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Multisite learning 
of high‑dimensional heterogeneous 
data with applications to opioid use 
disorder study of 15,000 patients 
across 5 clinical sites
Xiaokang Liu1, Rui Duan2, Chongliang Luo1,3, Alexis Ogdie4, Jason H. Moore5, 
Henry R. Kranzler6, Jiang Bian7 & Yong Chen1*

Integrating data across institutions can improve learning efficiency. To integrate data efficiently 
while protecting privacy, we propose A one‑shot, summary‑statistics‑based, Distributed Algorithm 
for fitting Penalized (ADAP) regression models across multiple datasets. ADAP utilizes patient‑level 
data from a lead site and incorporates the first‑order (ADAP1) and second‑order gradients (ADAP2) 
of the objective function from collaborating sites to construct a surrogate objective function at the 
lead site, where model fitting is then completed with proper regularizations applied. We evaluate the 
performance of the proposed method using both simulation and a real‑world application to study 
risk factors for opioid use disorder (OUD) using 15,000 patient data from the OneFlorida Clinical 
Research Consortium. Our results show that ADAP performs nearly the same as the pooled estimator 
but achieves higher estimation accuracy and better variable selection than the local and average 
estimators. Moreover, ADAP2 successfully handles heterogeneity in covariate distributions.

Electronic health records (EHR), which routinely incorporate information from health care providers and medi-
cal  devices1, contain information about patients’ diagnoses, laboratory test results and medication use and are 
important resources for biomedical and clinical  research2–4. With the wide adoption of EHR systems throughout 
the United States and other countries, there is a growing need to integrate data horizontally from different institu-
tions, i.e., combining data with the same set of features but different patient  populations5. Such integration can 
greatly enrich the study population, increase statistical power, reduce the potential for regional bias, and provide 
opportunities to study rare medical conditions.

However, data integration across institutions has many practical challenges. First, collaborating institutions 
must adopt data harmonization procedures to facilitate a commonly applicable data analysis approach. There 
have been many efforts in large research networks to develop common data models (CDM) that create a uni-
fied data structure and variable definitions for all the collaborating institutions. For example, the Observational 
Medical Outcomes Partnership (OMOP)  CDM6,7 was developed by the Observational Health Data Sciences and 
Informatics (OHDSI) network to standardize patient records in a consistent format.

Due to privacy protections, it is often not feasible to share individual-level patient data across multiple sites. 
Distributed algorithms (also known as federated  learning8 algorithms) that coordinately execute a computing 
task at each site can bypass the need of sharing individual-level data to achieve data integration by sharing only 
summary-level statistics. Some recent, exciting developments in the related areas of statistics and machine 

OPEN

1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of 
Medicine, 423 Guardian Drive, Philadelphia, PA 19104, USA. 2Department of Biostatistics, Harvard T.H. Chan 
School of Public Health, Harvard University, Boston, MA, USA. 3Division of Public Health Sciences, Washington 
University School of Medicine in St. Louis, St. Louis, MO, USA. 4Department of Medicine, Department 
of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, 
Philadelphia, PA, USA. 5Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, 
CA 90096, USA. 6Department of Psychiatry, University of Pennsylvania Perelman School of Medicine and the VISN 
4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA. 7Department of Health Outcomes and Biomedical Informatics, 
University of Florida Health Cancer Center, Gainesville, FL, USA. *email: ychen123@upenn.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14029-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11073  | https://doi.org/10.1038/s41598-022-14029-9

www.nature.com/scientificreports/

learning provide the potential for models that incorporate data across multiple datasets in a distributed man-
ner. For example, Chen et al.9 developed a distributed algorithm for general linear regression and Luo et al.10 
proposed a distributed linear mixed model. Some of the distributed algorithms require iterative communication 
across datasets until they converge, e.g.,  GLORE11 for logistic regression and  WebDISCO12 for a Cox proportional 
hazards model. However, multiple rounds of communication can impose a high communication cost, which 
is measured by the total number of digits transferred and the time and labor cost spent in communications, to 
complete the task and requires cooperation among institutions, which may not be feasible for some applications. 
Thus, one-shot methods that require only a single round of communication are preferred. Among a variety of 
recently developed one-shot algorithms, a commonly used approach is to average all of the local estimates (e.g., 
Zhang et al.13, Lee et al.14, Battey et al.15, Dobriban and  Sheng16,17). The potential limitation of the averaging-type 
of methods is their lack of accuracy when studying rare conditions. For example,  in18 the authors demonstrated 
that when the event rate is low the averaging-type estimator can lead to non-negligible bias and large variance. 
Another approach constructs a surrogate of the global likelihood function using the individual-level data in a 
lead site and summary-level statistics from the collaborating sites (e.g., Jordan et al.19, Wang et al.20, Duan et al.21, 
and Duan et al.22). In addition, efficient one-shot distributed algorithms have been proposed to deal with zero-
inflated count  data23 and time-to-event  data18.

Most of the aforementioned work involves low-dimensional regression models where the number of predic-
tors is smaller than the sample size. A unique challenge in the era of big data is high dimensionality, where the 
number of parameters can be extremely large and much bigger than the sample size. For example, in genomic 
studies thousands of genetic variants are observed for each subject, and methods are needed to select the truly 
influential variables. Penalized regression is one of the most commonly used techniques for variable selection. 
It maximizes the goodness of fit of the model while controlling the model complexity by restricting the regres-
sion coefficients. For example, lasso  regression24 allows simultaneous model estimation and variable selection 
by adding an l1 penalty of the regression coefficients. Ridge  regression25 exploits an l2 penalty to handle the high 
collinearity among covariates and elastic-net26 flexibly combines the l1 and l2 penalties so that strongly correlated 
covariates are included in or excluded from the model together. Some distributed algorithms are proposed for 
penalized regressions (e.g., Lee et al.14, Battey et al.15, Dobriban and  Sheng17, and Fan et al.27). However, these 
methods either assume a homogeneous application scenario that can introduce bias into the estimation in the 
presence of heterogeneity across  sites28,29 or cannot accommodate rare outcomes, underscoring the need for a 
framework that deals with the two issues simultaneously.

In this article, we propose a distributed algorithm for penalized regression. Different from the existing 
 methods19,20,27, our method accounts for heterogeneity in covariate distributions across multiple sites by incor-
porating the second-order gradient information when creating the surrogate objective function. To be compatible 
with the structure of the surrogate function, a modified cross-validation strategy is used to tune the level of regu-
larization. We evaluate the performance of the proposed method using both simulation and a real-world applica-
tion to study risk factors for opioid use disorder (OUD) with data from five participating sites of the OneFlorida 
Clinical Research  Consortium30, a clinical data research network contributing to the national Patient-Centered 
Clinical Research Network (PCORnet)31. We chose to focus on OUD because of the substantial implications the 
disorder has for public health. Between 1990 and 2010, U.S. opioid analgesic prescriptions increased by a factor 
of  1032, contributing to an epidemic of opioid misuse, abuse, and overdose  deaths32–34. By 2018, 3.7% of U.S. 
adults reported past-year misuse of a prescription opioid pain  reliever35. With the increase in misuse of opioids, 
the prevalence of prescription OUD among U.S. adults reached 2.1 million (or 0.9%)36. During the COVID-19 
pandemic, despite decreases in emergency department visits for other medical emergencies, during 2020 the 
rates of opioid overdose-related visits in six healthcare systems  increased37. These findings are consistent with a 
widespread increase in opioid-related complications during the pandemic.

The OneFlorida data repository integrates multiple data sources from its participating healthcare organiza-
tions and provides real-world data to support biomedical and clinical  research38–40. For this study, we extracted 
EHRs (covering patient records from 01/01/2012 up to 07/31/2020) from the 5 participating sites for 15,000 
patients who had chronic pain and an opioid prescription (including buprenorphine, codeine, fentanyl, hydro-
morphone, meperidine, methadone, morphine, oxycodone, tramadol, and hydrocodone) and no cancer or OUD 
diagnosis before their first opioid prescription. Among these patients who were exposed to an opioid, we define 
a case of OUD as having a first diagnosis of OUD after their first prescription and define a control as having 
no diagnosis of OUD during the entire time window. A list of risk factors was compiled from the literature and 
extracted from the database, including basic demographic features such as age, gender and race, and co-occurring 
diagnoses, e.g., depression and sleep disorder (see Supplementary Table 2 for all 42 covariates). A logistic lasso 
regression is then applied to locate truly influential risk factors. These numerical study results show that, by add-
ing the second-order gradient information, estimation, prediction, and variable selection of ADAP2 are improved 
compared to some alternative methods and ADAP2 is robust to the heterogeneity in covariate distributions.

Results
Overview of the ADAP method. The ADAP method aims to efficiently learn a global parsimonious asso-
ciation relationship between an outcome of interest and a large amount of risk factors through integrate data 
across multiple sites while protecting privacy. Briefly, we model the association using a regression model with 
coefficient β and a loss function (objective function) is used to measure the goodness of fit of the model. ADAP 
utilizes patient-level data from a lead site and incorporates the first-order (ADAP1) and second-order gradients 
(ADAP2) of the objective function from collaborating sites to construct a surrogate objective  function19,20 at the 
lead site. Then, after applying proper regularizations to the surrogate objective function to select truly influen-
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tial risk factors, we obtain the estimates of the association coefficients β by optimizing the penalized surrogate 
objective function.

To demonstrate the property of ADAP, we compared ADAP1 β̂(1) and ADAP2 β̂(2) to several benchmark 
methods, including the local estimator β̂1 obtained from a single dataset (i.e., the lead site dataset), the pooled 
estimator β̂N obtained from the combined patient-level data across all sites, and the average estimator β̂ave 
obtained by averaging all local estimators. The pooled estimator is considered as a gold standard as it directly uses 
all the patient-data without constrains on data-sharing, but it is not available in practice. The details of ADAP, as 
well as the benchmark methods can be found in “Methods”. For illustration, in the following we mainly consider 
the lasso logistic regression.

Evaluation of estimation accuracy and variable selection through simulation studies. We 
evaluate the performance of ADAP under various settings to see the effects of number of sites K (Setting 1), 
heterogeneous covariate distribution (Setting 2), lead site’s sample size n1 (Setting 3), and a shared sample size 
n by each site (Setting 4) on the performance of the method. Except for the estimation performance, which is 
measured by the Euclidean distance of the estimate to its true value, we also tested the variable selection ability 
in Setting 5 with multiple levels of association magnitude by calculating the true positive rate and false positive 
rate. In all five settings, we let site 1 be the lead site.

Figure 1 displays the results of Setting 1 and Setting 2. As expected, ADAP2 leverages more information 
from each site’s loss function than ADAP1 and therefore outperforms ADAP1 in terms of estimation error, with 
an estimation error closest to the pooled estimator among all of the other methods. In particular, we can see 
in panel (b) of Fig. 1 that heterogeneity in covariates greatly inflates the estimation error of the local estimator 
and ADAP1 [compared to the homogeneous case displayed in panel (a)], while ADAP2 still maintains a high 
estimation accuracy, which demonstrates the ability of ADAP2 to handle heterogeneity. In addition, when we 
increase the number of sites K, a larger total sample size N(=

∑K
k=1 nk) provides both the pooled estimator and 

the ADAP estimators with more information and improves the estimation accuracy. The average estimator is not 
as good as the ADAP estimators. Panel (a) of Fig. 2 displays the results of Setting 3, from which we observe that 
the ADAP methods perform much better than the average estimator and the local estimator which only uses the 
information from a single site. In terms of the estimation error, ADAP2 is better than ADAP1, especially when 
the local sample size is small (i.e., n1N < 0.3 ). When n1N  gets larger, the ADAP methods perform more similar to the 
pooled estimator. Thus, in applications, it is preferable to select a lead site with a larger sample size. The results of 
Setting 4 are displayed in panel (b) of Fig. 2, where N increases along with an increasing n and a fixed K, and we 
can see that ADAP methods show a larger improvement over the average and local estimators when n is small, 
and when n gets larger the difference between methods becomes smaller. This suggests that using ADAP is the 
most efficient in a small sample setting.

Tables 1 and 2 display the results of variable selection in Setting 5, and ADAP2 performs better in identifying 
true positives, but at the expense of having more false positives. The false positive rate of ADAP2 is similar to 
the pooled estimator and being much lower than the average estimator. Thus, applying ADAP2 ensures a higher 
probability to recover more true positives than ADAP1 and has a moderate level of false positive rate. The local 
estimator has a low false positive rate, but its true positive rate is also the lowest among all methods. The average 
estimator does not perform as well as the ADAP methods since the averaging operation destroys the sparsity of 
each site’s local estimate.

Figure 1.  Simulation results under Setting 1 and Setting 2. Both plots display the change of estimation error 
averaged over 200 replications along with an increasing number of sites K. The panel (a) is for Setting 1, where 
covariates are generated from one shared multivariate normal distribution and the panel (b) is for Setting 2 
where the heterogeneous covariates are considered.
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To account for the uncertainties in the comparison, we have also conducted the one-sided paired t-test for 
each pair of methods to check the significance of the above-claimed benefits. With a significance level of 0.05, 
the ADAP methods outperform the average and the local estimators in terms of estimation and variable selection 
for most of the considered settings. The empirical measurements of the improvement and the corresponding test 
results are displayed in Supplementary Tables 4–9.

Results from the analysis of the OUD dataset. The logistic lasso regression is applied to the OUD data 
and fitted by all the above-described methods, and we use site 4 as the lead site without a loss of generality. As the 
OUD data come from a real distributed research network, they exhibit heterogeneity across sites and provide an 
ideal environment to compare methods. Therefore, in addition to comparing the estimation and variable selec-
tion performance, we also conduct a random-splitting procedure to measure the prediction performance with a 
set of increasing training set sizes and use AUC as a prediction performance metric for each method.

It takes around 6 s to fit ADAP1 and takes around 45 s to fit ADAP2 on an iMac with 3.8 GHz 8-Core Intel 
Core i7 processor, and the estimation results are reported in Supplementary Table 3. As the true coefficient vector 
is unavailable, we use the pooled estimator β̂N as a gold standard and measure the approximation error of other 

Figure 2.  Simulation results under Setting 3 and Setting 4. The panel (a) is for Setting 3, which shows the 
change of estimation error averaged over 200 replications along with an increasing local sample size n1. The total 
sample size N is fixed at 10,000. The panel (b) is for Setting 4 where all sites share the same sample size n and 
the number of sites K is fixed at 10. The plot shows the change of estimation error averaged over 200 replications 
along with an increasing n (i.e., an increasing N).

Table 1.  True positive rates. The true positive rate is calculated as the percentage (over 400 replications) of 
coefficients that are estimated to be nonzero among nonzero coefficients in the true coefficient vector.

Magnitude ( βj) Local Pooled Average ADAP1 ADAP2

0.1 0.14 0.66 0.78 0.59 0.66

0.2 0.39 0.99 0.99 0.96 0.98

0.3 0.61 1.00 1.00 1.00 1.00

0.4 0.75 1.00 1.00 1.00 1.00

0.5 0.84 1.00 1.00 1.00 1.00

Table 2.  False positive rates. The false positive rate is calculated as the percentage (over 400 replications) of 
coefficients that are estimated to be nonzero among zero coefficients in the true coefficient vector.

Magnitude ( βj) Local Pooled Average ADAP1 ADAP2

0.1 0.06 0.12 0.47 0.11 0.16

0.1 0.10 0.14 0.64 0.11 0.18

0.3 0.12 0.15 0.70 0.10 0.18

0.4 0.13 0.15 0.74 0.10 0.17

0.5 0.13 0.16 0.76 0.09 0.16
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estimators to the gold standard by computing the relative estimation bias with respect to the pooled estimator for 
each coefficient that has a nonzero pooled estimate (see Fig. 3). Among the methods under comparison, ADAP2 
has relative bias < 20% for 73% of the covariates, and it provides the best approximation to the pooled estimator 
( �β̂(2) − β̂N�

2
2 = 0.24 ). The local estimator has the largest deviance to the pooled estimator ( �β̂1 − β̂N�

2
2 = 2.72 ), 

and only 25% of the covariates have relative bias < 20%. The average estimator does not perform as well as the 
ADAP methods ( �β̂ave − β̂N�

2
2 = 0.88 ) and has 40% of the covariates having relative bias < 20%. ADAP1 has 

60% of the covariates whose relative bias < 20% and �β̂(1) − β̂N�
2
2 = 0.64. Thus, among the four methods in this 

analysis, ADAP2 is the most consistent with the pooled estimator. ADAP1’s performance is better than the local 
and the average estimators, which can be explained by the relatively homogeneous covariate distributions among 
the five sites (see Supplementary Table 2).

As for variable selection, by treating the pooled estimator as a gold standard, the local estimator and average 
estimator each have three estimates whose signs are opposite to the corresponding pooled estimates. The local 
estimator has one false positive while the average estimator and ADAP2 estimator have three and two false 

Figure 3.  Coefficient estimation results for the OUD analysis. The panel (a) displays the coefficient estimates 
(log odds ratio) for all variables (sorted by the pooled estimates in decreasing order) with the pooled estimator 
as a gold standard, and the panel (b) shows the estimation bias relative to the pooled estimator for all nonzero 
pooled estimates (without sorting). As the relative estimation bias of the local estimator contains extremely large 
values, for ease of display we exclude it from panel (b). From the two plots, we see that ADAP2 yields estimates 
that are most consistent with the pooled estimator while the local estimator shows large deviations from the 
pooled estimator.
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positives, respectively. The local estimator missed nine predictive covariates and the ADAP1 estimator missed 
three predictive covariates. In view of these considerations, ADAP2 performs better than the other methods.

We present the prediction results in Fig. 4. In general, as the training set becomes larger, the AUC increases 
for all methods. Among the five methods, the pooled estimator has the best prediction performance and ADAP2 
performs very close to the pooled estimator. ADAP1 and the average estimator have lower AUCs than ADAP2, 
and the local estimator has the worst prediction performance. We have constructed the empirical 95% confi-
dence intervals defined by the 2.5th percentile and the 97.5th percentile of the pairwise AUC difference between 
ADAP2 and the local, the average, and ADAP1 estimator to check the significance of the prediction performance 
improvement for ADAP2. Once the confidence interval is on the positive side of zero, there is a significant 
improvement. The results are in Supplementary Table 10 and show a significant improvement for most cases, 
and for the remaining cases, ADAP2 performs as well as other methods. Thus, by collecting the second-order 
gradient information from all sites to form the surrogate function, ADAP2 has a comparable or higher prediction 
accuracy than other methods and performs as well as the pooled estimator. 

Based on the estimated effects, for the patients with chronic pain and an opioid prescription, some co-occur-
ring psychiatric and substance use disorder diagnoses (e.g., anxiety and cocaine-related disorder) contribute to 
the identification of OUD-positive cases. Interestingly, patients with sleep disorders are at decreased risk of OUD. 
Compared to patients with a normal BMI, patients who are overweight or obese are less likely to be OUD posi-
tive. Smoking is a risk factor for OUD, and non-Hispanic white (NHW) patients have a greater risk to develop 
OUD. People receiving Medicaid also have a higher risk of being OUD positive. Age and sex also have effects on 
the risk of OUD, with adults younger than 64 and men at greater risk of the disorder.

Discussion
In this study, we introduce a one-shot privacy-preserving algorithm to fit penalized regression in a distributed 
manner. A properly selected penalty on the coefficient vector is added to the surrogate loss function to balance 
the trade-off between goodness-of-fit and model complexity. The first-order and second-order gradients are 
collected from collaborating sites and contribute to construction of the surrogate loss function. The simulation 
study and the application to the analysis of OUD data both demonstrate the superiority of the ADAP methods 
over the local and average estimators. Moreover, the improvement of ADAP2 over ADAP1 is achieved at the 
expense of transferring more digits to the lead site, i.e., transferring the second-order gradient information that 
contains O(Kp2) numbers. With a moderate dimension p , transferring O(Kp2 + Kp) numbers will not result in 
severe technical problems in practical applications. However, this becomes a limitation of ADAP2 when the 
dimension p goes large and new techniques are then needed to reduce the communication burden. Otherwise, 
using ADAP1 is preferable in this situation.

Figure 4.  Prediction performance measured by averaging AUCs obtained through 200 random-splitting 
procedures on the OUD data. The training size index t  takes values from 1 to 9, and each t means that we 
randomly select t × 100 cases and t × 200 controls from each site to form a training set, with the remaining data 
used to test the fitted model. Thus, the plot shows the pattern of variation in AUC as a function of the size of the 
training set. In general, as the training set size becomes larger, the AUC is increased for all methods. Among the 
five methods, the pooled estimator performs the best, with the performance of ADAP2 very close to that of the 
pooled estimator. ADAP1 and the average estimator have lower AUCs than ADAP2, and the local estimator has 
the worst prediction performance.
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Iterative algorithms are promising to further improve the estimation accuracy of ADAP  methods19. However, 
the number of digits transferred in the iterative communications could be significantly larger than one-shot 
algorithms, potentially increasing the risk of re-identification of subjects. Moreover, in practice, the higher 
communication cost, specifically more rounds of communications involving several different requests made by 
researchers to each individual site participating in a study, also leads to higher operational efforts across partici-
pating sites, which requires timely cooperation and coordination among the researchers and could potentially 
delay the completion of the learning projects. In contrast, one-shot methods are more appealing as they do not 
require iterative communication. Specifically, in ADAP, after the initial estimator being broadcasted from the 
lead site to the collaborating sites, the collaborating sites only need to take one round of action, i.e., receive the 
broadcasted estimates, calculate and transfer the gradient information to the lead site, which saves both time 
and labor cost.

Following Friedman et al.41, we adopted the coordinate descent algorithm within a nested loop together with 
5-fold cross-validation to fit a solution path and select the tuning parameter. We also experimented with using 
the lead site’s tuning parameter to fit the surrogate model, but the resultant estimator approximated the pooled 
estimator poorly. The l1 penalty introduces bias into the estimates when it filters off random noise, i.e., it pushes 
all the coefficients toward zero, leaving only those with strong signals, but shrunken in magnitude. When the 
sample is large enough and the signal is strong, a small tuning parameter is preferred; otherwise, a larger tuning 
parameter is needed to recover the true signals from the random noise. Therefore, with a large difference in the 
amount of available information, the magnitude of regularization needed by a local model is too large for the 
global model. Another concern in tuning is the transferability of the algorithm, as the tuning is done at the lead 
site. By changing to a different lead site, the final model could be different in the selected covariates and its esti-
mates, and this is also a limitation of ADAP and requires further investigation. Some of distributed algorithms 
that employ the same surrogate loss function strategy select each site as a lead site and then average all of the 
resultant estimators as a final estimator. However, this is not applicable in our case, as taking an average can 
degrade the variable selection. In practice, to avoid this effect and achieve a better approximation to the pooled 
model, we recommend using a lead site with a large sample.

A practical concern in distributed learning is the potential heterogeneity across multiple sites, including 
the heterogeneity underlying the association pattern (as each site has model parameters that are not exactly the 
same) and the covariate distribution. There are existing efforts devoted to solving the heterogeneity problem 
in distributed learning. For example, Tong et al.28 used the robustness of the median compared to the mean to 
relieve the effects of ‘outlying studies’, Duan et al.29 proposed a density ratio tilting method to accommodate 
the heterogeneous nuisance parameters across sites, and Cai et al.42 employed effect decomposition to allow 
site-specific effects of covariates on the outcome. Another limitation of ADAP is that ADAP2 only handles the 
heterogeneity in covariate distributions by incorporating the second-order gradients of all sites when creating 
the surrogate objective function. Therefore, further development of ADAP methods to deal with heterogeneity 
in the model parameters is needed.

Some important work remains for future investigation. First, as the number of high-dimensional association 
studies increases (e.g., in genome-wide association studies that connect a phenotype with millions of genotypes to 
identify risk variants), methods are needed to reduce the communication cost of sharing second-order gradients. 
Some numerical methods that approximate the second-order gradient provide a possible solution that warrants 
further exploration. Another pressing issue that requires resolution is the heterogeneity in model parameters. 
Whereas a mixed-effects model could be used in this  situation10,43, we plan to explore this and other modeling 
 approaches44,45 in the high-dimensional scenario to develop distributed algorithms that integrate information 
across multiple datasets while accounting for heterogeneity. Generalization of our work to other types of out-
comes such as count  data46 is of interest. Third, we regard ADAP as a privacy-preserving approach since it is a 
one-shot distributed algorithm where only summary statistics are needed to communicate across sites participat-
ing in a collaborative study. However, we have not rigorously checked if ADAP meets some privacy-preserving 
criteria such as k-anonymity47 or differential  privacy48,49. In the future, we will measure the privacy leaking risk of 
applying ADAP and enhance it by using some techniques such as differential privacy and multiparty homomor-
phic  encryption50. Finally, to evaluate the portability of predictive models constructed via the ADAP algorithm 
using data from OneFlorida data, we plan to evaluate them externally using the data from the STAR (Stake-
holders, Technology, and Research) Network, which contains centralized data from 8 healthcare organizations.

To conclude, in this study we considered a communication-efficient distributed learning framework for 
penalized regression. There are multiple penalty functions and regression models that can be embedded into 
this framework to satisfy different analysis demands. Simulation studies and an application to a clinical research 
network studying OUD demonstrated the validity and feasibility of the ADAP methods. The novelty of the 
proposed method mainly manifests in the following aspects. First, by exploiting the surrogate likelihood idea, 
ADAP provides a flexible framework to apply penalized regression distributedly. The algorithm protects the 
patients’ privacy and only requires one round of communication from the collaborating site. Second, by con-
structing a surrogate of the global likelihood function, ADAP outperforms the average-type estimators in that 
it accommodates rare outcomes and small sample sizes, and it also avoids severe over-selection brought by the 
averaging operation. Third, compared with some methods that are not robust to the violation of the homogene-
ity assumption, incorporation of the second-order gradient information in ADAP2 successfully accommodates 
heterogeneity in covariate distributions while boosting the true positive rate and improving estimation and 
prediction accuracy. We conclude that the ADAP2 estimator is a good approximation of the pooled estimator 
that is robust to heterogeneity across sites. The application of these findings to OUD underscores the potential 
contribution of this approach for addressing important public health problems.
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Methods
Data and problem formulation. We consider the relationship between an outcome y ∈ R and a set of covar-
iates x = (1, x1, . . . , xp−1)

T ∈ Rp . Suppose in a multisite study with K sites, we observe (xki , yki), i = 1, . . . , nk 
for the i-th individual in the k-th site k = 1, . . . ,K , where 

∑K
k=1 nk = N is the total sample size. We model 

P(y|x) using a regression model with coefficient β , and a loss function in the k-th site is defined as

where f (β; xki , yki) is a prespecified loss function. For example, f (β; xki , yki) = −ykix
T
kiβ + log{1+ exp(xTkiβ)} 

if we use a logistic regression. We first define several benchmark estimators.

Benchmark methods. Without loss of generality, we let site 1 be the lead site and obtain the local estima-
tor as

where P�(β) is a penalty function with � > 0 being a tuning parameter controlling the level of penalization. 
Similarly, for other sites we can obtain β̂k = argmin

β
Lk(β)+ P�(β) based on locally stored data, and the average 

estimator can then be defined as the weighted average of each site’s estimate

By assuming that individual-level data-sharing is allowed, we obtain the global loss function

and get the pooled estimator from

The local estimator is not efficient as it does not utilize information from other sites. The pooled estimator is 
considered as a gold standard as it directly uses all the patient-data without constrains on data-sharing, but it is 
not available in practice. We then introduce ADAP estimators.

Proposed method: ADAP. The main idea of ADAP is to build a surrogate loss  function19,20 to approximate 
L(β) as

where ∇Lk(β) =
1
nk

∑nk
i=1 ∇f (β; xki , yki) denotes the first-order gradient of Lk(β) at an initial estimator β  , and 

∇L(β) = 1
N

∑K
k=1 nk∇Lk(β) . In this way, each collaborating site only needs to send its first-order gradient (a 

p-dimensional vector) to the lead site to construct L̃1(β) . The ADAP1 estimator19,20,27 is obtained from

This approximation can be improved by further requiring the second-order gradient of Lk(β) , which gives 
us the second-order surrogate  function22

where ∇2Lk(β) =
1
nk

∑nk
i=1 ∇

2f (β; xki , yki) is the second-order gradient (a p× p-dimensional matrix) and 
∇2L(β) = 1

N

∑K
k=1 nk∇

2Lk(β) . It is worth mentioning that, by collecting the second-order gradients from all 
sites, the resulting estimator is robust to the potential heterogeneity in covariate distributions. Therefore, at the 
expense of transferring additional O(Kp2) numbers, we can construct L̃2(β) and get the ADAP2 estimator.

To satisfy various demands, different penalties can be applied, e.g., P�(β) = ��β�1 for the lasso regression 
and P� = �(α�β�1 + (1− α)�β�22) with α ∈ (0, 1) for the elastic-net method. For illustration, in the following 
we mainly consider the lasso logistic regression. As for selecting the initial estimator β  , both the local estimator 
β̂1 and the average estimator β̂ave are good choices. The algorithm for both ADAP1 and ADAP2 is summarized 
below.

Lk(β) =
1

nk

nk∑

i=1

f (β; xki , yki),

β̂1 = argmin
β

L1(β)+ P�(β) (local),

β̂ave =

K∑

k=1

nk

N
β̂k (average).

L(β) =
1

N

K∑

k=1

nkLk(β),

β̂N = argmin
β

L(β)+ P�(β) (pooled).

L̃1(β) = L1(β)+ {∇L(β)−∇L1(β)}
Tβ

β̂(1) = argmin
β

L̃1(β)+ P�(β) (ADAP1).

L̃2(β) = L1(β)+ {∇L(β)−∇L1(β)}
Tβ +

1

2
(β − β)T {∇2L(β)−∇2L1(β)}(β − β)

β̂(2)
= argmin

β
L̃2(β)+ P�(β) (ADAP2).
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We note that in Step 6, a solution path of ADAP is obtained by embedding the coordinate descent algorithm 
into a nested  loop41, and we use a modified 5-fold cross-validation to select � . Specifically, each time we leave 
out a fold of local data and use the remaining four folds together with the aggregated gradient information to 
form a surrogate loss function and obtain a solution path, and then we use the left-out data to compute the devi-
ance, i.e., the negative log-likelihood function evaluated at the current estimates. The selected � is the one that 
minimizes the averaged deviance among 5 folds.

Algorithm 1 requires only one round of communication from the collaborating sites to the lead site to trans-
fer the gradient information. In total O(Kp) and O(Kp+ Kp2) numbers are transferred in ADAP1 and ADAP2, 
respectively. For comparison among methods, the computation based on the global loss function requires sharing 
individual-level data (i.e., O(KNp) numbers) and is prohibited in practice due to privacy concerns; the local loss 
function does not need data-sharing; the average estimator requires collaborating sites to share their estimates (in 
total O(Kp) numbers) to the lead site in one round of communication. As shown in our simulation and real-world 
data application, although the communication cost is comparable to that of the average estimator (for ADAP1) 
or greater than the average estimator (for ADAP2), ADAP algorithms perform better than the average estimator.

Simulation study. We evaluate the performance of ADAP under five settings, and the methods under com-
parison are: the local estimator β̂1 , the average estimator β̂ave , the pooled estimator β̂N , ADAP1 estimator β̂(1) , 
and ADAP2 estimator β̂(2) . Without a loss of generality, site 1 is treated as the lead site. The considered settings 
are:

Setting 1: We fix the local sample size n1 = 1, 000 and increase the number of sites K ∈ (5, 10, 20, 30, 40, 50) . 
For other sites, we let nk = 1, 000× 10

uk with uk ∼ U(−1, 1) . The dimension is p = 200 and the covariates 
are generated from a multivariate normal distribution zki ∼ Np−1(0, �) with � = (0.1I(i �=j)) ∈ R(p−1)×(p−1) 
and xki = (1, zTki)

T . The true coefficient vector β∗ = (−2.5, 0.5, . . . , 0.5
︸ ︷︷ ︸

10

, 0, . . . , 0
︸ ︷︷ ︸

189

).

Setting 2: The covariates are generated from heterogeneous multivariate normal distributions, i.e., 
zki ∼ Np−1(µk , �k) where µk = (µk1, 0, . . . 0

︸ ︷︷ ︸

p−2

) ∈ Rp−1 with µk1 ∼ U(−1, 1) , �k = (ρ
I(i �=j)
k ) ∈ R(p−1)×(p−1) 

with ρk ∼ U(0.1, 0.5) and xki = (1, zTki)
T . We let µ11 = min

k
µk1 , and if z1 is the age, then this setting is to 
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mimic the scenario where the lead site’s patients are the youngest among all the sites. All other details are the 
same as in setting 1.
Setting 3: We fix the total sample size N = 10,000, and let K = 11 and increase the local sample size 
n1 ∈ (500, 1, 000, 2, 000, 3, 000, 4, 000, 5, 000, 6, 000, 7, 000, 8, 000). The remaining N − n1 samples are 
evenly assigned to other sites. The dimension is p = 200, and the covariates are generated as in setting 1 except 
� = (0.5I(i �=j)) ∈ R(p−1)×(p−1) . The true coefficient vector is β∗ = (−2, 1.5, 1, 1, 1, 1, 0, . . . 0

︸ ︷︷ ︸

194

).

Setting 4: We fix the number of sites K = 10 , and let nk = n for k = 1, 2, . . .K  and increase the 
sample size n ∈ (300, 400, 500, . . . , 1, 300) . All other details are the same as in setting 1 except 
� = (0.5I(i �=j)) ∈ R(p−1)×(p−1).
Setting 5: This setting is to see the variable selection performance of the ADAP methods. In total we have 10 
sites and each site has 1000 samples. The dimension is p = 200 , and the covariates are generated as in setting 
1 except � = (0.5I(i �=j)) ∈ R(p−1)×(p−1) . We let the true intercept to be -2 and let 10 covariates have the same 
non-zero coefficients with magnitude selected from (0.1, 0.2, 0.3, 0.4, 0.5). All the other coefficients are zero.

For the first four settings, the simulation is repeated 200 times and the number of replications under Setting 
5 is 400. We calculate the Euclidean distance of the estimate to its true value to see the parameter estimation 
performance, e.g., the estimation error for the local estimator is calculated as 1

200

∑200
r=1 �β̂

(r)
1 − β∗�2 , and we use 

the true positive rate and false positive rate to see the variable selection performance for Setting 5.

Application to opioid use disorder (OUD) data. The logistic lasso regression is applied to data from 
five participating sites of the OneFlorida Clinical Research  Consortium30. Combining all five sites, we obtained 
a total of 5000 cases and 10,000 controls, with each site contributing a small subset of all of their EHRs, i.e., 1000 
cases and 2000 controls, or a case–control ratio of 1:2. A list of risk factors was compiled from the literature and 
extracted from the database, including basic demographic features such as age, gender and race, and co-occur-
ring diagnoses, e.g., depression and sleep disorder (see Supplementary Table 2 for all covariates).

For smoking status, race, and insurance type, we treat missing values as a separate group. BMI (body mass 
index, taking the average value during the 12 months before the first prescription) and age are categorized into 
discrete variables to model the possible nonlinear relationship between these factors and OUD. As there is a 
large proportion of missing values (52.3%) for BMI, we imputed them using an R package  MICE51 by regressing 
BMI on all the other variables in the data and then predicting the missing values based on the fitted model. We 
then categorized them based on a pre-specified range stated in Supplementary Table 1, where the details of all 
the dummy variable creation can be found. After excluding nine extremely rare (with a prevalence in the overall 
sample < 0.2%) covariates from the analysis, we have 42 covariates in the model. See Supplementary Table 2 for 
a summary of characteristics of each variable across the five sites.

Without a loss of generality, we use site 4 as the lead site and apply all the above-described methods to 
the OUD data. In addition to comparing the estimation and variable selection performance, we conduct a 
random-splitting procedure to measure the prediction performance. Specifically, we randomly decompose the 
whole dataset into a training set to fit the model and a testing set to calculate AUC. Using a training size index 
t  ( t = 1, . . . , 9 ) to denote the training set size, each time we randomly select t × 100 cases and t × 200 controls 
from each site to form a training set and use the remaining samples as the testing set. To account for the ran-
domness of decomposition, we repeat the random-splitting procedure 200 times and compute the average AUC 
for each method as a prediction performance metric. Note that when t  is small, there are several fittings that 
failed due to the existence of some rare covariates whose prevalence becomes even lower or achieves zero in the 
training set after data splitting. To ensure more robust results, the three least prevalent covariates are removed, 
and the average AUC is calculated based on the successfully fitted results.

Ethics. The experimental protocol was approved by the University of Florida (UF) Institute Review Board 
(IRB) as the ethics committee under the protocol number IRB202001100. As part of the UF IRB process, the 
protocol has been reviewed in accordance with the institutional guidelines and consent waivers were approved 
as part of the IRB protocol.

 Data availability
The OUD dataset is available upon application to the OneFlorida+ network through the link: https:// onefl 
orida conso rtium. org/ front- door/ resea rch- infra struc ture- utili zation- appli cation/. For the reader’s convenience, 
a synthetic OUD dataset and the related R codes to conduct analysis can be found at https:// github. com/ Pennc 
il/ ADAP.

 Code availability
For dissemination, the R codes are available at https:// github. com/ Pennc il/ pda and through our R package: 
‘pda’52 in version 1.0-2.

Received: 12 January 2022; Accepted: 31 May 2022

https://onefloridaconsortium.org/front-door/research-infrastructure-utilization-application/
https://onefloridaconsortium.org/front-door/research-infrastructure-utilization-application/
https://github.com/Penncil/ADAP
https://github.com/Penncil/ADAP
https://github.com/Penncil/pda


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11073  | https://doi.org/10.1038/s41598-022-14029-9

www.nature.com/scientificreports/

References
 1. https:// www. fda. gov/ regul atory- infor mation/ search- fda- guida nce- docum ents/ use- elect ronic- health- record- data- clini cal- inves 

tigat ions- guida nce- indus try (Accessed May 2021).
 2. Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: Towards better research applications and clinical care. 

Nat. Rev. Genet. 13, 395–405 (2012).
 3. Atreja, A., Achkar, J. P., Jain, A. K., Harris, C. M. & Lashner, B. A. Using technology to promote gastrointestinal outcomes research: 

A case for electronic health records. Am. J. Gastroenterol. 103, 2171–2178 (2008).
 4. Smoller, J. W. The use of electronic health records for psychiatric phenotyping and genomics. Am. J. Med. Genet. B Neuropsychiatr. 

Genet. 177, 601–612 (2018).
 5. Du, W., Han, Y. S. & Chen, S. Privacy-preserving multivariate statistical analysis: Linear regression and classification. In Proceedings 

of the 2004 SIAM International Conference on Data Mining 222–233 (2004).
 6. Hripcsak, G. Observational health data sciences and informatics (OHDSI): Opportunities for observational researchers. Stud. 

Health Technol. Inform. 216, 574–578 (2015).
 7. Overhage, J. M., Ryan, P. B., Reich, C. G., Hartzema, A. G. & Stang, P. E. Validation of a common data model for active safety 

surveillance research. J. Am. Med. Inform. Assoc. 19, 54–60 (2011).
 8. Liu, J. et al. From distributed machine learning to federated learning: A survey. Knowl. Inf. Syst. 64, 885–917 (2022).
 9. Chen, Y. et al. Regression cubes with lossless compression and aggregation. IEEE Trans. Knowl. Data Eng. 18, 1585–1599 (2006).
 10. Luo, C. et al. DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models. Nat. Commun. 

13, 1678 (2022).
 11. Wu, Y., Jiang, X., Kim, J. & Ohno-Machado, L. Grid Binary LOgistic REgression (GLORE): Building shared models without sharing 

data. J. Am. Med. Inform. Assoc. 19, 758–764 (2012).
 12. Lu, C. L. et al. WebDISCO: A web service for distributed cox model learning without patient-level data sharing. J. Am. Med. Inform. 

Assoc. 22, 1212–1219 (2015).
 13. Zhang, Y., Duchi, J. C. & Wainwright, M. J. Communication-efficient algorithms for statistical optimization. J. Mach. Learn. Res. 

14, 3321–3363 (2013).
 14. Lee, J. D., Liu, Q., Sun, Y. & Taylor, J. E. Communication-efficient sparse regression. J. Mach. Learn. Res. 18, 115–144 (2017).
 15. Battey, H., Fan, J., Liu, H., Lu, J. & Zhu, Z. Distributed testing and estimation under sparse high dimensional models. Ann. Stat. 

46, 1352 (2018).
 16. Dobriban, E. & Sheng, Y. Distributed linear regression by averaging. Ann. Stat. 49, 918–943 (2021).
 17. Dobriban, E. & Sheng, Y. WONDER: Weighted one-shot distributed ridge regression in high dimensions. J. Mach. Learn. Res. 21, 

1–52 (2020).
 18. Duan, R. et al. Learning from local to global: An efficient distributed algorithm for modeling time-to-event data. J. Am. Med. 

Inform. Assoc. 27, 1028–1036 (2020).
 19. Jordan, M. I., Lee, J. D. & Yang, Y. Communication-efficient distributed statistical inference. J. Am. Stat. Assoc. 114, 668–681 (2018).
 20. Wang, J., Kolar, M., Srebro, N. & Zhang, T. Efficient distributed learning with sparsity. In Proceedings of the 34th International 

Conference on Machine Learning, Vol. 70, 3636–3645 (2017).
 21. Duan, R., Boland, M. R., Moore, J. H. & Chen, Y. ODAL: A one-shot distributed algorithm to perform logistic regressions on 

electronic health records data from multiple clinical sites. In BIOCOMPUTING 2019: Proceedings of the Pacific Symposium 30–41 
(2018).

 22. Duan, R. et al. Learning from electronic health records across multiple sites: A communication-efficient and privacy-preserving 
distributed algorithm J. . Am. Med. Inform. Assoc. 27, 376–385 (2020).

 23. Edmondson, M. J. et al. An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count 
outcomes. Sci. Rep. 11, 19647 (2021).

 24. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996).
 25. Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).
 26. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. S. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).
 27. Fan, J., Guo, Y. & Wang, K. Communication-efficient accurate statistical estimation. J. Am. Stat. Assoc. (2021).
 28. Tong, J. et al. Robust-ODAL: Learning from heterogeneous health systems without sharing patient-level data. Pac. Symp. Biocomput. 

25, 695–706 (2020).
 29. Duan, R., Ning, Y. & Chen, Y. Heterogeneity-aware and communication efficient distributed statistical inference. Biometrika 109, 

67–83 (2022).
 30. Shenkman, E. et al. OneFlorida Clinical Research Consortium: Linking a clinical and translational science institute with a com-

munity-based distributive medical education model. Acad. Med. 93, 451 (2018).
 31. Fleurence, R. L. et al. Launching PCORnet, a national patient-centered clinical research network. J. Am. Med. Inform. Assoc. 21, 

578–582 (2014).
 32. Okie, S. A flood of opioids, a rising tide of deaths. N. Engl. J. Med. 363, 1981–1985 (2010).
 33. Paulozzi, L. J. et al. Vital signs: Overdoses of prescription opioid pain relievers-United States, 1999–2008. Morb. Mortal. Wkly. Rep. 

60, 1487–1492 (2011).
 34. Vowles, K. E. et al. Rates of opioid misuse, abuse, and addiction in chronic pain: A systematic review and data synthesis. Pain 156, 

569–576 (2015).
 35. Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: 

Results from the 2018 national survey on drug use and health (HHS Publication No. PEP19-5068, NSDUH Series H-54). (Center 
for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2019). https:// www. 
samhsa. gov/ data/ report/ 2018- nsduh- detai led- tables (Accessed April 17, 2022).

 36. Saha, T. D. et al. Nonmedical prescription opioid use and DSM-5 nonmedical prescription opioid use disorder in the United States. 
J. Clin. Psychiatry 77, 772–780 (2016).

 37. Soares, W. E. 3rd. et al. Emergency department visits for nonfatal opioid overdose during the COVID-19 pandemic across six US 
health care systems. Ann. Emerg. Med. 79, 158–167 (2022).

 38. Li, Q. et al. Assessing the validity of a priori patient-trial generalizability score using real-world data from a large clinical data 
research network: A colorectal cancer clinical trial case study. AMIA Annu. Symp. Proc. 2019, 1101–1110 (2019).

 39. McDonough, C. W. et al. Optimizing identification of resistant hypertension: Computable phenotype development and validation. 
Pharmacoepidemiol. Drug Saf. 29, 1393–1401 (2020).

 40. Tong, J. et al. Identifying clinical risk factors for opioid use disorder using a distributed algorithm to combine real-world data from 
a large clinical data research network. AMIA Annu Symp Proc. 2020, 1220–1229 (2021).

 41. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 
33, 1–22 (2010).

 42. Cai, T., Liu, M. & Xia, Y. Individual data protected integrative regression analysis of high-dimensional heterogeneous data. J. Am. 
Stat. Assoc. 1–34 (2021).

 43. Luo, C. et al. dPQL: A lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving 
hospital profiling. J Am Med Inform Assoc. https:// doi. org/ 10. 1093/ jamia/ ocac0 67 (2022).

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-electronic-health-record-data-clinical-investigations-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-electronic-health-record-data-clinical-investigations-guidance-industry
https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables
https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables
https://doi.org/10.1093/jamia/ocac067


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11073  | https://doi.org/10.1038/s41598-022-14029-9

www.nature.com/scientificreports/

 44. Tong, J. et al. Distributed learning for heterogeneous clinical data with application to integrating COVID-19 data across 230 sites. 
NPJ Digit. Med. 5, 76 (2022).

 45. Luo, C., Duan, R., Naj, A. C., Kranzler, H. R., Bian, J. & Chen, Y. ODACH: A one-shot distributed algorithm for Cox model with 
heterogeneous multi-center data. Sci. Rep. 12, 6627 https:// doi. org/ 10. 1038/ s41598- 022- 09069-0 (2022).

 46. Edmondson, M. J. et al. Distributed Quasi-Poisson regression algorithm for modeling multi-site count outcomes in distributed 
data networks. J Biomed Inform. 131 104097 https:// doi. org/ 10. 1016/j. jbi. 2022. 104097 (2022).

 47. Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10, 557–570 (2002).
 48. Dwork, C., McSherry, F., Nissim, K. & Smith, A. Calibrating noise to sensitivity in private data analysis. J. Priv. Confid. 7, 17–51 

(2017).
 49. Wasserman, L. & Zhou, S. A statistical framework for differential privacy. J. Am. Stat. Assoc. 105, 375–389 (2010).
 50. Froelicher, D. et al. Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption. 

Nat. Commun. 12, 5910 (2021).
 51. Van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
 52. CRAN—Package pda. https:// cran.r- proje ct. org/ web/ packa ges/ pda/ index. html. https:// cran.r- proje ct. org/ web/ packa ges/ pda/ index. 

html (2021).

Acknowledgements
Although unrelated to the work here, Dr. Kranzler is a member of a scientific advisory board for Dicerna Pharma-
ceuticals, Sophrosyne Pharmaceuticals, and Enthion Pharmaceuticals; a consultant for Sobrera Pharmaceuticals; 
a member of the American Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which 
was supported in the last three years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi, Otsuka, and Pear 
Therapeutics; holds U.S. Patent 10,900,082. Genotype-Guided Dosing of Opioid Receptor Agonists. 26 Jan. 2021; 
and has received research support and medication supplies from Alkermes for an investigator-initiated clinical 
trial of alcohol use disorder. All the figures in this article are drawn by Dr. Xiaokang Liu using R in version 4.0.2 
(https:// www.R- proje ct. org/).

Author contributions
X.L., R.D., C.L., and Y.C. designed methods and experiments; X.L. conducted simulation experiments and data 
analysis; J.B. provided the dataset from the OneFlorida Clinical Research Consortium; X.L. drafted the main 
article; all authors made substantial contributions to revise the manuscript; all authors interpreted the results 
and provided instructive comments; all authors have approved the article.

Funding
Research reported in this publication was supported in part by National Institutes of Health (NIH) grants 
R01LM012607 1R01LM013519, 1R56AG074604, R01AI130460 and 1R01AG073435 (YC, XL, CL), R01CA246518 
(JB), R56AG069880 (JB, YC), and LM010098 (JM), a Centers for Disease Control and Prevention (CDC) Award 
U18DP006512 (JB), a Patient-Centered Outcomes Research Institute (PCORI) Project Program Award ME-
2019C3-18315 and ME-2018C3-14899 (YC, XL, CL) and the VISN4 Mental Illness Research, Education and 
Clinical Center of the Crescenz VAMC in Philadelphia (HK). All statements in this report, including its findings 
and conclusions, are solely those of the authors and do not necessarily represent the views of PCORI and its 
Board of Governors or Methodology Committee, CDC, or NIH.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 14029-9.

Correspondence and requests for materials should be addressed to Y.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-09069-0
https://doi.org/10.1016/j.jbi.2022.104097
https://cran.r-project.org/web/packages/pda/index.html
https://cran.r-project.org/web/packages/pda/index.html
https://cran.r-project.org/web/packages/pda/index.html
https://www.R-project.org/
https://doi.org/10.1038/s41598-022-14029-9
https://doi.org/10.1038/s41598-022-14029-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multisite learning of high-dimensional heterogeneous data with applications to opioid use disorder study of 15,000 patients across 5 clinical sites
	Results
	Overview of the ADAP method. 
	Evaluation of estimation accuracy and variable selection through simulation studies. 
	Results from the analysis of the OUD dataset. 

	Discussion
	Methods
	Data and problem formulation. 
	Benchmark methods. 
	Proposed method: ADAP. 
	Simulation study. 
	Application to opioid use disorder (OUD) data. 
	Ethics. 

	References
	Acknowledgements


