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Identifying influential spreaders 
by gravity model considering 
multi‑characteristics of nodes
Zhe Li1* & Xinyu Huang2*

How to identify influential spreaders in complex networks is a topic of general interest in the field 
of network science. Therefore, it wins an increasing attention and many influential spreaders 
identification methods have been proposed so far. A significant number of experiments indicate that 
depending on a single characteristic of nodes to reliably identify influential spreaders is inadequate. 
As a result, a series of methods integrating multi‑characteristics of nodes have been proposed. In 
this paper, we propose a gravity model that effectively integrates multi‑characteristics of nodes. The 
number of neighbors, the influence of neighbors, the location of nodes, and the path information 
between nodes are all taken into consideration in our model. Compared with well‑known state‑of‑
the‑art methods, empirical analyses of the Susceptible‑Infected‑Recovered (SIR) spreading dynamics 
on ten real networks suggest that our model generally performs best. Furthermore, the empirical 
results suggest that even if our model only considers the second‑order neighborhood of nodes, it still 
performs very competitively.

The focus of network science has been shifting from discovering macroscopic statistical regularities to micro-
scopic elements, vital nodes identification has received a huge amount of attention from researchers of network 
science in recent years. Vital nodes identification can be widely used in disease  analysis1,2, rumor  analysis3, 
information  propagation4, power grid  protection5, discovery of candidate drug targets and essential  proteins6, 
discovery of important  species7,8, and so on.

So far, most known methods only use structural  information9, which can be classified into neighborhood-
based centralities and path-based centralities roughly. Typical representatives of neighborhood-based centralities 
are degree  centrality10 (DC), H-index11 and k-shell decomposition  method12 (KS). For DC, the more neighbors 
a node has, the greater its influence. For H-index, the more large-degree neighbors a node has, the greater its 
influence. For KS, the more central a node locates in the network, the greater its influence. Besides, eigenvector 
 centrality13 (EC) is the representative neighborhood-based iterative method, suggesting that the influence of a 
node is not only determined by the number of its neighbors, but also determined by the influence of each neigh-
bor. Typical representatives of path-based centralities are betweenness  centrality14 (BC) and closeness  centrality15 
(CC). For BC, the more a node is located in shortest paths, the greater its influence. For CC, the closer a node is 
to other nodes, the greater its influence.

However, a significant number of experiments indicate that depending on a single characteristic of nodes to 
reliably identify influential spreaders is  inadequate9. As a result, the methods integrating multi-characteristics 
of nodes have been proposed. In particular, the methods based on gravity law seem very promising. As several 
laws behind phenomena in life are similar to the gravity law, the gravity model, which derives from the gravity 
law, is also favored and exhibited in many real-life scenarios. Representative examples include predicting the 
population migration between regions in  demography16 and forecasting the trade flows throughout countries 
in  economics17. In network science, the gravity model is utilized to evaluate the  influence18–20 of nodes, and so 
on. Recently, a series of gravity-law-based  algorithms18–30 considering both neighborhood information and 
path information have been proposed, and their performance is much better than the above well-known state-
of-the-art methods. Typical representatives are gravity  centrality18 (GC), improved gravity  centrality19 (IGC) 
and local gravity  model20 (LGM). For GC, the k-shell value of a node is regarded as its mass. For IGC, the focal 
node uses the k-shell value as its mass while its neighbors view the degree value as their masses. For LGM, the 
degree value of a node is regarded as its mass. However, whether the degree or k-shell is regarded as mass, the 
influence of neighbors is not taken into consideration. In view of this, we propose a gravity model that effectively 
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integrates multi-characteristics of nodes to measure the influence of nodes in spreading dynamics. In our model, 
the number of neighbors, the influence of neighbors, the location of nodes, and the path information between 
nodes are all taken into consideration.

Preliminaries
Well‑known state‑of‑the‑art methods. Denote G =< V ,E > an undirected and unweighted simple 
network, where V and E are the sets of nodes and links. Denote |V | = N and |E| = M , then the network has 
N nodes and M links. The adjacent matrix of G is denoted by A = (aij)N×N , if node i links to node j, aij = 1 , 
otherwise, aij = 0.

The degree  centrality10 (DC) of node i is measured by

where k(i) =
∑N

j=1 aij.
The H-index11 of node i, denoted by H(i), is defined as the maximal integer satisfying that there are at least 

H(i) neighbors of node i whose degrees are all greater than or equal to H(i).
The k-shell decomposition  method12 (KS) works by iterative decomposition of the network into different 

shells. The first step of KS is to remove the nodes whose degrees are equal to 1 from the network, which will 
cause a reduction of the degree value to the remaining nodes. Continually remove all the nodes whose residual 
degrees are less than or equal to 1, until all the remaining nodes’ residual degrees are greater than 1. All the 
removed nodes in the first step form the 1-shell and their k-shell values are all equal to 1. Repeat this process to 
obtain 2-shell, 3-shell, . . . , and so on. The decomposition process will continue until there are no more nodes 
in the network.

The eigenvector  centrality13 (EC) of node i is measured by

where c is a constant, generally speaking, c is set to the reciprocal of the largest eigenvalue of A.
The betweenness  centrality14 (BC) of node i is measured by

where gst is the number of shortest paths between node s and node t, and gst(i) is the number of shortest paths 
via node i between node s and node t.

The closeness  centrality15 (CC) of node i is measured by

where d(i, j) is the shortest distance from node i to node j.
The gravity  centrality18 (GC) of node i is measured by

where ks(i) is the k-shell value of node i, and ψi is the neighborhood set whose distance to node i is not greater 
than 3.

An extended version of GC, denoted by GC+, GC+ of node i is measured by

where �i is the neighborhood set whose distance to node i equals to 1.
The improved gravity  centrality19 (IGC) of node i is measured by

An extended version of IGC, denoted by IGC+, IGC+ of node i is measured by

The local gravity  model20 (LGM) of node i is measured by

(1)DC(i) = k(i),

(2)x(i) = c

N
∑

j=1

aijx(j),

(3)BC(i) =
∑

s �=i,s �=t,i �=t

gst(i)

gst
,

(4)CC(i) =
N − 1
∑

j �=i

d(i, j)
,

(5)GC(i) =
∑

j∈ψi

ks(i)ks(j)

d2(i, j)
,

(6)GC + (i) =
∑

j∈�i

GC(j),

(7)IGC(i) =
∑

j∈ψi

ks(i)k(j)

d2(i, j)
.

(8)IGC + (i) =
∑

j∈�i

IGC(j).
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where R is the truncation radius, and the optimal truncation radius R∗ can be estimated by

where 〈d〉 is the average distance of the network.

The SIR model. The SIR  model31 initially considers all the nodes as in the susceptible (S) state except the 
source node in the infected (I) state. At each time step, each infected node can infect its susceptible neighbors 
with probability β . Then, each infected node enters the recovered (R) state with probability � . The propagation 
process continues until there are no more nodes in the infected state. The influence of node i can be estimated by

where Nr is the number of recovered nodes when dynamic process achieves steady state. For simplicity, � is set 
to 1, then the corresponding epidemic  threshold32 can be calculated by

where 〈k〉 is the average degree, and 
〈

k2
〉

 is the second-order moment of the degree distribution.

The Kendall’s Tau. The Kendall’s  Tau33 is an index describing the strength of correlation between two 
sequences. Denote X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yN ) are two sequences with N elements. For any 
pair of two-tuples (xi , yi) and (xj , yj) (i  = j) , if both xi > xj and yi > yj or both xi < xj and yi < yj , the pair is 
concordant. If both xi > xj and yi < yj or both xi < xj and yi > yj , the pair is discordant. If xi = xj or yi = yj , 
the pair is neither concordant nor discordant. The Kendall’s Tau of X and Y can be calculated by

where n+ is the number of concordant pairs, and n− is the number of discordant pairs.

The monotonicity. The  monotonicity34 M of ranking list L is used to quantitatively measure the resolution 
of different indices, and it can be calculated by

where U is the size of L, and Ur is the number of ties with the same rank r.

Results
Algorithms. According to previous studies, the degree value of a node indicates the number of its neighbors, 
the k-shell value of a node reflects where it locates in the network, the eigenvector centrality value of a node 
can reflect both the number of its neighbors and the influence of each neighbor, and the distance between two 
nodes can describe the path information. Individually speaking, nodes with large degree value, k-shell value and 
eigenvector centrality value are likely to be more influential. Furthermore, a node is of higher impacts on nearby 
nodes. According to the above issues and inspired by the gravity law, we regard the sum of degree value, k-shell 
value and eigenvector centrality value of a node as its mass, and the shortest distance between two nodes as their 
distance. Therefore, the influence of node i can be estimated as

Such method is named as multi-characteristics gravity model (MCGM) as it considers multi-characteristics 
of nodes and adopts the gravity law.

It is not difficult to find that these three indices (DC, KS, EC) are not in the same order of magnitude, so 
normalization is required. As a result, Eq. (15) can be rewritten as

where kmax , ksmax and xmax denote the maximum of degree value, k-shell value and eigenvector centrality value, 
respectively.

However, since the k-shell index has smaller value space, the normalized k-shell index is still larger than the 
other two indices. Therefore, it is necessary to lower the impact of the k-shell index. Given an index, due to the 

(9)LGM(i) =
∑

d(i,j)≤R,j �=i

k(i)k(j)

d2(i, j)
,

(10)R∗ ≈
1

2
�d�,

(11)F(i) = Nr/N ,

(12)βc ≈
�k�

〈

k2
〉

− �k�
,

(13)τ =
2(n+ − n−)

N(N − 1)
,

(14)M(L) = [1−

∑

r∈L Ur(Ur − 1)

U(U − 1))
]
2

,

(15)MCGM(i) =
∑

d(i,j)≤R,j �=i

(k(i)+ ks(i)+ x(i))(k(j)+ ks(j)+ x(j))

d2(i, j)
.

(16)MCGM(i) =
∑

d(i,j)≤R,j �=i

(
k(i)
kmax

+
ks(i)
ksmax

+
x(i)
xmax

)(
k(j)
kmax

+
ks(j)
ksmax

+
x(j)
xmax

)

d2(i, j)
,
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scale-free property of networks, the index values of most nodes are relatively small. Therefore, the index with 
larger value space generally has a smaller ratio between the median and the maximum. In our model, it is obvious 
that the value space of degree centrality and eigenvector centrality is larger than that of k-shell index. In view of 
this, we can lower the impact of k-shell index by

where kmid , ksmid and xmid denote the median of degree value, k-shell value and eigenvector centrality value, 
respectively. The purpose of taking the maximum value of 

{

kmid
kmax

,
xmid
xmax

}

 is to prevent the function of k-shell index 
from being excessively weakened.

Finally, Eq. (15) can be rewritten as

The Algorithmic description of MCGM is provided in Algorithm 1. We take a toy network shown in Fig. 1 to 
illustrate the calculation process of Algorithm 1.

Firstly, calculate the degree value, k-shell value and eigenvector centrality value of each node in the toy net-
work, the results are shown in Table 1.

Secondly, calculate kmax = 5 , ksmax = 3 , xmax = 0.1917 , kmid = 3 , ksmid = 2 and xmid = 0.1256 , furthermore, 
calculate α = 0.9827.

Finally, the result of MCGM with R = 2 of the toy network is shown in Table 2. Take node 3 as an example, 
the 1-order neighbors of node 3 are node 2, node 4 and node 7, the 2-order neighbors of node 3 are node 1, node 
5 and node 6, so MCGM(3) = 16.9320.

Data description. In this paper, we apply ten real networks from six fields to test the performance of 
MCGM, including one transportation network  (USAir35), one communication network  (Email36), one infra-

(17)α =
max

{

kmid
kmax

,
xmid
xmax

}

ksmid
ksmax

,

(18)MCGM(i) =
∑

d(i,j)≤R,j �=i

(
k(i)
kmax

+
αks(i)
ksmax

+
x(i)
xmax

)(
k(j)
kmax

+
αks(j)
ksmax

+
x(j)
xmax

)

d2(i, j)
.
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Figure 1.  A toy network. The red nodes are in 1-shell, the green nodes are in 2-shell and the purple nodes are in 
3-shell.
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structure network  (Power37), one technological network  (Router38), two collaboration networks  (Jazz39 and 
 NS40) and four social networks  (PB41,  Facebook42,  WV43 and  Sex44). Table 3 shows these networks’ topological 
features, including the number of nodes, the number of links, the average degree, the average distance, the clus-
tering  coefficient37, denoted by C, the assortative  coefficient45, denoted by r, the degree  heterogeneity46, denoted 
by H, and the epidemic  threshold32 of SIR  model31.

Empirical results. Based on the above real networks, the well-known SIR  model31 is used to compare the 
influential rankings produced by algorithms and simulations. Given the network and the transmission probabil-
ity β , in order to guarantee the reliability of the results, 1000 independent realizations are executed and averaged 
to obtain the standard ranking of the influence of nodes (see details about SIR model in Preliminaries). In each 
realization, every node is selected once as the seed once. We apply the Kendall’s Tau ( τ ) between the standard 
ranking and the ranking produced by the algorithm to measure the accuracy of an algorithm. Since τ ∈ [−1, 1] , 
the closer the τ is to 1, the better the performance of the algorithm. The benchmark algorithms include degree 
 centrality10 (DC), H-index11, k-shell decomposition  method12 (KS), eigenvector  centrality13 (EC), betweenness 
 centrality14 (BC), closeness  centrality15 (CC),  DynamicRank47 (DR), the extended version of gravity  centrality18 

Table 1.  The degree value, k-shell value and eigenvector centrality value of each node in the toy network.

Node DC KS EC

1 1 1 0.0259

2 3 2 0.0943

3 3 2 0.1256

4 4 3 0.1714

5 4 3 0.1534

6 4 3 0.1534

7 5 3 0.1917

8 1 1 0.0421

9 1 1 0.0421

Table 2.  The result of MCGM with R = 2 of the toy network.

Node 1-order neighbors 2-order neighbors MCGM

1 2 3,7 1.9679

2 1,3,7 4,5,6 13.1293

3 2,4,7 1,5,6 16.9320

4 3,5,6,7 2,8,9 29.0955

5 4,6,7,8 2,3,9 26.0652

6 4,5,7,9 2,3,8 26.0652

7 2,3,4,5,6 1,8,9 35.9099

8 5 4,6,7 3.4704

9 6 4,5,7 3.4704

Table 3.  The topological features of ten real networks.

Networks N M 〈k〉 〈d〉 C r H βc

USAir 332 2126 12.8072 2.7381 0.7494 − 0.2079 3.4639 0.0231

Email 1133 5451 9.6222 3.6060 0.2540 0.0782 1.9421 0.0565

Power 4941 6594 2.6691 18.9892 0.1065 0.0035 1.4504 0.3483

Router 5022 6258 2.4922 6.4488 0.0329 − 0.1384 5.5031 0.0786

Jazz 198 2742 27.6970 2.2350 0.6334 0.0202 1.3951 0.0266

NS 379 914 4.8232 6.0419 0.7981 − 0.0817 1.6630 0.1424

PB 1222 16714 27.3552 2.7375 0.3600 − 0.2213 2.9707 0.0125

Facebook 4039 88234 43.6910 3.6925 0.6170 0.0636 2.4392 0.0095

WV 7066 100736 28.5129 3.2475 0.2090 − 0.0833 5.0992 0.0069

Sex 15810 38540 4.8754 5.7846 0.0000 − 0.1145 5.8276 0.0365
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(GC+), the extended version of improved gravity  centrality19 (IGC+) and local gravity  model20 (LGM). Table 4 
compares the accuracies of MCGM and the ten benchmark algorithms for β = βc . Furthermore, the accuracies 
of different β values (not too far from βc ) are shown in Fig. 2.

As shown in Table 4, the methods based on gravity law (GC+, IGC+, LGM and MCGM) show great advan-
tages over the classic methods (DC, H-index, KS, EC, BC, CC), especially in Power, Router and NS, the advantage 
of the methods based on gravity law are extremely obvious. Notice that, except the above three networks, the 
performance of EC is significantly better than other classic methods, and even performs competitively in com-
parison with the methods based on gravity law, which indirectly shows that the stability of the method based on 
the gravity law is better and their performance will not decline precipitously due to the differences of networks. 
Furthermore, for the methods based on gravity law, MCGM generally performs best since it effectively considers 
more characteristics of nodes. As shown in Fig. 2, MCGM still performs very competitively compared with the 
ten benchmark algorithms for different β not too far from βc , suggesting the robustness of our findings.

Figure 3 shows the optimal truncation radius of MCGM in the ten real networks. It is not difficult to find that 
the optimal truncation radius of most networks is concentrated at R = 2 . Therefore, we may simply set R = 2 
to test the performance of MCGM. Table 5 compares the accuracies of MCGM with R = 2 and the benchmark 
algorithms.

As shown in Table 5, MCGM with R = 2 generally performs best in comparison with the benchmark algo-
rithms, it still obtains the best results in six of the ten real networks. Since the optimal truncation radius approxi-
mately scales linearly with the average  distance20, if the average distance of the network is relatively large, setting 
R = 2 will have a significant impact on the performance of MCGM, such as Power whose average distance is 
18.9892. Fortunately, most real networks have small-world property, R∗ tends to be small in most cases.

Furthermore, we need to compare MCGM and MCGM without normalization to illustrate the importance 
of normalization. Table 6 compares the accuracies of MCGM using Eq. (15), MCGM using Eq. (16) and MCGM 
using Eq. (18). As shown in Table 6, MCGM has been gradually improved by normalization, suggesting the 
importance of normalization and the effectiveness of our normalization strategy.

Finally, we apply the  monotonicity34 to measure the resolution of different algorithms. As shown in Table 7, 
MCGM generally performs best even if it only considers 1-order neighbors or 2-order neighbors in most cases. 
The results reported in Table 7 demonstrate MCGM is a remarkably high-resolution algorithm.

Computational complexity. The computational complexity of the methods used in this paper is shown in 
Table 8. The computational complexity of DC, KS and EC is O(N), O(M) and O(N +M) , respectively. Therefore, 
it is obvious that the part with the highest computational complexity of MCGM is computing the R-order neigh-
bors of each node, it needs N〈k〉R times operations. Hence the computational complexity of MCGM is O(N〈k〉R) . 
Since most real networks have small-world property, R∗ = 2 in most cases (see Fig. 3), so the computational 
complexity of MCGM is generally not more than O(N〈k〉2) , where �k� ≪ N.

Discussion
In summary, we propose a novel gravity model that effectively integrates multi-characteristics of nodes, named as 
multi-characteristics gravity model (MCGM). The number of neighbors, the influence of neighbors, the location 
of nodes, and the path information between nodes are all taken into consideration in our model. In addition, we 
propose a normalization strategy to solve the problem that different indices are not in the same order of mag-
nitude, Table 6 suggests the importance of normalization and the effectiveness of our normalization strategy. 
Compared with well-known state-of-the-art methods, empirical analyses of the SIR spreading dynamics on ten 
real networks suggest that our model always performs very competitively, as shown in Table 4.

Table 4.  The algorithms’ accuracies of MCGM and the benchmark algorithms measured by Kendall’s Tau for 
β = βc. The parameters in the related algorithms (i.e., LGM and MCGM) are adjusted to their optimal values 
subject to the largest τ , that is, we need to search the optimal truncation radius which can maximize τ by 
traversing the truncation radius. Obviously, searching the optimal truncation radius in this way is very time-
consuming, fortunately, in subsequent experiments, we find that MCGM still performs very competitively even 
if the truncation radius is just set to 2. For each network, the best algorithm is emphasized by bold.

Networks DC H-index KS EC BC CC DR GC+ IGC+ LGM MCGM

USAir 0.7370 0.7568 0.7529 0.8946 0.5171 0.8027 0.9096 0.8985 0.9006 0.8875 0.9145

Email 0.7653 0.7883 0.7702 0.8832 0.6243 0.8163 0.8991 0.9119 0.9133 0.8697 0.9091

Power 0.4264 0.4009 0.3122 0.2818 0.3254 0.3838 0.7570 0.7906 0.8387 0.7442 0.7639

Router 0.3139 0.1928 0.1810 0.5924 0.3096 0.6383 0.8215 0.7896 0.7823 0.7894 0.8324

Jazz 0.8150 0.8513 0.7638 0.8854 0.4641 0.7008 0.8761 0.9158 0.9244 0.8666 0.9333

NS 0.5790 0.5610 0.5106 0.3660 0.3003 0.3397 0.7377 0.8511 0.8722 0.8372 0.8736

PB 0.8524 0.8694 0.8595 0.8738 0.6771 0.7852 0.9060 0.9189 0.9176 0.9030 0.9184

Facebook 0.6798 0.7066 0.7075 0.6226 0.4529 0.3940 0.7865 0.8414 0.8372 0.8275 0.8639

WV 0.7619 0.7662 0.7657 0.8334 0.6978 0.8127 0.8360 0.8298 0.8305 0.8276 0.8379

Sex 0.4664 0.4855 0.4925 0.7404 0.4118 0.7677 0.8139 0.8038 0.8076 0.7789 0.8448
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Figure 2.  The algorithms’ accuracies measured by Kendall’s Tau for different β . The six classic algorithms 
(DC, H-index, KS, EC, BC and CC) are represented by black symbols, DR is represented by green symbols, the 
typical algorithms based on the gravity law (GC+, IGC+ and LGM) are represented by blue symbols, MCGM is 
represented by red symbols.
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Figure 3.  The R∗ of MCGM for β = βc . Ten pentagrams represent ten networks and the blue line is R = 2 . The 
R
∗ of MCGM in USAir, Jazz and PB is 1, the R∗ of MCGM in Email, Router, NS, Facebook, WV and Sex is 2, 

and the R∗ of MCGM in Power is 6.

Table 5.  The algorithms’ accuracies of MCGM with R = 2 and the benchmark algorithms measured by 
Kendall’s Tau for β = βc. For each network, the best algorithm is emphasized by bold.

Networks DC H-index KS EC BC CC DR GC+ IGC+ LGM MCGM ( R = 2)

USAir 0.7370 0.7568 0.7529 0.8946 0.5171 0.8027 0.9096 0.8985 0.9006 0.8875 0.9092

Email 0.7653 0.7883 0.7702 0.8832 0.6243 0.8163 0.8991 0.9119 0.9133 0.8697 0.9091

Power 0.4264 0.4009 0.3122 0.2818 0.3254 0.3838 0.7570 0.7906 0.8387 0.7442 0.6616

Router 0.3139 0.1928 0.1810 0.5924 0.3096 0.6383 0.8215 0.7896 0.7823 0.7894 0.8324

Jazz 0.8150 0.8513 0.7638 0.8854 0.4641 0.7008 0.8761 0.9158 0.9244 0.8666 0.9255

NS 0.5790 0.5610 0.5106 0.3660 0.3003 0.3397 0.7377 0.8511 0.8722 0.8372 0.8736

PB 0.8524 0.8694 0.8595 0.8738 0.6771 0.7852 0.9060 0.9189 0.9176 0.9030 0.9123

Facebook 0.6798 0.7066 0.7075 0.6226 0.4529 0.3940 0.7865 0.8414 0.8372 0.8275 0.8639

WV 0.7619 0.7662 0.7657 0.8334 0.6978 0.8127 0.8360 0.8298 0.8305 0.8276 0.8379

Sex 0.4664 0.4855 0.4925 0.7404 0.4118 0.7677 0.8139 0.8038 0.8076 0.7789 0.8448

Table 6.  The algorithms’ accuracies of MCGM using Eq. (15), MCGM using Eq. (16) and MCGM using 
Eq. (18) measured by Kendall’s Tau for β = βc. The parameters are adjusted to their optimal values subject to 
the largest τ . For each network, the best algorithm is emphasized by bold.

Networks MCGM (Eq. 15) MCGM (Eq. 16) MCGM (Eq. 18)

USAir 0.8946 0.9060 0.9145

Email 0.8782 0.8986 0.9091

Power 0.7557 0.7569 0.7639

Router 0.7992 0.7983 0.8324

Jazz 0.8888 0.9212 0.9333

NS 0.8428 0.8710 0.8736

PB 0.9047 0.9110 0.9184

Facebook 0.8381 0.8547 0.8639

WV 0.8299 0.8341 0.8379

Sex 0.7877 0.7996 0.8448
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However, MCGM needs to find the optimal truncation radius by traversing the truncation radius and it is 
very time-consuming. Fortunately, the optimal truncation radius approximately scales linearly with the average 
 distance20, and most real networks have small-world  property37,48, so even if the truncation radius is just set to 
2, MCGM still performs very competitively in most cases, as shown in Table 5. Therefore, without increasing 
the computational complexity, MCGM effectively considers more characteristics of nodes and obtains more 
accurate results.

Although the computational complexity of MCGM is not high, it needs the global topological structure, same 
as GC+ and IGC+. While LGM can work under the case where the global topology is not known. As a result, 
our suggestions for practical use are as follows: if the network’s global topology is known, apply MCGM and set 
R to 2, otherwise, apply LGM and set R to 2 or 3.

Of course, there are still some potential problems in the future. First of all, the gravity law is symmetrical, but 
due to the different effects of different nodes or the inherent asymmetry of  dynamics49,50, an asymmetric form 
of the gravity law may be relevant. Secondly, in weighted complex networks, the heterogeneity of links greatly 
changes nodes’  importance51, a weighted form of the gravity law may be relevant. Finally, in order to establish a 
unified research framework, a unified gravity model is needed to be proposed. Although GC+, IGC+ and LGM 
are proposed from different perspectives, a unified form of expression exists. We propose a rough model which 
intends to start further discussion on this issue. The rough unified gravity model is described as

where a and b are adjustable parameters. If a = 1 and b = 1 , the unified gravity model degenerates to LGM. If 
a = 0 and b = 0 , the unified gravity model degenerates to GC (GC+ can be obtained by Eq. (6)). If a = 0 and 
b = 1 , the unified gravity model degenerates to IGC (IGC+ can be obtained by Eq. (8)).

Data availability
All relevant data are available at https:// github. com/ MLIF/ Netwo rk- Data.

(19)UGM(i) =
∑

d(i,j)≤R,j �=i

(ak(i)+ (1− a)ks(i))(bk(j)+ (1− b)ks(j))

d(i, j)2
,

Table 7.  The monotonicity of different algorithms. The parameters in the related algorithms (i.e., LGM and 
MCGM) are adjusted to their optimal values subject to the largest τ. For each network, the best algorithm is 
emphasized by bold.

Networks DC H-index KS EC BC CC DR GC+ IGC+ LGM MCGM

USAir 0.8586 0.8355 0.8114 0.9951 0.6970 0.9892 0.9951 0.9951 0.9951 0.9933 0.9951

Email 0.8874 0.8583 0.8088 0.9999 0.9400 0.9988 0.9999 0.9999 0.9999 0.9998 0.9999

Power 0.5927 0.3930 0.2460 0.9999 0.8314 0.9998 0.9962 0.9996 0.9997 0.9999 0.9999

Router 0.2886 0.0876 0.0691 0.9964 0.2985 0.9961 0.9956 0.9965 0.9965 0.9964 0.9966

Jazz 0.9659 0.9383 0.7944 0.9994 0.9885 0.9878 0.9993 0.9995 0.9993 0.9991 0.9994

NS 0.7642 0.6825 0.6421 0.9955 0.3388 0.9928 0.9950 0.9954 0.9956 0.9933 0.9955

PB 0.9328 0.9268 0.9064 0.9993 0.9489 0.9980 0.9993 0.9993 0.9993 0.9991 0.9993

Facebook 0.9739 0.9665 0.9419 0.9999 0.9855 0.9967 0.9999 0.9999 0.9999 0.9999 0.9999

WV 0.7761 0.7732 0.7673 0.9996 0.7704 0.9994 0.9996 0.9996 0.9996 0.9996 0.9996

Sex 0.6002 0.5457 0.5288 0.9997 0.6757 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997

Table 8.  The computational complexity of MCGM and the benchmark algorithms.

Methods Topology Complexity

DC Local O(N)

H-index Semi-local O(N +M)

KS Global O(M)

EC Global O(N +M)

BC Global O(NM + N2logN)

CC Global O(NM + N2logN)

DR Semi-local O(N〈k〉3)

GC+ Global O(N〈k〉3)

IGC+ Global O(N〈k〉3)

LGM Semi-local O(N〈k〉R)

MCGM Global O(N〈k〉R)

https://github.com/MLIF/Network-Data
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