
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10684  | https://doi.org/10.1038/s41598-022-14126-9

www.nature.com/scientificreports

Assessment of solar radiation 
resource from the NASA‑POWER 
reanalysis products for tropical 
climates in Ghana towards clean 
energy application
Alfred Dawson Quansah1,2, Felicia Dogbey3, Prince Junior Asilevi4, Patrick Boakye5*, 
Lawrence Darkwah5, Sampson Oduro‑Kwarteng4, Yen Adams Sokama‑Neuyam6 & 
Patrick Mensah7

In order to expand the output of solar power systems for efficient integration into the national grid, 
solar energy resource assessment at site is required. A major impediment however, is the widespread 
scarcity of radiometric measurements, which can be augmented by satellite observation. This paper 
assessed the suitability of satellite‑based solar radiation resource retrieved from the NASA‑POWER 
archives at 0.5◦ × 0.5

◦ spatial resolution over Ghana–West Africa, to develop a long‑term source 
reference. The assessment is based on the criteria of comparison with estimations from sunshine 
duration measurement for 22 synoptic stations. Overall, the satellite‑based data compared well with 
ground‑based estimations by r = 0.6–0.94 ± 0.1. Spatiotemporally, the agreement is strongest over the 
northern half Savannah‑type climate during March–May, and weakest over the southern half Forest‑
type climate during June–August. The assessment provides empirical framework to support solar 
energy utilization in the sub‑region.

Solar energy resource assessment is critical for accurate evaluation of the quantity of incoming solar radiation 
available to develop, install, and operationalize highly efficient solar power  technologies1,2. The task primarily 
involves development of a comprehensive climatological solar radiation and related parameters database at short-
time intervals, an in-depth grasp of the spatiotemporal distribution and correlations, and accurate forecasts to 
ascertain precisely the performance of solar power systems and the technical effect of solar radiation variability 
on national electric grids. However, due to sparse or non-existent solar radiation measurement stations in many 
parts of the world, the gap between installation and performance modeling  widens3–6.

In the last recent decade, retrieving satellite products for solar energy resource assessment has become a state-
of-the-art technique to bridge the gap of insufficient or non-existent solar radiation measurement  stations3,4,7, 
especially as satellite products have the advantage of wide  coverage8–10. Many studies have used satellite-based 
observations to predict solar radiation and develop estimation models especially in areas where insolation meas-
urement stations are completely non-existent, towards efficient power  generation4,8,10–13. However, despite the 
promising potentials of wide-coverage and quick-time earth observations associated with satellite-based datasets, 
a major application challenge immediately confronting the scientific community is resolution and local climate-
specific representation viz. data accuracy. For example,  Dubovik14 and  Kim15 have clearly identified the limitation 
of high-orbit geostationary satellites in capturing surface phenomena at high resolution despite the advantage 
of wide spatial coverage over their Low-Earth Orbit satellite counterparts. Thus generally, wider spatial capture 
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results in poor spatial resolution. Owing to this, reliance on satellite-based observations require synergistic sup-
port from ground data in the form of validation, merging, and  reanalysis14. In this regard,  Brinckmann8 reported 
a comprehensive assessment solar radiation products for Germany, generated from near-real-time satellite data 
retrieved from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard METEOSAT. The study 
involved comparison of the satellite-derived radiation data with measurements from 42 weather stations, and 
merging of the two datasets to develop a high spatial resolution hourly solar radiation repository for Germany. 
 Yeom10 as well, assessed physical models based on imagery derived from the Communication, Ocean, and 
Meteorological Satellite (COMS), to estimate and develop solar energy maps for slops on the Korean peninsula, 
needed to demarcate potential sites for solar power plants. Other studies by  Ghimire4 investigated the suitability 
of satellite-derived solar radiation data for the training of machine learning algorithms to predict solar resource 
for regional assessment.

Over the years, the National Aeronautics and Space Administration (NASA) has made significant efforts to 
improve satellite atmospheric observation data on a global scale, especially tailored to the needs of the renewable 
energy  industry16,17. For example, development of the Surface Meteorological and Solar Energy (SSE) climato-
logical resource database needed by the photovoltaic and renewable energy industries, was especially targeted 
at optimizing electric power from renewable energy systems, and ultimately towards the successful integration 
of the technology into conventional power generation  systems16,17. Currently, under the NASA Science Mis-
sion Directorate Applied Science National Application program, the Prediction of Worldwide Energy Resource 
(POWER) project has been initiated to further improve the SSE database, augment with products retrieved from 
new satellites, and develop forecast models to serve specifically as decision support tools for the energy  sector18,19. 
Due to the global coverage and accessibility, suitability assessment for regional application is needful. Notable 
effort include the report by  Monteiro20 in the assessment of NASA-POWER solar radiation and weather related 
parameters for agricultural application in Brazil. The study found low root mean square error (RMSE) values for 
comparisons with station measurements.  Marzouk21 also assessed NASA-POWER datasets to investigate climate 
change by global warming, compared with the output from of ground-based measurements. Looking forward, the 
NASA-POWER project is expected to expand with strong stakeholder involvement and industry  support16,20–22.

With this background, the objective of this paper is to assess the suitability of the NASA-POWER Global 
solar radiation (GSR) products over Ghana in West Africa, which is expected to provide a comprehensive high 
density network GSR database for a solar resource assessment, as currently no regularized radiometric measure-
ment stations are reported. Firstly, 35 years sunshine duration measurement datasets were used to estimate and 
develop a climatological monthly mean GSR dataset, in order to provide a statistical comparative reference for 
the NASA-POWER climatological GSR datasets. The study will serve a valuable tool to further develop forecast-
ing models for performance enhancement of solar technologies.

Methodology
Geography and climatology of study area. The area of study, Ghana, is on the coastal edge of tropical 
West African, bounded in latitude 4.5° N and 11.5° N and longitude 3.5° W and 1.5° E, and characterized by a 
tropical monsoon climate  system23,24. Figure 1 shows map of the study area indicating the selected twenty two 
(22) sunshine measurement stations distributed across the four main climatological zones and Table 1 summa-
rizes the geographical positions of selected stations.

Atmospheric clarity over the area is closely connected to cloud amount distribution and rainfall activities, 
largely determined by the oscillatory migration of the Inter-Tropical Discontinuity (ITD), accounting for the 
West African Monsoon (WAM)25,26.

Owing to the highly variable spatiotemporal distribution of cloud amount vis-à-vis rainfall activities, result-
ing in contrasting climatic conditions in different parts of the region, the country is partitioned by the Ghana 
Meteorological Agency (GMet) into four main agro-ecological zones namely, the Savannah, Transition, Forest 
and Coastal zones as shown in Fig. 123. As a result, the region experiences an estimated Global solar radia-
tion (GSR) intensity peaks in April–May and then in October–November, with the highest monthly average of 
22  MJm−2  day−1 over the savannah climatic zone and the lowest monthly average of 13  MJm−2  day−1 over the 
forest climatic  zone27.

Research datasets. Ground‑based measurement data. Daily sunshine duration measurement datasets 
(n) spanning 1983–2018 where derived for estimating Global solar radiation (GSR). The measurements were 
taken by the Campbell-Stokes sunshine recorder, mounted at the 22 stations shown in Fig. 1, under unshaded 
conditions to ensure optimum sunlight exposure. The device concentrates sunlight onto a thin strip of sunshine 
card, which causes a burnt line representing the total period in hours during which sunshine intensity exceeds 
120.0  Wm−2 according to World Meteorological Organization (WMO)  recommendations27. The as-received dai-
ly records were quality control checked by ensuring 0 ≤ n ≤ N, where N is the astronomical day length represent-
ing the possible maximum duration of sunshine in hours determined by Eq. 1 from the latitude (ϕ) of the site of 
interest and the solar declination (δ) computed by Eq. 227:

where J represents the number for the Julian day of the year (first January is 1 and second January is 2).

(1)N =
2

15
cos−1

[− tanφ tan δ]

(2)δ = 23.45 sin

[

360o ×
284+ J

365

]
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Figure 1.  Map of the study area showing all twenty two (22) synoptic stations distributed in four main 
climatological zones countrywide. Adapted from  Asilevi27.

Table 1.  Geographical position and elevation for study sites.

Station Latitude (°) Longitude (°) Elevation (m)

Wa 10.05 − 2.50 305.00

Navrongo 10.90 − 1.10 197.00

Bole 9.33 − 2.48 246.94

Tamale 9.42 − 0.85 152.00

Yendi 9.45 − 0.17 157.00

Wenchi 7.75 − 2.10 299.00

Sunyani 7.33 − 2.33 305.00

Kete Krachi 7.82 − 0.33 92.00

Kumasi 6.72 − 1.60 256.00

Sefwi Bekwai 6.20 − 2.33 186.50

Oda 5.93 − 0.98 151.00

Abetifi 6.67 − 0.75 601.00

Koforidua 6.83 − 0.25 199.00

Ho 6.60 0.47 154.00

Akuse 6.10 0.12 107.63

Axim 4.90 − 2.25 71.00

Takoradi 4.88 − 1.77 74.00

Salt Pond 5.20 − 1.67 77.00

Accra 5.60 − 0.17 91.00

Tema 5.62 0.00 79.00

Ada 5.78 0.63 15.29

Akatsi 6.12 0.80 66.48
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NASA‑POWER Global solar radiation (GSR) reanalysis data. The satellite-based Global solar radiation (GSR) 
dataset for specific longitudes and latitudes of all 22 stations, assessed in the study, were retrieved from the 
National Aeronautics and Space Administration-Prediction of Worldwide Energy Resources (NASA-POWER) 
reanalysis repository based on the Modern Era Retrospective-Analysis for Research and Applications (MERRA-
2) assimilation model products, developed from Surface Radiation Budget, and spanning equal study period 
(1983–2018). The datasets are accessible on a daily and monthly temporal resolution scales at 0.5° × 0.5° spatial 
coverage via a user friendly web-based mapping portal: https:// power. larc. nasa. gov/ data- access- viewer/17. The 
advantage of the NASA-POWER reanalysis GSR, is the wide spatial coverage, and thus can be used to develop a 
high spatial resolution of solar radiation across the study area.

The POWER Project analyzes, synthesizes and makes available surface radiation related parameters on a 
global scale, primarily from the World Climate Research Programme (WCRP), Global Energy and Water cycle 
Experiment (GEWEX), Surface Radiation Budget (SRB) project (Version 2.9), the Clouds and the Earth’s Radi-
ant Energy System (CERES), FLASHFlux (Fast Longwave and Shortwave Radiative Fluxes from CERES and 
MODIS), and the Global Modeling and Assimilation Office (GMAO)17. Table 2 shows the source satellites and 
the corresponding temporal coverage used in the development of NASA-POWER GSR products.

The monthly average NASA-POWER all-sky shortwave surface radiation reanalysis products are statistically 
validated, showing reasonable biases of − 6.6–13%, against a global network of surface radiation measurement 
metadata in an integrated database from the Baseline Surface Radiation Network (BSRN) of the World Radiation 
Monitoring Center (WRMC)20,22. The datasets are widely used in renewable energy  application16,22, agricultural 
modelling of crop  yields28, crop simulation  exercises29, and plant disease  modelling30.

Furthermore, in order to assess the suitability of the NASA-POWER surface solar radiation products for the 
study area, a synthetic sunshine duration based Global solar radiation (GSR) is developed from the Angstrom-
Prescott sunshine duration model by Eq. 3 for  comparisons27.

were  Ho  (kWhm−2  day−1) is the daily extraterrestrial solar radiation on an horizontal surface, n is the daily sun-
shine duration measurements obtained from the Ghana Meteorological Agency (GMet), and N is the maximum 
possible daily sunshine duration or the day length in hours determined by Eq. 1. Generalized regression constants 
a = 0.25 and b = 0.5 for the study area were determined by  Asilevi27 from experimental radiometric data based 
on correlation regression analysis between atmospheric clarity index (GSR/Ho) and atmospheric cloudlessness 
index (n/N), for estimating solar radiation over the study area, and compared with other satellite data retrieved 
from the National Renewable Energy Laboratory (NREL) and the German Aerospace Centre (DLR)27.  Ho was 
calculated from astronomical parameters by Eq. 4:

where  Gsc is the Solar constant in  MJm−2  min−1,  dr is the relative Earth–Sun distance in meters (m), ωs is the sunset 
hour angle (angular distance between the meridian of the observer and the meridian whose plane contains the 
sun), δ is the angle of declination in degrees (°) and ϕ is the local latitude. A detailed presentation of the calcula-
tion was published in a previous  work27.

Statistical assessment analysis. For the purpose of assessing the NASA-POWER derived monthly mean 
GSR  (GSRn) datasets in comparison with the estimated Global Solar Radiation  (GSRe) datasets used in this 
paper, the following deviation and correlation methods in Eqs. 5–11, each showing a complimentary result were 
used: Standard deviation ( σ ), residual error (RE), Root mean square error (RMSE), Mean bias error (MBE), 
Mean percentage error (MPE), Pearson’s correlation coefficient (r), and Willmott index of agreement (d) for 
n  observations31–35.  GSRe,  GSRn, and RE represent the estimated GSR, NASA-POWER GSR, and the residual 
error between  GSRe and  GSRn respectively. A positive RE indicates that sunshine-based estimated GSR is larger 
than the NASA-POWER reanalysis dataset, while a negative RE indicates that sunshine-based estimated GSR is 
smaller than the NASA-POWER reanalysis dataset. The arithmetic mean of any dataset is µ.

The standard deviation ( σ ) was used to check the upper and lower limits of distribution around the mean 
deviations between  GSRe and  GSRn in order to ascertain violations between both  datasets33. The RMSE is a stand-
ard statistical metric to quantify error margins in meteorology and climate research studies, and by definition is 
always positive, representing zero in the ideal case, plus a smaller value signifying a good marginal  deviation31. 
The MBE is a good indicator for under-or overestimation in observations, with MBE values closest to zero being 
desirable. The MPE further indicates the percentage deviation between the  GSRe and  GSRn individual  datasets35.

(3)GSR =

[

a+ b
n

N

]

Ho

(4)H0 =
24 · 60

π
· Gsc · dr[ωs sin ϕ sin δ + cosϕ cos δ sinωs]

Table 2.  Satellites providing the NASA-POWER GSR  datasets20.

Satellite Time coverage

GEWEX SRB R4-IP January 1, 1983 to December 31, 2000

CERES SYN1deg January 1, 2001 to few months within

FLASHFlux 4 January 1, 2008 to near-real time

https://power.larc.nasa.gov/data-access-viewer/
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Further, as with other statistical studies in  meteorology36, the Pearson’s correlation coefficient (r) was used 
to quantify the strength of correlation between  GSRe and  GSRn. Finally, the Willmott index of agreement (d) 
commonly used in meteorological literature computed from Eq. 7 is used to assess the degree of  GSRe/GSRn 
 agreement34.

Results and discussions
Comparison of estimated GSR and NASA‑POWER satellite‑based GSR. This section compared 
the time and space variations of climatological estimated monthly mean Global Solar Radiation  (GSRe) and 
the NASA-POWER Global Solar Radiation  (GSRn) datasets across the study area, in order to ascertain simi-
larities. From Fig. 2, it is seen that both  GSRe (Fig. 2a) and  GSRn (Fig. 2b) show similarity is spatiotemporal 
distribution countrywide. That is peak insolation between February and May  (GSRe = 5.5–5.7  kWhm−2  day−1; 
 GSRn = 5.3–5.7  kWhm−2  day−1) with the highest over the Savannah climatic zone, and lowest insolation during 
the June–September season  (GSRe = 4.4–4.9  kWhm−2  day−1;  GSRn = 4.4–4.7  kWhm−2  day−1), the Forest climatic 

(5)σ =

√

√

√

√

1

n− 1

n
∑

i=1

(GSR− µ)2

(6)RE = GSRe − GSRn
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√

√

√

√
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n

n
∑

i=1

(RE)2

(8)MBE =
1

n

n
∑

i=1

(RE)

(9)MPE =
1

n

n
∑

i=1

(

RE

GSRe

× 100%

)
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i=1 (GSRe − σe)(GSRn − σn)

(n− 1)σeσn

(11)d = 1−

[
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i=1 (GSRe − GSRn)
2
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2

]

Figure 2.  Space and time distribution of (a) estimated monthly mean Global Solar Radiation  (GSRe) and (b) 
NASA-POWER derived monthly mean GSR  (GSRn).
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zone receiving the least in both datasets. Therefore even with slight variations, both datasets show significantly 
very good spatiotemporal arrangements countrywide. However on a daily scale comparison, relatively higher 
variations may be expected largely due to the complexities in atmospheric dynamics which have not been well 
parameterized in the observation satellite  sensor14,15.

In a further comparison, Fig. 3 shows the total annual GSR and daily maximum-minimum GSR for both 
datasets in 2018 at four (4) synoptic stations (Accra, Kumasi, Kete Krachi, and Wa) representative of the Coastal, 
Forest, Transition, and Savannah climatic zones respectively. As seen in Fig. 3a, the variation range in annual 
GSR for both datasets for all four stations is 33.1–109  kWhm−2  day−1, with only the Forest climatic zone showing 
slight over-estimation in the satellite data.

Again with Fig. 3b, the variation range in maximum daily GSR for both datasets for all four stations is 
0.09–0.71  kWhm−2  day−1 with similar over-estimation situation for the Forest climatic zone. Meanwhile, the 
variation range in minimum daily GSR all showed under-estimation in the satellite datasets with the range of 
0.57–0.9  kWhm−2  day−1. Under normal circumstances, satellite data rarely shows any exactness with ground 
measurements. However, considering that the reference GSR in this study was estimated and not a direct meas-
urement, such slight variations are expected. For example,  Sayago18 observed in comparing daily solar radia-
tion retrieved from the NASA-POWER archives with ground measurements in Spain that, high coefficient of 
correlations was mainly associated with high solar radiation especially on clear days, and the opposite is true. 
Comparatively in this study, the best similarities are seen with the stations and seasons where high insolation 
occurs.  Monteiro20 also reported good similarity of correlation coefficient and index of agreement to be 0.71 
and 0.92 respectively when the NASA-POWER solar radiation datasets were compared with ground measure-
ments over Brazil.

Meanwhile, in comparison with other studies which assessed a broader range of parameters including relative 
humidity, precipitation, and wind speeds, it is apparent that the NASA-POWER datasets show more consistency 
and accuracy with solar radiation related  parameters21.

Statistical analysis of the  GSRe/GSRn pairwise datasets. This section discussed various statistical 
approaches targeted at quantifying the strength of similarity between the  GSRe/GSRn pairwise datasets. Fig-
ure 4a and b show the boxplots for climatological monthly mean seasonal  GSRe and  GSRn datasets respectively. 
It is evident from the plots that, both  GSRe and  GSRn show semblance in inter-seasonal variation but some 
significant intra-seasonal variations. Inter-seasonally, both  GSRe (µ = 5.135 ± 0.08   kWhm−2   day−1) and  GSRn 
(µ = 5.137 ± 0.07  kWhm−2  day−1) show maximum insolation of 6.1  kWhm−2  day−1 and 6.2  kWhm−2  day−1 respec-
tively during March–April–May (MAM) season hence only 0.78% deviation. For both datasets, peak GSR is in 
MAM. This inter-seasonal variation is obviously related to the annual migration of the ITCZ discussed in under 

Figure 3.  Comparing estimated and NASA-POWER GSR in 2018 on (a) annual total and (b) daily scales at 
four stations (Accra, Kumasi, Kete Krachi, and Wa) representing the Coastal, Forest, Transition, and Savannah 
climatic zones respectively.
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the spatiotemporal  comparison23. The seasonal variation in GSR distribution across the study area has been 
discussed by  Asilevi27.

Intra-seasonally, the  GSRe and  GSRn datasets show remarkable differences in median and standard devia-
tion. For example, each seasonal set in the  GSRn dataset show comparatively smaller interquartile ranges (IQR) 
of DJF = 0.44, MAM = 0.3, JJA = 0.31, and SON = 0.44 suggesting stronger relation within the satellite data than 
seasonal IQR in the  GSRe dataset of DJF = 0.5, MAM = 0.4, JJA = 0.62, and SON = 0.53. Again, the  GSRn dataset 
show relatively lower medians compared with the  GSRe datasets except of the DJF season, suggesting frequent 
under-estimations in the satellite data. These may be due to resolution and local climate specificity challenges 
with satellite observation data addressed by  Dubovik14 and  Kim15. Indeed similar variations were reported in the 
previous study by Asilevi et al.27 comparing estimated monthly mean GSR over Ghana with GSR data retrieved 
from the German Aerospace Centre (DLR) at a spatial resolution of 10 km by 10 km.

To further analyze the pairwise datasets, the climatological residual errors (RE) between  GSRe and  GSRn 
datasets was calculated based on Eq. 4. The time and space variations of RE is shown in Fig. 5a. The absolute RE 
range in the pairwise datasets is 0.002–1.06  kWhm−2  day−1, with 51.1% positive REs and 48.9% negative REs 
indicating more higher  GSRe against  GSRn as depicted in Fig. 5a. The lowest absolute RE is in the northern half 
Savannah climatic zone during the MAM season whiles the highest is in the southern half Coastal climatic zone 
during the SON season, which can be attributed to the high and low atmospheric clarity during the MAM and 
SON seasons respectively, and the consequential high and low insolation in the respective  seasons27. Addition-
ally, the control chart in Fig. 5b shows that ~ 73% of station-by-station REs agree with the standard deviation 
of ± 0.25 around the mean RE, while only 27% is out of standard deviation range. This further demonstrates 
close semblance in the datasets.

Figure 6 further shows an interesting trend in the Pearson’s correlation coefficients (r) comparing  GSRe and 
 GSRn with significant p values < 0.05. As seen, r decreases towards the coastal south of the study area where 
r values (0.59–0.75) are predominantly below the mean r = 0.83. Similar trend was reported in the previous 
comparison with the GSR data retrieved from the German Aerospace Centre (DLR) by  Asilevi27. This has been 
attributed to the complex ocean–atmosphere–land interactions over the southern half, and the consequential 
frequent convective turbulences characterizing coastal  tropics37. Undoubtedly, these conditions create significant 
satellite signal retrieval challenges. On the contrary, the northern half characterized by the highest atmospheric 
clarity indices of ~ 0.6 have a more stable atmosphere dynamics.

Table 3 summarizes all the statistical indices used in the comparisons. On the overall, the absolute ranges of 
RMSE = 0.13–0.46, MBE = 0.01–0.3, MPE = 1.11–6.34, r = 0.59–0.94, and d = 0.95–0.99 for all synoptic stations.

Respectively in the order of Savannah, Transition, Forest, and Coastal zones, the mean absolute RMSE = 0.19, 
0.24, 0.29, and 0.3, MBE = 0.04, 0.07, 0.15, and 0.13, MPE = 0.77, 1.39, 3.04, and 2.38, r = 0.88, 0.89, 0.84, and 0.69, 
and d = 0.99, 0.99, 0.98, and 0.97, depicting higher RMSE, MBE, and MPE over the southern half and lower over 
the northern half, while r and d are higher over the northern half and lower over the southern half.

Conclusion
A statistical suitability assessment of the National Aeronautics and Space Administration—Prediction of World-
wide Energy Resources (NASA-POWER) satellite-derived solar radiation archives is presented. The NASA-
POWER climatological datasets were compared with measured sunshine duration based estimated Global solar 
radiation (GSR) for 22 synoptic stations across four climatic zones in Ghana–West Africa. The results reveal that, 

Figure 4.  Boxplots showing seasonal variation in (a) estimated Global Solar Radiation  (GSRe) and (b) NASA-
POWER derived monthly mean GSR  (GSRn). Seasons are December–January–February (DJF), March–April–
May (MAM), June–July–August (JJA), and September–October–November (SON).
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the NASA-POWER monthly mean GSR  (GSRn) ranging 3.69–6.15 ± 0.07  kWhm−2  day−1 showed good statisti-
cal semblance with sunshine duration based estimated GSR  (GSRe) ranging 3.68–6.1 ± 0.08  kWhm−2  day−1 by 
correlation coefficient = 0.59–0.94, rmse = 0.13–0.46 and Willmott’s index of agreement = 0.95–0.99. Further-
more, both agree in zonal and seasonal GSR intensity distribution patterns with high and low zonal ranges 
in the Savanna  (GSRn = 4.46–6.11 ± 0.53  kWhm−2  day−1,  GSRe = 4.77–5.98 ± 0.4  kWhm−2  day−1) and Forest 
 (GSRn = 4.36–5.66 ± 0.48  kWhm−2  day−1,  GSRe = 4.11–5.57 ± 0.5  kWhm−2  day−1) respectively, and the peak and 
low seasonal ranges in March–May  (GSRn = 6. 1  kWhm−2  day−1,  GSRe = 6  kWhm−2  day−1) and June–August 
 (GSRn = 5.1  kWhm−2  day−1,  GSRe = 5.4  kWhm−2  day−1) respectively. It is expected that, as the results have shown 
good agreement between the estimated and satellite derived datasets, the NASA-POWER archives can be used 
extensively to develop a comprehensive solar energy resource assessment for the effective application of solar 

Figure 5.  (a) Color plot depicting the climatological time and space variations of RE in the climatological 
 GSRe/GSRn pairwise datasets and (b) control chart depicting the station-by-station variation in mean 
climatological RE within the lower control limit (LCL) and upper control limit (UCL) of the standard deviation 
of RE.

Figure 6.  Station-by-station Pearson’s correlation coefficients (r) and their corresponding p values for the 
climatological  GSRe/GSRn pairwise datasets.
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power systems and integration into the national grid. The results hereby provides empirical framework to develop 
a support system for the solar energy resource assessment task in the sub-region.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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