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Deep convolutional neural 
networks for automated scoring 
of pentagon copying test results
Jumpei Maruta1,2*, Kentaro Uchida2, Hideo Kurozumi2, Satoshi Nogi2, Satoshi Akada2, 
Aki Nakanishi1, Miki Shinoda3, Masatsugu Shiba4 & Koki Inoue2,4

This study aims to investigate the accuracy of a fine-tuned deep convolutional neural network (CNN) 
for evaluating responses to the pentagon copying test (PCT). To develop a CNN that could classify 
PCT images, we fine-tuned and compared the pre-trained CNNs (GoogLeNet, VGG-16, ResNet-50, 
Inception-v3). To collate our training dataset, we collected 1006 correct PCT images and 758 incorrect 
PCT images drawn on a test sheet by dementia suspected patients at the Osaka City Kosaiin Hospital 
between April 2009 and December 2012. For a validation dataset, we collected PCT images from 
consecutive patients treated at the facility in April 2020. We examined the ability of the CNN to 
detect correct PCT images using a validation dataset. For a validation dataset, we collected PCT 
images (correct, 41; incorrect, 16) from 57 patients. In the validation testing for an ability to detect 
correct PCT images, the fine-tuned GoogLeNet CNN achieved an area under the receiver operating 
characteristic curve of 0.931 (95% confidence interval 0.853–1.000). These findings indicate that our 
fine-tuned CNN is a useful method for automatically evaluating PCT images. The use of CNN-based 
automatic scoring of PCT can potentially reduce the burden on assessors in screening for dementia.

In clinical psychology, tests in which patients copy geometric or representational figures are widely used for 
detecting and evaluating constructional apraxia. The Mini-Mental State Examination (MMSE), a dementia 
screening tool, widely used in Japan, includes the Pentagon Copying Test (PCT) as an assessment of construc-
tional apraxia1. In the context of the MMSE, the PCT images can dichotomously be assessed as correct or 
incorrect.

Figure copying tests can lead to biased scoring by different raters; there are attempts to standardize scoring 
methods in various ways2–4. There is also the problem of the human cost of evaluation. Computerized scoring of 
figure copying tests can be considered reliable because the rater experience does not affect the scoring. A recent 
study reported the robustness of automated quantitative scoring of PCT has been based on information, such as 
the number or coordinates of pentagons, obtained from object (or feature) detection5,6. However, since patients 
with dementia often redraw figures many times, or sometimes copy in close proximity to a model figure7, there is 
a possibility that detection may not be successful due to many artifacts. Although Folstein’s criterion seems clear 
at first glance, it may not be sufficient in some cases. Examples of difficult judgement include: (1) the extent to 
which a slightly rounded corner of a pentagon is acceptable as a corner, and (2) the extent to which a distorted 
edge of a pentagon is acceptable as a line segment. The PCT images made by patients with suspected dementia 
vary significantly, and these problems are often experienced in the scoring process. Therefore, it is necessary 
to create an automatic scoring artificial intelligence (AI) system that has learned the results of scoring made by 
clinical psychologists as training data.

Recent advances in AI technology may facilitate the automatic scoring of figure copying tests. In recent years, 
it has been shown that vision task results can readily be assessed with deep learning technologies8,9, especially 
those involving convolutional neural networks (CNN)10. A noteworthy advantage of CNNs is that they can be 
generalized to recognize tasks other than the one for which they were originally designed11,12. However, CNNs 
also have some serious disadvantages. For example, a CNN must be trained with a largely labeled image dataset to 
avoid overfitting; further, training a CNN from scratch requires a considerable amount of time and computational 
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power. One way to overcome these challenges in creating a CNN is to use fine-tuning to create one to classify 
specific objects or figures based on a CNN trained to classify natural images13.

However, Li et al. reported that they could not achieve sufficient accuracy in PCT correctness using fine-tuned 
Inception-v3 CNN6. They used 658 PCT images (correct 327, incorrect 331) as their training set. The inclusion 
of the larger number of PCT images from patients suspected with dementia may further improve the accuracy 
of CNN-based PCT decisions. In this study, we used fine-tuning strategy to create a CNN for automatically 
evaluating PCT images with the larger number of the training data from patients suspected with dementia and 
then investigated the accuracy of our CNN.

Materials and methods
Ethics statement.  The study protocol was approved by the ethics committees of the Osaka City Kosaiin 
Hospital and the Osaka City University Graduate School of Medicine in accordance with the Declaration of Hel-
sinki (2013) and the Ethical Guidelines for Medical and Biological Research Involving Human Subjects in Japan. 
Since this study was an observational study using information obtained in routine medical care; no additional 
tests or questionnaires were conducted for this study, informed consent was waived by the ethics committees 
of the Osaka City Kosaiin Hospital and the Osaka City University Graduate School of Medicine. The patients 
whose PCT images were used were given the opportunity to opt out of the study through an online or offline 
application. Failure to opt out was regarded as giving consent for the use of their PCT images, demographic data, 
and psychological test data.

Datasets.  For a training dataset, we retrospectively collected 1006 correct PCT images and 758 incor-
rect PCT images from dementia suspected patients who underwent treatment at Osaka City Kosaiin Hospital 
(Osaka, Japan) between April 2009 and December 2012.

Patients who visited Osaka City Kosaiin Hospital in April 2020 and underwent PCT as routine medical care 
of their regular medical care were included as validation participants. The validation dataset comprised PCT 
images created by the participants.

The invitation to participate in the study was posted on the hospital bulletin board and the website of the 
Osaka City University Graduate School of Medicine, our collaborating institution. None of the participants 
wished to opt out.

PCT procedures.  The PCT was administered to the patients by clinical psychologists during routine care. 
In the procedure, the patients were asked to copy an image of two intersecting pentagons with pencils on blank 
sheets of paper. The drawings were then scanned with a SCANSNAP iX500 scanner (Fujitsu, Tokyo, Japan), and 
the scanned images were cropped to focus on the drawings of the pentagons. If nothing was drawn, then a blank 
area was cropped. Psychologists classified each PCT drawing as correct or incorrect based on Folstein’s MMSE 
criteria, which defines a correct PCT drawing as being “composed of two overlapping pentagons, with the over-
lapping shape being a rhombus”1,14. If there is any doubt about the scoring, multiple psychologists consult with 
each other to standardize the scoring criteria.

Fine‑tuning.  To create a CNN capable of classifying PCT images, we fine-tuned the CNNs (GoogLeNet, 
VGG-16, ResNet-50, Inception-v3) based on the training dataset PCT images. We used the Deep Learning Tool-
box in MATLAB 2021b (MathWorks, Natick, MA, USA) for all data augmentation and fine-tuning procedures.

In each CNN, the last fully connected layer was replaced with a new fully connected layer with two classes 
(correct, incorrect). For initial data augmentation, the training dataset PCT images were randomly shifted 
(− 10 to 10 pixels), resized (0.7 to 1.0), and rotated (− 90° to 90°). An optimization algorithm called stochastic 
gradient descent with momentum was used as a solver for training the CNNs. The solver parameters were as 
follows: mini-batch size, 32; maximum epochs, 200; and initial learning rate, 0.0003. For each PCT image, the 
last layer was arranged to output a value for a variable called “probability of PCT correct,” hereafter abbrevi-
ated as “P(PCTcorrect).” The P(PCTcorrect) expressed the CNN’s estimate for the probability that a given PCT 
image had been categorized as correct. The values of the P(PCTcorrect) variable ranged from 0 to 1, with higher 
values indicating greater CNN-calculated probabilities that a given PCT image had been categorized as correct.

Validation testing.  The fine-tuned CNNs were used to calculate a P(PCTcorrect) value for each valida-
tion dataset PCT image. The performance of P(PCTcorrect) value for each CNN was evaluated in terms of the 
following performance metrics: (1) accuracy, (2) precision, (3) recall (sensitivity), (4) specificity, (5) area under 
the receiver operating characteristic curve (AUROC). The AUROC was used as an indicator for comparison 
between the fine-tuned CNNs. Here, true positive (TP) denotes correctly copied PCT images classified as cor-
rectly copied ones when P(PCTcorrect) was above the optimal threshold. True negative (TN) denotes incorrectly 
copied PCT images classified as incorrectly copied ones when P(PCTcorrect) was not above the optimal thresh-
old. False positive (FP) denotes incorrectly copied PCT images classified as correctly copied ones. False negative 
(FN) denotes correctly copied PCT images classified as incorrectly copied ones.

(1)accuracy =
TP + TN

TP + FP + TN + FN

(2)precision =
TP

TP + FP



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9881  | https://doi.org/10.1038/s41598-022-13984-7

www.nature.com/scientificreports/

Statistical analysis.  All statistical analyses were performed with Easy R (Saitama Medical Center, Jichi 
Medical University, Saitama, Japan)15, which is a graphical user interface implemented in R version 2.13.0 (R 
Foundation for Statistical Computing, Vienna, Austria). We set our statistical significance threshold at p < 0.05. 
The confidence interval for each area-under-the-curve (AUC) value was calculated with the DeLong test. Opti-
mal cutoff threshold was determined at the closest point to the upper left corner.

Results
The PCT images drawn by 57 patients were collected as a validation data set. The patients’ backgrounds were as 
follows: 37 females, 20 males, mean age 78.16 ± 10.76 years old, 39 patients with Alzheimer’s disease, 4 patients 
with psychiatric disorders, 4 with frontotemporal dementia, 3 patients with cerebrovascular dementia, and 7 
with other diseases. Of the 57 PCT images for validation, 41 were correctly copied by Folstein’s MMSE criteria.

Table 1 shows the performance metrics of the fine-tuned CNNs in validation testing. The finetuned Goog-
LeNet CNN achieved the highest AUROC.

Figure 1 shows the PCT images in validation dataset and the P(PCTcorrect) values calculated by the fine-
tuned GoogLeNet CNN. The lower the value of P(PCTcorrect), the more the copy tended to collapse. A fine-tuned 
GoogLeNet CNN embedded in an iPhone application is available for download (Available on the Testflight: 
https://​testf​light.​apple.​com/​join/​xXmo7​rRi).

Figure 2 shows the ROC curve in the validation dataset for prediction of the PCT images being categorized 
as correct based on P(PCTcorrect) values calculated by the fine-tuned GoogLeNet CNN. The area under the 
receiver operating characteristic curve (AUROC) was 0.931 (95% confidence interval 0.853–1.000).

(3)recall =
TP

TP + FN

(4)specificity =
TN

TP + FP + TN + FPN

Table 1.   The performance metrics of CNN models for the validation dataset images. AUROC, area under the 
receiver operating characteristic curve; CNN, convolutional neural network.

CNN model Accuracy Precision Recall (sensitivity) Specificity AUROC

GoogLeNet 0.877 0.947 0.878 0.875 0.931

VGG-16 0.930 0.951 0.951 0.875 0.922

ResNet-50 0.789 0.872 0.829 0.688 0.784

Inception-v3 0.789 0.939 0.756 0.875 0.864

Figure 1.   The validation dataset images and the P(PCTcorrect) values calculated by the fine-tuned GoogLeNet 
CNN. CNN, convolutional neural network; PCT, pentagon copying test; P(PCTcorrect), CNN-calculated 
probability of the PCT image being categorized as correct.

https://testflight.apple.com/join/xXmo7rRi
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Discussion
In this study, we fine-tuned pre-trained CNNs using the larger number of patient’s PCT images than the previ-
ous study and the clinical psychologist’s scoring results as training data. Furthermore, we also collected time-
separated validation data to evaluate the accuracy of the CNNs. The P(PCTcorrect) value calculated by the 
fine-tuned GoogLeNet CNN was in strong agreement with the scoring results by clinical psychologists. Although 
the tested data sets are different and cannot be simply compared, the AUROC of the P(PCTcorrect) of the fine-
tuned GoogLeNet CNN, 0.931, had outperformed the AUROC of the CNN using supervised transfer learning 
reported by Li et al.6, 0.72, and was the highest among the automatic scoring of PCTs using fine-tuning strategy.

Our findings indicate that our fine-tuned GoogLeNet CNN may be useful for automatically evaluating PCT 
images. The P(PCTcorrect) value agrees with PCT correct with high accuracy, which may be useful for scoring 
PCT images. The P(PCTcorrect) is useful as a reference to evaluate the constructional apraxia. The results of this 
study suggest using AI to assess constructional apraxia.

Fine-tuned CNN may also be useful in the assessment of figure copying tests other than the PCT. In this study, 
we were able to fine-tune a pre-trained CNN for PCT scoring without any special adjustments just by preparing 
the teacher data. Contrarily, in the study that evaluated PCTs using object or feature detection, it was necessary 
to set up a system to detect the features of PCTs that would be scored as correct answers5,6. The usefulness of 
fine-tuned CNN to evaluate the clock drawing test and the Rey-Osterrieth complex figure copying test has also 
been reported16,17.

Of the multiple CNNs compared, the fine-tuned GoogLeNet CNN achieved the highest AUROC. The Goog-
LeNet CNN had relatively low ImageNet validation accuracy among the CNNs compared18. This may be due 
to the fact that PCT images are very different from the natural images (dogs, boats, etc.) targeted by ImageNet.

Further, our CNN resulted in incorrect scoring for some images. The cause of the mistakes was unknown 
because the features captured by CNN to make its decisions were unknown. This is a common problem in AI 
implemented by deep learning19.

This study has several limitations. First, the validation participants did not include any patients with finger 
tremors. As per Folstein’s guidelines for the MMSE, tremors should be ignored when scoring various test results, 
but it is often difficult to evaluate PCT images for patients with finger tremors. Building on the findings of this 
study, future studies should examine the robustness of our CNN when evaluating PCT images from patients 
with finger tremors.

This study also has certain strengths. In the present study, a fine-tuned CNN based on pre-trained GoogLeNet 
CNN automatically scored the PCT images; the results were in high agreement with the results obtained by 
clinical psychologists using Folstein’s MMSE criteria (AUROC, 0.931). The automatic scoring of PCTs using the 
CNN presented here does not require any input using mobile devices and removing artifacts. Therefore, there 
are fewer restrictions for conducting the test. An automatic PCT scoring using CNNs may reduce the burden 
and assessment bias of raters in dementia screening.

Figure 2.   ROC curve in the validation dataset for prediction of the PCT images being categorized as correct 
based on P(PCTcorrect) values calculated by the fine-tuned GoogLeNet CNN. aThe cut-off probability 
(specificity, sensitivity) is shown at the point closest to the top left-hand corner. CNN, convolutional neural 
network; PCT, pentagon copying test; P(PCTcorrect), CNN-calculated probability of the PCT image being 
categorized as correct; ROC, receiver operating characteristic.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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