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Nanoscale defect evaluation 
framework combining real‑time 
transmission electron microscopy 
and integrated machine 
learning‑particle filter estimation
K. Sasaki1, M. Muramatsu1*, K. Hirayama1, K. Endo1 & M. Murayama2,3

Observation of dynamic processes by transmission electron microscopy (TEM) is an attractive 
technique to experimentally analyze materials’ nanoscale phenomena and understand the 
microstructure‑properties relationships in nanoscale. Even if spatial and temporal resolutions of 
real‑time TEM increase significantly, it is still difficult to say that the researchers quantitatively 
evaluate the dynamic behavior of defects. Images in TEM video are a two‑dimensional projection of 
three‑dimensional space phenomena, thus missing information must be existed that makes image’s 
uniquely accurate interpretation challenging. Therefore, even though they are still a clustering high‑
dimensional data and can be compressed to two‑dimensional, conventional statistical methods for 
analyzing images may not be powerful enough to track nanoscale behavior by removing various 
artifacts associated with experiment; and automated and unbiased processing tools for such big‑data 
are becoming mission‑critical to discover knowledge about unforeseen behavior. We have developed 
a method to quantitative image analysis framework to resolve these problems, in which machine 
learning and particle filter estimation are uniquely combined. The quantitative and automated 
measurement of the dislocation velocity in an Fe‑31Mn‑3Al‑3Si autunitic steel subjected to the tensile 
deformation was performed to validate the framework, and an intermittent motion of the dislocations 
was quantitatively analyzed. The framework is successfully classifying, identifying and tracking 
nanoscale objects; these are not able to be accurately implemented by the conventional mean‑path 
based analysis.

In recent years, researchers have been trying to implement machine learning (ML) based approaches in a wide 
range of scientific fields, and it has attracted considerable  attention1. ML has demonstrated its capability to 
implement semantic segmentation, which classifies objects in an image pixel by pixel, and has been applied to 
practical applications for example, automated driving technology and the medical  field2–7.

An emerging application of ML is analytical methods for extracting characteristic information about the 
structure, composition, and properties of various materials, especially nanoscale  materials8–17. Many reported 
cases of extracting specific features from a dataset by ML have shown that ML can be further advanced toward a 
major unbiased data-driven analysis method to gain new insights from the extracted  features2. This is true also 
for the temporal series of dataset such as observations of dynamic phenomena, there have also been attempts to 
use ML-based approaches. Several recent studies employed ML to predict the plastic deformation of micron-scale 
crystalline solids using data from discrete dislocations dynamics  simulations18, or to predict microstructure evo-
lution and associated properties changes from spatiotemporal  data19. In the case of research focusing on crystal 
defects, ML has been mostly used to classify and semantically segment crystal defects in materials in electron 
microscope  images8,9,20–22. Therefore, there are very few examples of ML analyzing the temporal change of crystal 
defects such as dislocation dynamics directly from experimental observation videos.
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The general relationship between the macroscopic deformation behavior of metallic materials and the aver-
age dislocation velocity is a well-known  fact23. However, the quantitative evaluation of dislocation motion has 
not been studied in details. Dislocations generally exhibit intermittent motions, indicating that it is important 
to quantitatively evaluate their temporal velocities instead of their average velocities, whereas it has been dif-
ficult to capture the motion of individual dislocation and assess their temporal velocities experimentally using 
transmission electron microscopy (TEM) in the past. Recent dramatic advances in digital imaging technology 
have made it possible to provide the moment of a nanoscale reaction on a regular laboratory  scale24. Nonetheless, 
frameworks for quantitatively analyzing dynamic observation data taken by TEM and linking them to mechanical 
properties are still in the trial-and-error stage. There are multiple technical challenges for implementing auto-
matic tracking to nanoscale objects such as dislocations in TEM videos even the nanoscale objects are clearly 
observed in the video due to the TEM’s unique contrast generation mechanisms and the nature of nanoscale 
microstructural features. First, the nanoscale objects of interest must be recognized in a large number of frames 
in the TEM video data, in which misleading microstructural or image features frequently coexist. Second, the 
number of valid video frames is almost always smaller than the number of data required for training in ML, 
making it difficult to universally satisfy the conditions necessary for ML optimization. Third, even after the 
nanoscale objects of interest are detected, individual objects must be separately tracked throughout the TEM 
video with being distinguished from others. Especially in the case that the objects repeat unexpected behaviors 
such as sudden move-and-stop and irregular change of own shape, tracking the objects becomes highly chal-
lenging. The unexpected behaviors are often caused by atomic to nanoscale local environment, which is closely 
related the inhomogeneity of material. Thus, developing a model to predict such behaviors for data analysis 
would be nearly impossible.

In this study, we developed a ML-based framework for quantitative analysis of nanoscale objects’ dynamic 
behavior based on the information obtained by detecting the objects in a video using machine learning and 
tracking the detected objects with particle filters. We confirmed that if a video presents a single experiment, the 
number of data is sufficient for machine learning to detect dislocations in that video. We then applied the devel-
oped ML-based framework to a video in which the dislocation gliding under applied external tensile stresses in 
a metal was observed using TEM. By detecting and tracking dislocations in the TEM video singly and as a whole 
using the framework, we were able to calculate the time history of dislocation velocity and quantitatively analyzed 
its behavior. In particular, we employed the particle filter to the quantitative analysis part of the framework. 
Thanks to the probabilistic prediction of the particle filter, we successfully captured the unexpected behaviors 
of individual dislocations.

Results
When a metallic material is plastically deformed by applying the stress τ , a slip deformation occurs along a 
specific crystal direction (slip direction) on certain crystal planes (slip plane). Slip deformation is localized by 
the movement of dislocations, indicated by the "⊥" symbol, on the slip plane as schematically shown in Sup-
plemental Fig. 125.

Assuming no dislocation formation or annihilation occurs, the macroscopic shear strain of a crystal γ is 
expressed as γ = ρbx using the dislocation density ρ , the magnitude of the Bugers vector b and the average travel 
distance of dislocations x . Differentiating both sides by time t  , the strain rate of the crystal γ̇ can be written by 
the average migration velocity of the dislocations v.

For the dislocation velocity measurement by TEM observation, Johnston et al. reported one of the first suc-
cessful cases that measured the average dislocation  velocity23. They measured the average velocity of the dislo-
cations by dividing the displacement of the dislocations by the time that the stress was applied. However, since 
the actual dislocation motion is intermittent, a continuous velocity measurement providing the chronological 
changes is necessary to understand the intrinsic dislocation behavior. Therefore, the overreaching goal of the 
framework development is to assess the traverse speed of nanoscale objects such as dislocations without com-
promising the original data’s temporal and spatial resolutions. In this study, we attempt to archive the10 nm/s 
order temporal and spatial resolutions by applying a U-Net based ML and particle filter integrated method to 
in situ TEM deformation videos.

The actual validation of the framework proposed in this study was implemented by the following steps 
described in the rest of this section. The experimental data, TEM videos, were taken during in-situ TEM defor-
mation experiments, in which a high-manganese austenitic steel (Fe-31Mn-3Al-3Si) was subjected to a forced 
displacement with a tensile rate of 100 nm/s. as shown in Fig. 1a. In Fig. 1b, a group of dislocation lines like 
arcs moved to the left. Since TEM images represent a 2D projection of a 3D object, the real space geometry of 
dislocations in the crystalline grain needs to be retrieved to evaluate the stress condition in the observed area. 
The crystal orientation of the material in the movie is shown in Fig. 1b. In this particular case, the dislocations 
observed in the movie are moving on the ABC plane and the incident electron beam is transmitted in the direc-
tion of −→CD in Fig. 1b. Table 1 summarizes the Schmid factors for the ABC and ABD planes, which indicate the 
contribution fraction of the load stress to the resolved shear force acting on the slip system.

At the first glance, the position of the field of view (FOV) of the TEM video was not still in order to track 
down moving dislocations, i.e., there was a large shift of recorded area in the middle of the video. Without fixing 
the FOV, the velocity of dislocations cannot be measured accurately. We fixed the FOV by i) choose small rec-
ognizable features that were in a dislocation-free region and stationary between at least two consecutive scenes 
and track down the chosen points throughout the TEM video, ii) shift corrections were calculated for the points 
between scenes , then iii) the corrections were applied to the video under the estimation that the movement of 

(1)γ̇ = ρbv
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the points were corresponding to that of the scenes. Since the position of each of frames shift relative each other 
by applying the correct, overlapping parts were cropped throughout the corrected video to finish the FOV fixing.

It should be noted that the optical flow  estimation26–28 was employed to choose the points in the above step 
i) and to calculate the displacement by tracking the characteristic points in the step ii). Here, optical flow is a 
method to track feature points in a video, and commonly used in the computer vision field. As nothing moved 
excepting the dislocations in the TEM experiment video of this study, optical flow is one of the most suitable 
methods to fix the FOV of the video.

An example of the fixed FOV is shown in Fig. 2a. The cropped region is denoted by the red frame in Fig. 2a, 
and its size is 320 × 320 pixels. After optical flow process, the FOV does not move within the cropped region. 
The fixation of the position of the FOV of the TEM video by this process makes it feasible to evaluate disloca-
tion velocities.

In the next step, we performed the semantic segmentation for all frames of the TEM video by ML. Classi-
fication of the pixels into dislocation and non-dislocation pixels was conducted on a pixel-by-pixel basis. This 
mechanical classification makes it possible to objectively evaluate the motion of dislocations among the frames. 
There are many lines (liner features) in the TEM videos that are not actual dislocations. It would be very time-
consuming and tedious to manually detect dislocations in every frame of the video by separating them from 
other liner feature, as there were dozens of dislocations in one image.

There are two advantages to use ML for this task. The first one is that the detection process is efficient and 
objective. ML detects dislocations in every frame of the video after learning from a training data which is a cor-
rect image set created by the operators. The detection of dislocations in the video will be conducted on the same 
criteria as the one of the correct image set. The second one is that ML is more robust than numerical filtering. ML 
is able to detect dislocations without being misled by non-dislocation lines in a TEM image. For these reasons, 
we thought it is the best to use a ML method to detect dislocations in the video.

There are several ML methods for semantic segmentation, such as  FCN29 and  SegNet30. Due to its high per-
formance, U-Net6 has been used in many  researches31,32, therefore we employed U-Net in this study. U-Net is a 
method developed by Ronneberger et al. that has been succeeded in semantic segmentation for cells in micro-
scope images. We manually traced the first 170 images, i.e., from 1 to 170 frames of the TEM video, to generate 
170 correct images. Then we trained U-Net using 1—100 frames as training data and 101—170 frames as test 
data. Figure 2b shows the output from U-Net. We were able to obtain the same output as the correct image for 
the test data.

Figure 1.  Schematics of in-situ TEM deformation (tensile) experiement. (a) Conceptual diagram of the tensile 
test geometry indicating possible displacements in the geometry of dislocations between projection images and 
the real space. (b) A representive TEM image showing the observed area and its crystallographic orientation.

Table 1.  Schmid factor.

Loading direction Slip plane Slip direction Schmid factor

[122]

ABC

[110] 0.045

[101] 0.136

[011] 0

ABD

[110] 0.045

[101] 0

[011] 0.045
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In the last step, in order to track down the same dislocation in the video, we used a particle filter, which is 
one of object tracking methods in videos. Other methods such as optical flow are commonly used for the object 
tracking. Optical flow, however, cannot track dislocations accurately. Optical flow cannot track the point which 
moves quickly and it is difficult to specify the feature points in a line with shape changes, although movements 
of dislocations may be unpredictable and the shapes of dislocations may change. In this study, we thought that a 
particle filter  approach33,34 is more suitable for tracking dislocations. Since particle filter tracks objects using prob-
ability distributions, it can retake and keep tracking individual dislocations even if the exact location of more than 
one dislocations was temporary lost due to a sudden and unforeseen movement. Particle filter is a better fit for 
this case as the dislocations’ shape change likely occur and the movement of dislocations may be unpredictable.

For the use of particle filter, it is necessary to identify individual dislocations in each of video frames. We 
adopted a method to identify dislocations based on the spatial continuity of pixels belonging to the dislocations. 
Figure 2c shows an example of how the automatic identification of individual dislocations based on the spatial 
continuity of pixels of the dislocations worked. The dislocations were colored into different colors based on the 
ID of them. Fifteen dislocations were identified in this trial by the particle filter, whereas 23 dislocations were 
visually identified in Fig. 2c. This difference is due to the fact that the current identification protocol requires 
a sufficient distance between adjacent dislocations to identify them accurately. When several dislocations were 
closely spaced, two dislocations could be identified as one dislocation especially if they were noticeably bowed. 
On the other hand, dislocations were properly identified when they were far apart in the entire movie and the 
dislocations were relatively straight. This study succeeded in tracking dislocations that meet these conditions.

In here, the results of successful tracking four targeted dislocations are shown. The dislocations (i)-(iv) are 
shown in Fig. 3a, and the tracking of dislocation (i) is shown in Fig. 3b. In Fig. 3b, the blue dots represent the 
particles distributed on the field, the red dots represent the center of gravity of the blue dots, and the green 
dots represent the midpoints of the dislocations closest to the red dots, i.e., the coordinates of the dislocations 
being tracked. We confirmed that the green point stayed on a single dislocation across frames. Figure 3 shows 
the successful tracking of dislocations in a video in which the dislocations have been properly segmented. The 
stage of tracking dislocations using the particle filter is entirely independent of the stage of automatic dislocation 
segmentation by machine learning. Therefore, it is irrelevant whether the videos are used as a training set for 
machine learning. We will show the results of the dislocation velocities measured by the above tools. Figure 4 
shows the velocities measured by tracking in the target directions. The average velocities of dislocations (a), (b), 
(c) and (d) in the x direction measured by the particle filter were 0.03, 0.16, 0.04 and 0.09 µm/s, respectively, 
thus the average of these was 0.08 µm/s. We use this average value in the x direction as the average velocity of 
the dislocation, because the dislocations in the TEM videos are all visually moving in the x direction.

The sample used in the experiment is an austenitic steel having the face-centered cubic crystal structure thus 
the magnitude of the Burgers vector can be calculated as b = 0.20nm , according to the crystal lattice of fcc  iron35.

Figure 2.  Selected frames from the in-situ TEM deformation experiment video demonstrating the image 
processing protocol. (a) Fixation of the FOV by optical flow: the unmatched coordinates of the FOV were in 
the left two images (before processing), were aligned by this process. For the following analysis, the FOV was 
kept consistent for the entire video by applying this process to all frames. (b) Binarization of dislocation and 
background by U-Net. U-Net outputs the same image as ground truth for frames not used for training. (c) 
Identification of each dislocation by image processing shown in Fig. 7. The dislocations were classified into 
several colors so that neighboring dislocations had different colors. It can be seen that a single continuous 
dislocation pixel is classified into the same color.
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Since the dislocation density of the TEM image used in this study cannot be determined precisely, we cal-
culated the dislocation density in the FOV of the TEM image and then used it as the dislocation density. The 
original size of the TEM video was 480 × 480 pixels, and 1 pixel = 0.016 µm , the area of the initial FOV of the 
TEM video was 

(

480 pixel× 0.016 µm/pixel
)2

= 59.0 µm2 . There were 22 dislocation lines in the initial FOV of 
the TEM video, and by dividing the number of dislocations by the area, we obtain ρ = 30/59.0µm2 = 0.37/µm2.

Substituting these values and the measured average dislocation velocity of 0.08 µm/s into the Eq. (1), the 
shear strain rate on the ( 111 ) plane is obtained as γ̇ = 5.9µ/s . Here, we can find the shear strain rate in a tensile 
direction by dividing the shear strain rate on the ( 111 ) plane by the Schmid factor on the slip plane ( 111 ) and in 
the slip direction [ 101 ]. We determined that the slip direction is 

[

101
]

 because the Schmid factor between that 
direction and 

[

122
]

 is 0.136, which is the largest. Then we calculated the strain rate in the tensile direction to be 

Figure 3.  Tracking dislocations using the developed particle filter based tool. Note that this is the process of 
tracking the midpoints of dislocation lines using tracking indicators called “particles”, and particles are used to 
predict midpoints of dislocation lines as the locations of dislocations. (a) Four dislocations(i) ~ (iv) tracked by 
the tool. (b) Dislocation (i) tracked by particle filter. The blue dots represent the particles distributed on the field, 
the red dots represent the center of gravity of the blue dots, and the green dots represent the midpoints of the 
dislocations closest to the red dots. The green dots were treated as the location of the dislocation for measuring 
the velocities of dislocations.

Figure 4.  Dislocation velocity obtained from the particle filter based dislocation tracking. The dislocation 
tracking process is treated to be independent of the dislocation segmentation process by machine learning. (a) 
Velocity in x direction. The dislocations moved intermittently between 0–1.6 µm. (b) Velocity in y direction.
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43.5 µ/s. The strain rate in the tensile direction at the experimental conditions is 100 µ/s, which is a reasonable 
value considering the wide range of dislocation density values.

In Fig. 4, we can observe intermittent dislocation motion. The reason for this may be that the dislocations are 
stationary due to localized crystal defects in the sample, which inhibit their motion, and they move when they 
gain an energy to overcome the obstacles and advance due to external stress. It is also possible that the elastic 
field from other dislocations also affect the velocity of the dislocations, as the movement of one dislocation causes 
the migrations of the other dislocations in the surrounding area and changes the local stress.

In Fig. 4, some plots take negative values because of some limitations and uncertainties of the method. For 
example, the velocity obtained by this method cannot be more accurate than the spatial resolution of experimen-
tal TEM images. This limitation will be compensated for by improving the in-situ TEM technique. In addition, 
position prediction using particle filters may fail if the dislocations are not sufficiently far apart from each other 
or if the dislocations move too rapidly.

The goal of our research is to develop a framework that can measure dislocation velocities using machine 
learning and a particle filter. The results of our measurements can be validated by comparing them with the results 
of molecular dynamics or dislocation dynamics simulation. The results can also be verified by our method itself 
applied to a series of experiments with various strain rates. We can qualitatively verify the results by checking 
whether the dislocation velocity increases with the strain rate.

Figure 4 shows the dislocation velocities in a video in which the dislocations have been segmented. The 
dislocation velocities are measured on the basis of the results obtained using the particle filter for dislocation 
tracking. The dislocation tracking process is treated as independent of the dislocation segmentation process by 
machine learning. Therefore, it is irrelevant whether the training set for machine learning is used for the veloc-
ity measurement.

Discussion
In this study, we developed a Framework to detect dislocations in videos captured using TEM using U-Net and 
measure their migration velocity using particle filters by taking their intermittent motion and shape changes into 
account. The dislocation velocities were measured and confirmed to be theoretically valid, and their intermittent 
motions could be quantitatively evaluated.

This method has possibility to be applied not only to dislocation videos like the one used in this study, but 
also to videos of TEM in situ experiments (dynamic observation) on other phenomena. For example, immedi-
ate applications would be dynamically measure the velocity and analyze the shape changes of dislocations in 
various dislocation reactions including but not limited to Orowan mechanism (particle dispersion strengthen-
ing mechanism), grain boundary migration, and deformation twinning behavior induced by external stimuli 
such as magnetic field, heat or stress field. It is also possible to chase the velocity, motion and shape change of 
nanoparticles during an oriented-attachment reaction where dynamics in particles, translational and rotational 
accelerations, is critical to gain the mechanistic understanding (e.g., https:// doi. org/ 10. 1126/ scien ce. 12196 43).

Time‑depended evolution. Analyzing the dynamic behavior or time-dependent evolutions of nanopar-
ticles or even single atoms and their analogues on a support material is in fact simpler than the model case we 
treated in here, because the projection effect is nearly negligible due to the size of the objects of interest. For 
example, the interparticle distance on a 2D image is not largely deviated from the true value. On the other hand, 
the projection effect becomes significant when analyzing nanoscale objects embedded in a media. Supplemental 
Fig. 2 demonstrates how the sample thickness, i.e., the length along the incident electron beam direction, develop 
delusions. Thus, the developed framework would prove effective when the sample thickness becomes larger and 
the projection effect becomes prominent, which is an emerging demand for in-situ electron microscopy where 
both high temporal resolution and the nanometer sized targeted objects are embedded in other materials as 
well as media such as liquid, or are part of a larger-scale object to observe the object’s behavior in a natural way.

Method
The configuration of the dislocation velocity measurement tool developed in this study is shown in Fig. 5. With 
the developed velocity measurement tool, is capable of automatic measurement of the velocity of each disloca-
tion in the TEM video.

The framework consists of three functions: first, an optical flow to fix the field of view of the video; second, a 
machine learning to detect dislocations in the video; and third, a particle filter to track the locations of detected 
dislocations. The details are given for these three functions in the following subsections.

Optical flow. In experimental TEM videos, we cannot accurately measure the velocity of dislocation move-
ment because the FOV moves. Therefore, we create a static coordinate system of the TEM video by cropping a 
part of the frame image according to the movement of the FOV. We use optical  flow26–28 to calculate the move-
ment vector of the FOV between the image at time t  and the image at t +�t . Considering a pixel I

(

x, y, t
)

 in an 
image, here, x, y are the two-dimensional coordinates in the image, and t  is the dimension representing the time 
axis direction. The pixel I

(

x, y, t
)

 is supposed to have moved 
(

�x,�y
)

 in the image after time �t . Assuming that 
these two pixels are looking at the same object and that the brightness of the object in the image does not change 
between successive frames, the following relationship holds

Considering that the motion of the object is small, the Taylor expansion of the right-hand side yields

(2)I
(

x, y, t
)

= I
(

x +�x, y +�y, t +�t
)

.

https://doi.org/10.1126/science.1219643
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Removing the common terms from Eq. (2), we obtain

Dividing both sides of Eq. (4) by �t , the following equation is derived

Here,

Here, (u, v) is called the optical flow or velocity vector at pixel 
(

x, y
)

 . Equation (5) is called the optical flow 
constraint equation. The gradients of the pixels, Ix , Iy , and the gradient in the time axis, It , can be caluclated 
computationally. However, since there is only one constraint Eq. (5) for the two unknowns u and v , it cannot be 
uniquely determined. The opensource library Open CV used in this study employes the Lucas-Kanade  method27, 
which determines u and v by assuming that neighboring pixels move in the same way.

Machine learning. We apply the machine learning model U-Net6, which is used for semantic segmenta-
tion, to the frame images of the experimental video to binarize the dislocations and the background. Semantic 
segmentation is the task of classifying an image into pixel-wise classes. U-Net consists of convolutional neural 
networks, with multilayer convolution, up convolution, and skip structures. U-Net has shown good results in 
semantic segmentation tasks. The structure of the U-Net model is shown in Fig. 6.

The applicability of the U-Net training protocol is an important, however it would be challenging to validate 
practically if an independent set of similar data is not available. The success of training U-net, however, can be 
defined as the binarization of one video based on a unified index since the ability to binarize a single video with 
a unified index is an important aspect of our research. In this aspect, we can say that the trained U-net success-
fully identifies the dislocations.

Assuming another experimental video is obtained, the current trained U-Net would be applied first to binarize 
it as a sanity check. It should be noted that no independent validation dataset for machine learning was used in 
this research because the validation dataset and test datasets were very similar to each other for the dislocation 
images of a TEM video.

Particle filter. Note that this part is independent from the process of automatic dislocation segmentation 
by machine learning.

Identification of each dislocation. In the binarized image, the dislocation pixels are distinguished from the back-
ground pixels, but the dislocations are not distinguished from each other. The particle filter needs to identify the 
dislocations in a frame because it needs to set the target to be tracked. Therefore, we developed a program to 
search around the dislocation pixels and identify them as the same dislocation if they are continuous, as shown 
in Fig. 7.

(3)I
(

x +�x, y +�y, t +�t
)

= I
(

x, y, t
)

+
∂I

∂x
�x +

∂I

∂y
�y +

∂I

∂t
�t.

(4)
∂I

∂x
�x +

∂I

∂y
�y +

∂I

∂t
�t = 0.

(5)Ixu+ Iyv + It = 0.

(6)Ix =
∂I

∂x
; Iy =

∂I

∂y
,

(7)u =
∂x

∂t
; v =

∂y

∂t
.

Figure 5.  Conceptual diagram of the developed framework to assess dislocation velocities.
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Particle filter to track dislocation. Particle  filter33,34 is a method for estimating the position of an object 
by distributing a large number of particles on the screen and using the prediction from the previous state and 
the current observation information. The particle filter approximates the probability distribution of the object to 
be tracked in the entire state space by a large number of particles with state quantities and weights (likelihoods), 
which enables robust tracking against noise and environmental variations. The particle filter algorithm is shown 
below (see Fig. 8).

1. Generate N particles based on the initial coordinates of the target dislocation.
2. Move the particles based on the prediction. The prediction is based on the average velocity of all dislocations 

calculated by Optical Flow.
3. Obtain information necessary for likelihood calculation for each particle.
4. Calculate the likelihood for each particle based on the particle information. The likelihood is computed by 

the brightness of the pixel where the particle is located, and the similarity between the image of the region 
around each particle and the image of the region around the dislocation in the previous frame.

5. Calculate the weighted average with the likelihood of each particle as a weight.
6. Re-spread N particles with a probability proportional to the high likelihood of each particle.
7. Move to the next state, and repeat from procedure 2.

By performing the above processes in each frame, particles are able to track the target object. When imple-
menting a particle filter, it is important to design the prediction (Procedure 2) and the likelihood (Procedure 

Figure 6.  U-net architecture (for 320 × 320 pixels). Each blue square corresponds to a multichannel feature 
map. The light blue squares represent copied feature maps. The number of channels is shown at the top of 
individual boxes, and the size is shown in the lower left corner of them. Each arrow represents each operation.

Figure 7.  Method to identify each dislocation. This pre-process toward the particle filter determines that 
consecutive pixels are the same dislocation.
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4). appropriately based on information such as the motion and shape of the target object, in order to track the 
target object accurately. In this study, we used the information that dislocations moved only in one direction 
for prediction. We also used the information that information that the pixel with the dislocation is black and 
the positional relationship of the dislocations does not change significantly between the previous and current 
frames for likelihood function.
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