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Numerical renormalization group 
study of the Loschmidt echo 
in Kondo systems
Tomasz Ślusarski*, Kacper Wrześniewski & Ireneusz Weymann*

We study the dynamical properties of the one-channel and two-channel spin-1/2 Kondo models after 
quenching in Hamiltonian variables. Eigen spectrum of the initial and final Hamiltonians is calculated 
by using the numerical renormalization group method implemented within the matrix product states 
formalism. We consider multiple quench protocols in the considered Kondo systems, also in the 
presence of external magnetic field of different intensities. The main emphasis is put on the analysis of 
the behavior of the Loschmidt echo L(t), which measures the ability of the system’s revival to its initial 
state after a quench. We show that the decay of the Loschmidt echo strongly depends on the type 
of quench and the ground state of the system. For the one-channel Kondo model, we show that L(t) 
decays as, L(t) ∼ (t · T

K
)−1.4 , where T

K
 is the Kondo temperature, while for the two-channel Kondo 

model, we demonstrate that the decay is slower and given by L(t) ∼ (t · T
K
)−0.7 . In addition, we also 

determine the dynamical behavior of the impurity’s magnetization, which sheds light on identification 
of the relevant time scales in the system’s dynamics.

Dynamical properties of quantum impurity systems are of particular interest in recent years due to rapid devel-
opment of spintronics and, in general, nanoscience 1. Tracking the behavior of impurity as a function of time is 
crucial in the development of real systems relying on stabilization, manipulation and control of local degrees of 
freedom 2, such as (pseudo)spin or charge, upon external impulses or other environmental factors. The knowledge 
of the system’s relevant timescales and its dynamical behavior is also important for studying electronic transport 
through the nanostructures 3, 4. Moreover, the insight into dynamical processes is especially interesting from 
pure physical point of view, concerning the understanding of mechanisms of various phenomena, such as the 
formation of correlated  states5–11, dynamical phase transitions 12, effects of decoherence and dissipation 13 or 
even the time crystals 14.

A principal example of a quantum impurity system in condensed matter and nanoscience is the Kondo 
 system15, consisting of a localized magnetic moment coupled to metallic continuum of states. At sufficiently low 
temperatures, the spin-flip scattering of conduction electrons at the impurity’s site results in the formation of a 
correlated Kondo state, in which the magnetic moment is  screened16. The electronic and transport properties of 
such system were initially explained using the effective low-energy bulk Kondo model 15, and then followed by the 
Wilson’s numerical renormalization group (NRG) method, allowing for a fully nonperturbative treatment 17, 18. 
The NRG method was later extended to the time domain 19–22 enabling the examination of evolution of electronic 
correlations and generally, nonequilibrium dynamics, which have recently become a very active field of interest.

The quantum impurity models are also relevant in the context of various artificial nanostructures, such as 
quantum dots or molecules, coupled to external leads, the behavior of which, in appropriate parameter space, 
reveals the Kondo physics. 23–25 Advanced nanofabrication techniques enable the implementation of devices in 
desired configuration or geometry, and with preferable number of subparts, such as dots or leads 26–32. This allows 
one to study the interesting local properties much more easily than in the case of bulk materials, where it is usu-
ally harder to decouple distinguished subsystem from large number of degrees of freedom or to design desired 
number of screening channels. Because the manipulation and tuning of local physical and chemical properties 
is more accessible in the case of such nanosystems 27, they could serve as a good basis to study general physical 
behavior, but also as a simulation of more complicated systems 33.

In this paper we in particular perform the numerical analysis of the quantum quench dynamics of the 
one-channel and two-channel Kondo  models34. For this purpose, we employ the time-dependent numerical 
renormalization group (tNRG)  approach19–21, implemented in the matrix product state  formalism22, 35. More 
specifically, the one-channel Kondo model (1CK) effectively describes a single spin one-half S = 1/2 impurity 
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in bulk material or connected to external electronic reservoir, dynamical mean-field lattice models mapped on 
impurity model 18, adatoms on surfaces 36, 37, qubit in environment 38, 39, etc. On the other hand, multi-channel 
(two-channel in our case, 2CK) Kondo model describes single impurity connected to multiple independent 
bands 34, 40, 41 or could be effectively used to describe multiple impurity systems 42–48. Mapping of 1CK model 
in the presence of external periodic electric field also results in an effective 2CK model 49. Usually, one-channel 
Kondo model exhibits Fermi liquid behavior, with typical energy scale defined by the Kondo temperature TK
16. One the other hand, in the two-channel Kondo model there could be naturally more energy scales 34, 45, and 
exotic non-Fermi liquid behavior near critical points due to overscreening effects may emerge. Furthermore, if 
the channel symmetry in 2CK is broken, quantum phase transitions could occur 50.

Quantum quenches are possible way to change the Hamiltonian in time resulting in modification of original 
electronic structure and the occurrence of dynamics between the initial and final Hamiltonians 21. The goal of the 
present work is to shed more light onto the dynamical properties of S = 1/2 impurity exchange-coupled to one 
or two conduction channels, as schematically illustrated in Fig. 1. In particular, we determine the time-evolution 
of the Loschmidt echo as well as the expectation value of the impurity’s spin, following quenches performed in 
the exchange coupling to external reservoirs, both in the absence and presence of magnetic field. Our numerical 
analysis indicates that the decay of the Loschmidt echo strongly depends on the type of quench and the ground 
state of the system, while the behavior of the impurity’s magnetization helps in identification of the relevant time 
scales in the system’s dynamics.

Results
The general schematic of the studied system is shown in Fig. 1. It consists of a spin-1/2 impurity exchange-
coupled to two screening reservoirs through the couplings J1 and J2 , respectively. The Hamiltonian of the system 
is given by

where c†
αkσ

 ( cαkσ ) denotes the creation (annihilation) operator of an electron with momentum k , spin σ and 
energy εαkσ in channel α . Jα denotes the exchange coupling between the impurity’s spin S and the conduction 
electrons in the channel α described by the respective field operators ψ†

ασ , while σ stands for the vector of Pauli 
spin matrices. Finally, the last term takes into account the Zeeman splitting, where Bz is the external magnetic 
field applied locally to the impurity and expressed in units of gµB ≡ 1 , while Sz describes the z-th component 
of the impurity’s spin.

We are interested in studying the dynamics of the system after a sudden quench (at time t = 0 ) in the initial 
Hamiltonian H0 , as described by

where θ(t) is the Heaviside step function. It is important to note that both initial ( H0 ) and final Hamiltonians (H) 
are in fact given by Eq. (1), the only difference is associated with a sudden change of model parameters, which 
happens at t = 0 . An important quantity describing the ability of the system to depart from its initial state after 
quenching is the Loschmidt echo, which is defined as 12, 51–53,

Here, |ψ0� denotes the initial state, which is taken as the ground state of the Hamiltonian H0 , and then time-
evolved according to the final Hamiltonian H. We note that in the case of a degenerate ground state (as in the case 
in the absence of magnetic field), an appropriate linear combination of states is taken as the initial state for time 
evolution. In fact, the form of evolution and decay of the Loschmidt echo gives an information about changing 
(in time) of fidelity of the final state with respect to the initial one. 12 For relatively weak quenches, when the 
system is being pushed to final state not so distant from its initial state, one expects that the echo function will 
be close to 1 in short time scales. In the opposite case, for large quenches, the echo function should more rapidly 
decay, meaning that system is getting far away from its initial state. In the following we examine the behavior of 
the Loschmidt echo in the case of (i) one-channel Kondo model ( J1 ≡ J , J2 = 0 ) and (ii) two-channel Kondo 
model (finite J1 and J2 ). Let us start with the former case.

(1)H =
∑
αkσ

εαkσ c
†
αkσ

cαkσ +
1

2

∑
ασσ ′

JαSψ
†
ασσ σσ ′ψασ ′ + BzSz ,

(2)H(t) = θ(−t)H0 + θ(t)H ,

(3)L(t) = |�ψ0|ψ(t)�|2 = |�ψ0|e
−iHt |ψ0�|

2.

Figure 1.  Schematic of a spin-1/2 magnetic impurity coupled to two screening channels via effective exchange 
interaction Jα , where α = 1 ( α = 2 ) for the first (second) channel.
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Quench dynamics in the case of one-channel Kondo model. In Fig. 2 we present the Loschmidt 
echo for quench in the coupling strength J1 ≡ J , when J2 = 0 , starting from J = 0 , which corresponds to a 
decoupled system, to different values of J, as listed in the legend. In this setup we are able to explore the dynamics 
of the system when the Kondo correlations set in. The figure was calculated by assuming the band discretization 
parameter � = 1.3 , which assures that the dependence of L(t) is sufficiently smooth. (For larger values of � some 
artifacts due to discretization may be revealed, however, the general behavior is the same). Generally, in all the 
cases the Loschmidt echo is monotonically dropping to 0 in sufficiently long time scales, and for increasing value 
of final J, L(t) is decaying faster.

In the case of the one-channel Kondo model there is only one energy scale associated with the Kondo correla-
tions—the Kondo temperature TK , and the corresponding time scale is tK = 1/TK . This time scale can be clearly 
seen in Fig. 2a, where lowering of J results in a decrease of TK and, thus, in an increase of tK . In the following we 
will use the value of J = 0.2 as a reference one in further analysis. For J = 0.2 , we find TK ≈ 4 · 10−5 , as estimated 
from the halfwidth at half maximum of the composite fermion operator spectral function. One can see that for 
our reference case the echo function starts to decay rapidly in short time scales, and as the time elapses the decay 
rate drops significantly. For time t before Kondo time tK ≈ 2.5 · 104 , the dependence of L(t) is quite smooth and 
resembles a rapidly decaying polynomial function 53, whereas for times larger than tK , the decay of L(t) slows 
down. (Note the logarithmic time scale in Fig. 2). A similar dependence is obtained for different values of final 
J. The only difference is the time needed to obtain comparable drop of the echo function, what is a consequence 
of the fact that for smaller quenches the system needs longer time to form fully correlated Kondo singlet state.

The similarity between different curves presented in Fig. 2a suggests a universality of L(t). This is explicitly 
demonstrated in Fig. 2b, which shows that the Loschmidt echo is a universal function of t · TK in the long 
time limit t · TK ≫ 1 , corresponding to the low energy fixed point of the Kondo model, i.e., to the Kondo 
regime. Moreover, we numerically estimate the dependence of the Loschmidt echo on time and find that, 
L(t) ∼ (t · TK )

−1.4 , for t · TK ≫ 1 , see the inset of Fig. 2b. It is interesting to note that a similar algebraic depend-
ence, but with a different exponent, have been predicted for interacting resonant level  model54.

To provide more complete picture, we have also analyzed the energy dependence of the work distribution 
W(ω) , which is defined  as55
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Figure 2.  (a) The Loschmidt echo L(t) for quantum quench in the coupling strength J1 ≡ J , starting from J = 0 
to the value shown in the legend, while J2 = 0 . (b) The Loschmidt echo plotted vs time rescaled with the Kondo 
temperature TK determined from the halfwidth at half maximum of the impurity’s spectral function. The inset 
presents the universal behavior for t · TK > 1 , where L(t) ∼ (t · TK )

−1.4 . We have used the following NRG 
parameters: number of states kept at each iteration NK = 2048 and the band discretizaton parameter � = 1.3 , 
while J is expressed in terms of band halfwidth D ≡ 1.
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where |ψn� is the eigenstate of the final Hamiltonian with the corresponding eigenenergy En , while E0 denotes 
the ground state energy of the initial Hamiltonian. The work distribution is closely related to the amplitude of 
the Loschmidt echo through the Fourier transform. We have computed W(ω) by collecting the data in logarith-
mic bins with respect to the zero energy. Such discrete data have been then broadened to obtain a continuous 
function, as in standard NRG calculations of correlation  functions56. The work distribution, for the same type of 
quench as shown in Fig. 2, is displayed in Fig. 3. On the other hand, the inset presents W(ω) · TK plotted vs ω/TK , 
where a collapse of all the curves onto a single one can be observed. As can be seen, the work distribution exhibits 
a maximum at low energies and then decreases with energy as W(ω) ∼ ω−0.5 till ω ≈ TK . For larger energies, 
ω > TK , the slope of W(ω) is changed to W(ω) ∼ ω−1.5 . Thus, the dependence of rescaled work distribution 
W(ω) · TK clearly shows a universal behavior on ω/TK , similar to the Loschmidt echo.

Let us now analyze the dynamics of the system in the presence of an external magnetic field. In the case 
of finite magnetic field a new energy scale occurs associated with external magnetic field Bz 29, with the cor-
responding time tB = 1/Bz . The behavior of the system depends then on the ratio of Bz and TK . Note that Bz 
corresponds directly to the Zeeman energy, cf. Eq. (1). In Fig. 4 we present the evolution of the Loschmidt echo 
and the expectation value of the impurity’s spin Sz(t) for the quench performed in the coupling strength J1 ≡ J , 
with J2 = 0 , assuming that magnetic field Bz = 4 · 10−5 is applied to the system. The value of the field is equal 
to the Kondo temperature for J = 0.2 , thus the case of J > 0.2 corresponds to TK > Bz , while the case of J < 0.2 
displays the situation when the magnetic field is larger than the Kondo energy scale.

For large values of coupling J > 0.2 , one can see that the Loschmidt echo exhibits the dependence as if in the 
absence of magnetic field, cf. Figs. 2a and 4a. This is because TK ≫ Bz and, consequently, tB ≫ tK . The situation 
changes when TK is decreased and becomes of the order of Bz , which happens for values of final J very close to 
J = 0.2 . Then, the exchange coupling term (responsible for the Kondo correlations) competes with the Zeeman 
splitting term, which tends to suppress and split the Kondo peak. Because of that, the Loschmidt echo looses 
its universal time-dependence, see the inset in Fig. 4a, and its drop becomes much slower as the time increases. 
Eventually, for J < 0.2 , the decay of the Loschmidt echo is logarithmic in the long time limit.

The time scale tB associated with the magnetic field is also clearly visible in the time dependence of Sz(t) , 
which is shown in Fig. 4b. In the case of Bz = 0 , the local magnetic moment of the impurity is equal to zero for the 
whole time domain for any value of quench in J. Adding a nonzero magnetic field Bz polarizes the impurity’s spin 
and produces a nonzero value of average magnetic moment at the initial time, i.e. when the system is decoupled 
( J = 0 ), with Sz(0) = −1/2 . Upon subsequent turning on of the coupling between the impurity and conduction 
electrons, the value of Sz(t) increases due to the growing Kondo correlations in the system.

For J < 0.2 , the spin expectation value exhibits a small local maximum at time tB , before establishing final 
nonzero value. On the other hand, for J ≈ 0.2 , Sz(t) displays the largest local maximum, which is then followed 
by a small minimum, until the spin stabilizes its value at similar time scale as in the case of J < 0.2 . This behav-
ior can be explained as follows. The two Hamiltonian terms (Kondo coupling and Zeeman term) are now of 
equal strength and are competing with each other. Thus, the impurity’s spin takes a value in-between two limit-
ing cases: Sz = 0 in the strong Kondo regime and Sz = −1/2 when only the magnetic field is present ( J = 0 ). 
Such competition and indeterminacy of the final state usually results in oscillations of the corresponding echo 
function. Consequently, the nonmonotonic dependence of Sz(t) (local maximum followed by a local minimum 
before the flattening of function takes place) results from the existence of two competing time scales tK and tB , 
corresponding to TK and TB , which are of comparable order.

(4)W(ω) =
∑
n

δ(ω − En + E0)|�ψn|ψ0�|
2,
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Figure 3.  The work distribution calculated for quantum quench in the coupling strength J1 ≡ J , starting 
from J = 0 to the value shown in the legend, while J2 = 0 . The inset presents the rescaled work distribution 
W(ω) · TK plotted as a function of ω/TK . We find the scaling W(ω) ∼ ω−0.5 for ω < TK and W(ω) ∼ ω−1.5 for 
ω > TK . The other parameters are the same as in Fig. 2.
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The growth of Sz(t) up to time tK is due to the development of the Kondo correlations in the system. For longer 
times t � tK , there is a local extremum (corresponding to change of slope of the Loschmidt echo), followed by 
flattening of functions when the final correlated state is obtained and local observables are fixed at some values. 
The local maxima are pinned at time corresponding to tB , what reveals the effect of magnetic field. When the 
Kondo correlations are stronger than the Zeeman energy, i.e. for J > 0.2 , the Sz(t) function is increasing more 
rapidly reaching final value near 0 at time of the order of tK and the local maximum visible for J � 0.2 is vanish-
ing since the scale tB is getting irrelevant. Only in these cases the vanishing local maxima are shifted to smaller 
time scales, emphasizing the crucial role of increased strength of Kondo coupling, leading to faster and more 
effective formation of the fully screened Kondo singlet state.

Figure 5a presents the Loschmidt echo for quench in the coupling strength from J = 0 to J = 0.2 for dif-
ferent values of applied magnetic field Bz (each being kept constant during separate quenches). For magnetic 
fields smaller than the Kondo temperature corresponding to J = 0.2 , Bz < TK , the echo functions drop to zero, 
meaning that magnetic field hardly affects the dynamical behavior of the system. This is because the time scale 
associated with magnetic field is much larger than tK and is thus almost irrelevant. When the two time scales 
are of the same order, which happens for Bz ≈ TK , a slow-down of the decay of Loschmidt echo is observed and 
L(t) takes nonzero values in the considered time scale. Furthermore, for larger values of Bz , the echo functions 
are decaying much slower due to the dominant role of magnetic field and the fact that tB ≪ tK . In fact, for very 
large Bz , the Loschmidt echo becomes approximately flat and very weakly decays with time. This implies that the 
quench in J does not overcome the effect of large magnetic field and the impact of quenching is effectively much 
reduced. We note that by the final value theorem one can relate the long time behavior of the Loschmidt echo 
L(t → ∞) to W(ω → 0) , which is negligible in the considered cases. Consequently, it implies that although the 
decay of L(t) is much slowed down, the echo function approaches zero in the long time limit, L(t → ∞) → 0.

The corresponding time-evolution of the spin expectation value is displayed in Fig. 5b. In the behavior of 
Sz(t) one can nicely see the growth of tB as the magnetic field is reduced, which is revealed in the dependence of 
the local maximum visible in Sz(t) on Bz . When, however, tB > tK , the position of the maximum saturates and 
stays approximately at tK . Moreover, decreasing the value of magnetic field results in lowering of the impurity’s 
magnetization. Once Bz < TK , i.e. tB > tK , Sz(t) becomes almost fully suppressed due to the development of the 
Kondo singlet state in the long time limit.

Quench dynamics in the case of two-channel Kondo model. Let us now consider the case of mag-
netic impurity coupled to two conducting channels, i.e. when both J1 and J2 are finite. Figure 6 presents the 

Figure 4.  (a) The Loschmidt echo L(t) and (b) the evolution of the expectation value of the impurity’s spin 
Sz(t) for the quench in J1 ≡ J starting from 0 to value in given in the legend, with J2 = 0 and assuming a finite 
magnetic field Bz = 4 · 10−5 applied to the system. The inset in (a) presents L(t) plotted as a function of t · TK . 
The other parameters are the same as in Fig. 2.
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time evolution of the Loschmidt echo for quench performed in J1 = J2 ≡ J starting from J = 0 . In other words, 
the system evolves from the initial state of decoupled impurity to the final state of impurity equally coupled to 
two conduction bands. Such final state is an example of a non-Fermi liquid state, in which two channels try to 
screen the spin giving rise to an exotic ground state of the system. The calculations in the case of the two-channel 
Kondo model have been performed for NK = 14000 and � = 1.6 . We note that some small oscillations visible 
in L(t) are exclusively due to artifacts associated with discretization of conduction band. Similarly to the single-
channel case studied in previous section, the decay of the Loschmidt echo depends on the magnitude of J, and 
L(t) becomes suppressed at earlier times as J grows. This is quite intuitive, since the system needs more time to 
develop the Kondo state when the exchange couplings are small. Nevertheless, once such state is formed, L(t) 
drops to zero indicating that the final state is orthogonal to the initial one. Interestingly, when one rescales the 
Loschmidt echo with TK = D exp(−1/Jρ) , it can be seen that for t > 1/TK the curves collapse onto a single 
curve, demonstrating a universal behavior. Moreover, contrary to the single-channel case displayed in Fig. 2, 
we now find that the decay of the Loschmidt echo is slowed down and can be described by, L(t) ∼ (t · TK )

−0.7 , 
see the inset of Fig. 6b. One can also search for a universality in the behavior of the work distribution, which is 
presented in Fig. 7. When rescaled with the Kondo temperature, W(ω) indeed exhibits a universal behavior. In 
particular, from our numerical analysis we find the scaling, W(ω) ∼ ω−0.6 , for ω < TK and W(ω) ∼ ω−1.3 , for 
ω > TK , see the inset of Fig. 7.

Let us now consider the dynamical behavior of the system in the presence of external magnetic field. We again 
consider the quench from J1 = J2 = 0 to the non-Fermi liquid fixed point, i.e. J1 = J2 , however, assuming that the 
impurity is subject to Bz = 4 · 10−5 , which is of the order of the Kondo temperature for J = 0.2 . The Loschmidt 
echo for this situation is presented in Fig. 8a, where the inset displays the dependence of L(t) as a function of 
rescaled time. Consider first the case of quench when the Kondo time scale tK is much smaller than the time scale 
associated with finite magnetic field tB , i.e. J < 0.2 . One can see that L(t) decays very slowly and it changes slope 
around t ≈ tB . This is associated with the fact that magnetic field dominates over the Kondo correlations and the 
initial and final states are not far from each other. On the other hand, the decay of the Loschmidt echo is much 
more pronounced when J > 0.2 , i.e. when the Kondo correlations are larger than the induced Zeeman splitting. 
Then, we observe that the time dependence of L(t) resembles that in the absence of magnetic field. Indeed, for 
J = 0.3 , we recover the long-time behavior with L(t) ∼ (t · TK )

−0.7 , see the inset of Fig. 8a.
The corresponding dynamics is also revealed in the time dependence of the spin expectation value, which 

is shown in Fig. 8b. In the initial state the impurity is fully spin-polarized, Sz(0) = −1/2 , and the polarization 
starts to decrease in the course of time evolution due to the development of Kondo correlations. This decrease 
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Figure 5.  The time-evolution of (a) the Loschmidt echo and (b) spin expectation value calculated for quantum 
quench in J1 ≡ J , starting from J = 0 to J = 0.2 , while J2 = 0 , for different values of magnetic field Bz , as listed 
in the legend. The magnetic field is expressed in units of the Kondo temperature for J = 0.2 , TK = 4 · 10−5 . The 
other parameters are the same as in Fig. 2.
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continues until t ≈ tB , when the magnetization saturates and attains a time-independent value. For example, in 
the case of J = 0.15 , the spin expectation value becomes reduced to Sz(t > tB) ≈ −0.35 . Nonetheless, for large 
enough J, the impurity’s spin may become almost fully compensated by the Kondo correlations, see e.g. the case 
of J = 0.3 in Fig. 8b.

Figure 6.  (a) The Loschmidt echo L(t) for quantum quench in the coupling strength J1 = J2 ≡ J , starting 
from J = 0 to the value shown in the legend. (b) The Loschmidt echo plotted vs time rescaled with the Kondo 
temperature TK , with TK = D exp(−1/Jρ) . The inset presents the universal behavior for t · TK > 1 , where 
L(t) ∼ (t · TK )

−0.7 . In calculations we have used the following NRG parameters: NK = 14000 and � = 1.6.
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Figure 7.  The work distribution calculated for quantum quench in J1 = J2 ≡ J , starting from J = 0 to the value 
shown in the legend. The inset presents the rescaled work distribution W(ω) · TK plotted as a function of ω/TK . 
We find the scaling W(ω) ∼ ω−0.6 , for ω < TK , and W(ω) ∼ ω−1.3 , for ω > TK . The other parameters are the 
same as in Fig. 6.
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In Fig. 8 we have inspected the case when the magnetic field is fixed, however, it is also interesting to exam-
ine the situation when the quench is performed to the same Kondo state, from J = 0 to J = 0.2 , but magnetic 
field takes different values, yet still constant during the whole time evolution. This is presented in Fig. 9, which 
shows the time dependence of both L(t) and Sz(t) for different strengths of magnetic field, as indicated. Clearly, 
the decay of wave function overlap becomes slower and slower as the magnetic field grows. When Bz/TK ≪ 1 , 
the Loschmidt echo drops quickly in accordance with L(t) ∼ (t · TK )

−0.7 . However, for Bz/TK ≫ 1 , the echo 
function exhibits only a very slow suppression as the time goes by, which reflects the fact that the Kondo cor-
relations are suppressed by strong magnetic field, see Fig. 9a. These observations are corroborated by the time 
dependence of the impurity’s spin, which is presented in Fig. 9b. The magnetic impurity becomes highly polarized 
for Bz ≫ TK and the impurity’s magnetization drops as the magnetic field becomes lowered. As a consequence, 
for Bz ≪ TK , the initial magnetization becomes almost fully counterbalanced by the Kondo correlations in the 
long time limit.

Up to now, we have studied the case when the quench was performed in both exchange couplings at the same 
time, i.e. the evolution was from the decoupled system to the case with J = J1 = J2 , when the final state was the 
non-Fermi liquid state of the two-channel Kondo problem. It is however also interesting to examine the situation 
when the initial state of the system is the usual Kondo state, as given by the single-channel Kondo model, while 
the finite state may be different. We thus assume J1 = 0.2 for both the initial and final Hamiltonians, whereas 
the quench is performed in J2 , starting from J2 = 0 to a finite value. The corresponding Loschmidt echo for such 
scenario is presented in Fig. 10. It is also important to note that in the case of finite channel anisotropy, J1  = J2 , 
there exist an additional energy scale T∗ ∼ (J1 − J2)

2 , which borders the Fermi liquid phase from crossover 
regime to the non-Fermi liquid phase ( J1 = J2 ), at which T∗ vanishes 45. Consequently, one may expect that a new 
time scale t∗ , associated with T∗ , would be relevant for the system dynamics. Indeed, as we show in the sequel, the 
time evolution of the Loschmidt echo exhibits some signatures of the channel anisotropy time scale t∗ ∼ 1/T∗.

When the quench is performed for J2 < J1 , the echo function exhibits a slow decay as the time increases. Inter-
estingly, one can observe a change of slope of L(t) at the time scale approximately corresponding to t∗ ∼ 1/T∗ . 
After this time, the Loschmidt echo attains a value, which rather weakly depends on time, see Fig. 10a. Note that 
the characteristic time scale, t∗ = α/T∗ , where α is a numerical factor of the order of unity, is marked in Fig. 10a 
with vertical dotted lines. This basically indicates that the time-evolved state is dominated by the Fermi liquid 
phase of impurity coupled to the first conduction channel. A completely different situation occurs for J2 > J1 . 
Then, the initial and final states are orthogonal in the long time limit. This is because the initial state is formed 
by the impurity coupled to the first channel, while the final state comprises the impurity predominantly coupled 
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Figure 8.  (a) The Loschmidt echo L(t) and (b) impurity’s spin expectation value for quantum quench in the 
coupling strength J1 = J2 ≡ J , starting from J = 0 to the value shown in the legend in the presence of external 
magnetic field Bz = 4 · 10−5 . The inset in (a) presents L(t) plotted as a function of t · TK . The other parameters 
are the same as in Fig. 6.
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to the second channel. Thus, in the course of evolution, for large J2 , the Fermi liquid state is transferred from a 
one-channel Kondo state with the first screening channel to a one-channel Kondo state with the second chan-
nel. Moreover, during the evolution, for tK < t < t∗ , the system needs to pass through the non-Fermi liquid 
phase. This can be recognized both in Fig. 10b and in the corresponding inset for intermediate times. We also 
note that for long times the time dependence of L(t) becomes similar to that in the single channel case, see the 
inset of Fig. 10b. On the other hand, the case of J1 = J2 corresponds exactly to the quench from the Fermi liquid 
to the non-Fermi liquid state. For this situation, one can see that the Loschmidt echo decays much slower as 
compared to the case of J2 > J1 , and there is no upturn as in the case of J2 < J1 . Instead, one observes a steady 
decrease, similarly as in the quench presented in Fig. 6, though the time dependence is not exactly the same, cf. 
the inset of Fig. 10b.

The same type of quench as presented in Fig. 10 but performed in the presence of a constant magnetic field 
is shown in Fig. 11. At initial time, the impurity is in a spin-split Kondo state, where Bz ≈ TK , such that the 
corresponding impurity spin expectation is half-suppressed Sz(0) ≈ −0.23 , see Fig. 11b. For relatively weak 
quenches, J2 < 0.2 one can see that the decay of the Loschmidt echo is rather slow, see Fig. 11a. Moreover, for 
t > tB , the impurity’s magnetization becomes increased to Sz(t > tB) ≈ −0.25 , which signals the fact that Kondo 
correlations become slightly weakened by the second weakly-coupled channel. Note that a similar behavior has 
been also found in the case of single-channel Kondo model, cf. Fig. 5. With increasing the magnitude of the 
quench, the decay of the Loschmidt echo becomes enhanced. Eventually, for J2 > 0.2 , L(t) drops quickly to zero 
indicating a completely different final state. This is a similar situation as in the absence of magnetic field for the 
quench with large enough J2 , cf. Fig. 10. As far as the impurity’s magnetization is concerned, with increasing 
J2 , the magnetization in the long time limit drops, which is an indication of Kondo correlations and the respec-
tive spin singlet state formation between the conduction band of the second channel and the impurity’s spin. 
The evolution of the Loschmidt echo decay with increasing the magnitude of quench is shown in the inset of 
Fig. 11. One can see that indeed the suppression of L(t) happens faster for larger J2 and for J2 = 0.3 it approaches 
L(t) ∼ (t · TK )

−1.4 , as in the single-channel case.

Discussion
We have numerically studied the time dynamics of the one-channel and two-channel spin one-half Kondo models 
upon application of a quench in the underlying Hamiltonian. The calculations have been performed by means of 
the time-dependent numerical renormalization group method, within the matrix product state framework. This 
method allows for a non-perturbative inclusion of correlation effects and enables a very accurate description 
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Figure 9.  (a) The Loschmidt echo L(t) and (b) impurity’s spin expectation value for quantum quench in the 
coupling strength J1 = J2 ≡ J from J = 0 to J = 0.2 in the presence of external magnetic field indicated in the 
legend. Magnetic field is expressed in units of TK = 4 · 10−5 . The other parameters are the same as in Fig. 6.
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of the system’s dynamics. The focus of the paper has been put on the behavior of the Loschmidt echo, which 
describes the system’s ability to change its state during the time evolution, after the quench in the strength of 
coupling to the two conduction channels. We have also analyzed the effect of external magnetic field on the 
quench dynamics, calculating in addition the time dependence of the impurity’s magnetization.

In the case of the one-channel Kondo model, for quenches in the absence of magnetic field, we have shown 
that the Loschmidt echo exhibits a universal behavior with the relevant time scale given by the inverse of the 
Kondo temperature, tK = 1/TK . Moreover, we have numerically estimated the decay rate and found that, 
L(t) ∼ (t · TK )

−1.4 , for t > TK . This universality is also revealed in the work distribution, which scales as, 
W(ω) ∼ ω−0.5 , for ω < TK , and W(ω) ∼ ω−1.5 , for ω > TK . Next, we have examined the system’s dynamics 
in the presence of external magnetic field Bz . The initial state for the time evolution was the state of a fully 
spin polarized magnetic impurity, decoupled from screening channels. We have analyzed how the decay of 
the Loschmidt echo depends on the ratio of magnetic field and the relevant Kondo temperature. For stronger 
quenches, the echo function was found to follow the behavior predicted in the absence of magnetic field, while 
for weaker quenches, the decay of L(t) was slowed down. This behavior was also reflected in the time depend-
ence of the impurity’s spin expectation value, which increases as the time goes by with the corresponding local 
extremum for times of the order of tB = 1/Bz.

Finally, we have considered the quench dynamics in the case of the two-channel Kondo model. First, we 
have studied the quenches from decoupled system to the final state with equal couplings to both conduction 
channels, i.e. to the non-Fermi liquid state. For such genuine situation, we have shown that the time dependence 
of L(t) for different values of final exchange couplings collapses onto a single universal curve for t > tK , with 
L(t) ∼ (t · TK )

−0.7 . Furthermore, for the corresponding work function we have numerically estimated the scal-
ing to be, W(ω) ∼ ω−0.6 , for ω < TK , and W(ω) ∼ ω−1.3 , for ω > TK . We have also analyzed the time evolution 
of the Loschmidt echo and spin expectation value in the presence of constant magnetic field. Similarly to the 
single-channel case, we have found a slow-down of the Loschmidt echo decay at the time scale associated with 
magnetic field. Furthermore, we have determined the system’s dynamical behavior in the case of quench from 
an initial Fermi liquid state (as given by the impurity coupled to the first conduction channel) to a new final 
state obtained by turning on the coupling to the second screening channel. For such case, we have shown that 
the time evolution reveals a new time scale associated with the channel anisotropy.

Figure 10.  (a) The Loschmidt echo L(t) for quantum quench in the coupling strength J2 from J2 = 0 to the 
value shown in the legend, with fixed J1 = 0.2 . (b) The Loschmidt echo plotted vs time rescaled with the Kondo 
temperature TK , where TK ≈ D exp(−1/ρJ2) . The vertical dashed lines in (a) indicate the time scale t∗ = α/T∗ 
for J2 < 0.2 , where α is a numerical factor of the order of unity. The other parameters are the same as in Fig. 6.
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Method
We have studied the dynamical behavior of the considered Kondo models using the time-dependent numerical 
renormalization group  method19, 20. The dynamics following sudden discrete quench (at time t = 0 ) is described 
by the time evolution of the following general Hamiltonian

where θ(t) is the step function, H0 is the initial Hamiltonian of the system and H denotes the final system’s 
Hamiltonian.

Both Hamiltonians are solved with the Wilson’s numerical renormalization group  method17, 18, 35. In this 
approach the conduction band is logarithmically discretized with parameter � and mapped onto a tight-binding 
semi-infinite chain, while the impurity is coupled only to the first site ( n = 0 ) of the  chain17. After this transfor-
mation, the Hamiltonian (1)  becomes17, 18

where f †α,nσ is the creation operator of a spin-σ electron on Wilson site n in channel α . The first term of the 
Hamiltonian describes the coupling of the impurity to electrons from conduction channel α . The second term 
accounts for the metallic bands modeled as Wilson chains, where tαn denotes the hopping between sites n and 
n+ 1 in the channel α . Finally, the last term describes the local Zeeman energy.

Both initial and final Hamiltonians are solved in an iterative manner with NK lowest-energy eigenstates kept 
at each of N iterations. The discarded states and all states obtained on the last iteration of the procedure (labeled 
with superscript D) are used to create the complete initial and final eigenbases 19

Here, all eigenstates are labeled with the following indices: n refers to the iteration number, s to a specific eigen-
state and e describes the environmental part of the chain. To facilitate calculations, we have exploited the spin 
and charge symmetries of the system.

(5)H(t) = θ(−t)H0 + θ(t)H ,

(6)H =
1

2

∑
α

∑
σσ ′

JαSf
†
α,0σσ σσ ′ fα,0σ ′ +

∑
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∞∑
n=0

∑
σ

tαn(f
†
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∑
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Figure 11.  (a) The Loschmidt echo L(t) and (b) Sz(t) for quantum quench in the coupling strength J2 from 
J2 = 0 to the value shown in the legend, with fixed J1 = 0.2 and in the presence of magnetic field Bz = 4 · 10−5 . 
The inset presents L(t) plotted vs time rescaled with the Kondo temperature TK . The other parameters are the 
same as in Fig. 6.
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The dynamical quantities are determined in frequency domain. In order to obtain the relevant time depend-
encies, all collected Dirac delta peaks are Fourier transformed into the time domain

where O(t) = L(t), Sz(t) . For further technical details  see20, 22.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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