get is CWchk1

enc  , CWchk2
enc  and KBsifted which is obtained by eavesdropping the quantum 

channel with bit error rate pw . According to Eq. (7), we obtain

When wiretap channel W∗ is degenerative to main channel W, pm < pw . The key KAsifted has been encoded 
into CWfinal

enc  , and under systematic polar coding, CWfinal
enc = KAsifted . To obtain the key, Bob decodes CWchk1

enc  , 
CWchk2

enc  and KBsifted to get ĈW
final

enc  , Eve decodes CWchk1
enc  , CWchk2

enc  and KEsifted to get ĈW
′f inal

enc  . Because the coor-
dinate subchannels in set A is optimized to Bob but degraded to Eve, the code structure which is determined 
in step 8 is optimized to Bob but degraded to Eve. Hence, with the growth of code length N, the decoding 
error rate of Bob tends to 0 while the decoding error rate of Eve tends to 0.5 (namely, the information in 
the wiretap channel has been compressed to zero). That is to say, limn→∞ Pr(ĈW

final

enc �= CWfinal
enc ) = 0 and 

limn→∞ Pr(ĈW
final

enc = CW ′f inal
enc ) = 0 , which satisfies the reliable communication condition (Eq. 1) and secure 

communication condition (Eq. 5).

Simulation results
To prove the feasibility of PCEP algorithm, we conduct a series of simulation experiment on code rate, reliability 
and security. It should be noticed that the range of pm has been limited to [0, 0.11] because as mentioned in 
“Polar-code-based efficient post-processing algorithm”, only in this range is W∗ degenerative to W. In all simula-
tion experiment, we set FERtarget to 0.1 and PAItarget to 10−7.

Code rate. As shown in Fig. 5, under different code length N, we calculate the code rate. It is observed that 
with the increase of QBER pm of the main channel, the code rate tends to zero. Moreover, except a single point 
(where N = 220 , pm = 0.03 ), under the same QBER pm , the longer the code length is, the higher the code rate 
is. This is in accord with the asymptotic property of polar codes.

Figure 6 shows the ratio of the practical code rate and the theoretical secure code rate. It can be observed that 
with the increase of QBER pm , the ratio decreases to zero. The theoretical secure code rate can be regarded as a 
measurement of the error correcting capability of polar codes, while the practical code rate can be regarded as 
a measurement of the specific requirement for error correcting capability in certain setting. Therefore, the ratio 
can be used to measure the extent to which the requirement can be met - the lower the ratio is, the higher the 
extent is, and hence the better the error correcting performance is. Hence, the lower the ratio is, the higher the 
decoding reliability should be, which is consistent with the simulation result in “Reliability”.

Security: the decoding FER and BER of Eve. According to Eq. (5), the security of PCEP algorithm 
can be measured by the decoding FER and BER of Eve, which is shown in Figs. 7 and 8. It can be observed that 
when QBER pm is small, the decoding FER and BER of Eve well satisfies the security condition Eq. (5) ( FER = 1 , 
BER ∼ 0.5 ), while there is a threshold of QBER beyond which the decoding FER and BER of Eve dramatically 
decrease to zero. Moreover, the longer the code length, the higher the threshold, which coheres with the asymp-
totic property of polar codes.

(21)lim
n→∞

Pr(ĈW
final

enc �= CWfinal
enc ) = 0.

(22)1− h2(pw) = h2(pm).

Figure 5.  Code rate. The ideal polar code rate is the ideal code rate of polar code itself without considering 
wiretap channel. The ideal secure code rate is the ideal code rate of PCEP algorithm under wiretap channel 
model.
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Figure 6.  The ratio of the practical code rate and the theoretical secure code rate.
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Reliability. According to Eq. (1), the reliability of PCEP algorithm can be measured by the decoding FER 
and BER of Bob, which is shown in Figs. 9 and 10. It is observed that the practical decoding FER and BER are 
satisfying under all code lengths shown in Figs. 9 and 10. Besides, as shown in Fig. 9, the maximum FER in the 
simulation is around 1−4 when N = 210 and p = 0.01 . Notice that the TFER has been set to 0.1, hence this target 
is well achieved.

Moreover, under different code lengths, the decoding FER and BER of Bob decrease to zero rapidly with the 
increase of QBER pm . The reason for this counterintuitive phenomenon has been explained in the last paragraph 
in “Code rate”.

Conclusion
In this paper, an efficient QKD post-processing algorithm PCEP which is based on polar codes is proposed. In 
PCEP algorithm, by analyzing the channel capacity of the main channel and the wiretap channel respectively 
under the Wyner’s wiretap channel model, we design a codeword structure of polar codes, so that the error cor-
rection and privacy amplification could be completed synchronously in a single encoding and decoding process. 
That is to say, PCEP algorithm realizes combining these two post-processing steps into one step. Through this, 
PCEP algorithm can reduce the complexity and lower the post-processing delay of QKD systems. This provides 
a new way to develop high-speed QKD systems. To clarify the reliability and security of PCEP algorithm, the 
reliability and security conditions have deen deduced from the perspective of information theory. Simulation 
results show that PCEP algorithm well satisfies the reliable and secure communication conditions.

Received: 23 December 2021; Accepted: 6 May 2022

Figure 9.  The decoding FER of Bob.

Figure 10.  The decoding BER of Bob.
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