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Computational analysis of solar 
thermal system with Prandtl 
nanofluid
Muhammad Imran Khan1, Muhammad Ijaz Khan2 & Sami G. Al‑Ghamdi1*

The solar thermal system can address a large amount of heating and cooling load required by buildings 
and industry. To enhance the absorption efficiency in solar thermal systems, nanofluids are considered 
as promising heat transfer medium. The study presents a numerical study to investigate physical 
feature of the entropy production in hydro‑magnetic reactive unsteady flow of Prandtl nanoliquid 
over an infinite plate. The heat expression is modeled subject to thermal radiation and magnetic 
field. Innovative characteristics slip mechanisms i.e., thermophoresis diffusion and Brownian motion 
are also accounted. Mathematical modeling of entropy production is described by employing 
thermodynamics law (second law). Furthermore chemical reactions takes place at surface of plate are 
implemented. Nonlinear system are converted to dimensionless form via suitable transformation. The 
resultant system is solved by numerical approach (finite difference method). Characteristics of thermal 
field, entropy rate, fluid flow and concentration are physical discussed through sundry parameters. 
The outcomes display that the maximum velocity field exists near the center of the surface, whereas 
the average time flow enhances the velocity distribution. An augmentation in thermal field is 
distinguished versus magnetic parameter, while reverse behavior holds for fluid flow. An increase in 
the thermal field with respect to the magnetic variable is noted, while the opposite effect is observed 
for the fluid flow. A larger approximation of radiation rises entropy rate and thermal field. Increasing 
the Brownian motion variable increases concentration, while reverse impact is observed for Schmidt 
number.

List of symbols
u, v  Velocity components
x, y  Cartesian coordinates
t   Time
a  Stretching rate constant
B0  Magnetic field strength
τij  Extra stress tensor
A, C1  Fluid variables
ρf   Density
µf   Dynamic viscosity
νf   Kinematic viscosity
σf   Electrical conductivity
T  Temperature
Tw  Wall temperature
T∞  Ambient temperature
kf   Thermal conductivity
cp  Specific heat
σ ∗  Stefan Boltzmann constant
k∗  Mean absorption coefficient
τ  Ratio of heat capacities
DT  Thermophoresis coefficient
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C  Concentration
Cw  Wall concentration
C∞  Ambient concentration
kr  Reaction rate
R  Molar gas constant
M  Magnetic parameter
α, β  Prandtl fluid variables
Re  Reynold number
Pr  Prandtl number
Nt  Thermophoresis variable
Rd  Radiation variable
Nb  Brownian motion variable
δ  Reaction parameter
Sc  Schmidt number
Br  Brinkman number
SG  Entropy rate
α1  Temperature ratio variable
L  Diffusion variable
α2  Concentration ratio variable

Solar thermal system is one of the few scalable technologies capable of delivering dispatch-able renewable power 
and, as such, many expect it to shoulder a significant share of system balancing in a renewable electricity future 
power by cheap, intermittent PV and wind power. To efficiently convert the solar radiation into useful heat energy, 
various technologies are being investigated. Among these, nanofluids are considered as promising heat transfer 
medium. In recent years, nanofluids have received growing interests by researchers from various fields because of 
their enhanced thermo-physical properties such as convective heat transfer, viscosity, thermal conductivity and 
thermal diffusivity. Thanks to these enhanced properties, nanofluids can be used in a wide range of engineering 
applications, particularly to enhance the thermal performance of solar systems.

This study offers important insights into the 2D unsteady magnetohydrodynamic (MHD) flow with entropy 
production of nanoliquids subjected to chemical reaction and thermal radiative flux. MHD is the examination 
of dynamics of magnetic fields of electrically-conducting liquids. The induced current subject to magnetic field 
in an electrically conducting liquid polarizes the fluid, resulting in a change in the magnetic field. Liquids can 
be electrically conductive in numerous applications for material processing in both chemical and mechanical 
engineering and so they react to applied magnetic fields. Such systems can be employed in various industrial 
applications, for example to monitor the rate of heat transfer levels over a stretch sheet and to get pre-processing 
materials properties and tuning the thermomechanical processing of materials to industry requirements. This 
process is very significant subject to Lorentz force, which reduces the liquid flow in a applied field direction.

Investigations of MHD flow of nanofluids with radiative effects are reported by various studies.
Rashad et al.1 numerically inspected effects of the sink on MHD flow with entropy production of Cu-water 

nanoliquid in an inclined permeable enclosure. Their consequences reveals that the heat gradient decreases with 
swelling the volume fraction of nanoliquid and the intensity of magnetic field. Dharmaiah et al.2 deliberated 
the MHD viscous nanomaterial flow by a stretchable wedge subject to convective conditions, Ohmic heating 
and radiative heat flux. Izady et al.3 investigated CuO/water based nanomaterial flow via permeable expanding 
surface with MHD and radiative effects. It is revealed that double branch solutions occurs for a certain domain 
of the surface expanding variable.  Dinarvand4 scrutinized viscous flow of CuO–Ag/water based nanoliquid over 
a circular cylinder with sinusoidal radius variation by considering different physical parameters. Jabbaripour 
et al.5 investigated the 3D MHD stagnation-point boundary layer flow of aluminium–copper/water hybrid nano-
material over a wavy cylinder considering subjected to temperature jump boundary conditions and velocity slip. 
Mousavi et al.6 employs experimental relations to improve model for envisaging the presentation of water-based 
MHD Casson nanofluid fluid flow over an expanding surface with radiative effect. Some other important recent 
studies on this topic are listed in Refs.7–16.

Entropy production is a innovative prospective in numerous thermodynamic developments and displays 
dynamic utilizations in polymer processing and thermal optimization. The consequence of entropy production 
is witnessed in combustion, thermal systems, heat exchangers, turbine systems, nuclear reactions, porous media 
etc. Thermodynamics second law is employed to discuss the irreversibility analysis. Here a model of entropy 
generation rate caused by fluid friction, magnetic field effect and solutal transfer rate across a low temperature and 
concentration difference in the liquid flow is constructed. By minimizing and evaluating the entropy production, 
the effectiveness of a thermal system can be enhanced, and losses of energy can be minimized. The theoretical 
analysis of entropy optimization problem in thermal convective flow is investigated by  Bejan17,18. Kurnia et al.19 
reported the thermal transport and entropy analyses in viscous flow in helically coiled tubes. Their conclusions 
showed that the entropy production inside the pipe is higher for thermal transfer than compared to fluid friction. 
Irreversibility investigation in water-based iron oxide nanofluid with variable magnetic force inside circular tube 
was interpreted by Gorjaei et al.20. Khan et al.21 considered melting and irreversibility effects for MHD nano-
materials flow with slip condition. Few advancements regarding entropy problems are mentioned in Refs.22–30. 
Refs.31–36 highlights the importance of fluid flow regarding stretchable surfaces.

From above literature review, it shows there are numerous existing studies in the literature pertaining MHD 
flow of the nanofluids under and boundary conditions and different geometric configurations, however limited 
studies consider all the effects considered in the present work simultaneously. At the same time, their analysis 
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focuses primarily on local entropy generation. Additionally, no work has been reported so far entropy generation 
in chemically reactive unsteady flow of Prandtl nanoliquid with Lorentz force over an infinite plate. Therefore in 
recent communication our prime objective is to analyze the entropy examination in reactive time-dependent flow 
Prandtl nanomaterials with Lorentz force over an infinite plate. Energy expression is modeled through magnetic 
force and thermal radiation. Significant behaviors of random and thermophoresis motion are further accounted. 
Physical features of entropy production are deliberated. Moreover, chemical reaction is also addressed. Nonlinear 
system are converted to dimensionless system by employing appropriate transformations. The achieved dimen-
sionless problem are tackled through numerical approach (finite difference method). Significant impact of physi-
cal variables on fluid flow, entropy generation, thermal field and concentration are discussed via various plots.

Mathematical description
Here 2D (two-dimensional) chemically reactive unsteady flow of Prandtl nanofluid with Lorentz force over an 
infinite plate is discussed. Thermal radiation and magnetic force are considered in energy expression. In addition, 
innovative characteristics of random and thermophoresis motion are considered. Thermodynamics second law 
is employed to discuss entropy analysis. Furthermore, chemical reaction at the surface of plate is considered. 
Constant magnetic force (B0) is applied. Consider u = uw = ax as stretching velocity with ( a > 0 ). The schematic 
flow examination is displayed in Fig. 1.

The extra stress tensor of Prandtl fluid  satisfies37–40:

where

and

Here C1 and A signify the fluid parameters.
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Figure 1.  Flow sketch.
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with,

Let us consider

We get
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Entropy generation
It is defined as

Finally we can found
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Solution methodology
The dimensionless partial systems are solved by numerical approach (Finite difference method). Finite difference 
methods for dimensionless partial systems are expressed  as41–43:
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Using Eq. (17) in Eqs. (10–14) we get

with

Entropy generation satisfy

Discussion
Noteworthy presentation of fluid flow, entropy generation, concentration and thermal field against physical 
variables are graphically scrutinized.

Velocity. Significant effect of fluid parameter on velocity is illustrated in Fig. 2. Clearly velocity is augmented 
for fluid variable. Physically higher approximation of fluid parameter decreases viscosity, which augments fluid 
flow. Figure 3 outcomes impact of magnetic variable on velocity. Here velocity is decreased for magnetic variable. 
This decreasing behavior is because of Lorentz force.

Temperature. Salient feature of radiation on thermal field is portrayed in Fig. 4. It is renowned that temper-
ature augments via radiation. Figure 5 captured inspiration of random motion parameter on thermal field. Here 
thermal field increased through random motion variable. Figure 6 is sketched to see thermal field performance 
versus thermophoresis variable. One can find that temperature boosted with variation in thermophoresis effect. 
In fact increasing values of thermophoresis variable generates a force corresponds to nanoparticles from warm 
region to cold region. As a result thermal field boosted. Figure 7 is intrigued to see influence of magnetic vari-
able on thermal field. An intensification in resistive force with variation in magnetic variable, which enhances 
collision between liquid particles. Therefore thermal field is augmented.
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Figure 2.  U(τ , ξ , η) via α.

Figure 3.  U(τ , ξ , η) via M.

Figure 4.  θ(τ , ξ , η) via Rd.
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Figure 5.  θ(τ , ξ , η) via Nb.

Figure 6.  θ(τ , ξ , η) via Nt.

Figure 7.  θ(τ , ξ , η) via M.
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Figure 8.  φ(τ , ξ , η) via δ.

Figure 9.  φ(τ , ξ , η) via Nb.

Figure 10.  φ(τ , ξ , η) via Nt.
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Concentration. Figure  8 elaborates the performance of concentration versus reaction variable ( δ ). Here 
concentration decays with rising values of reaction variable ( δ ). Significant features of concentration against 
random and thermophoresis variables ( Nb and Nt ) are drafted in Figs. 9 and 10. Clearly an intensification in 
concentration is noted through random and thermophoretic variables ( Nb and Nt ). Figure 11 reflects outcomes 
of concentration via Schmidt number. Larger estimation of Schmidt number decays diffusion behaviors and as 
a result concentration decreased.

Entropy generation. Figure 12 shows significance of magnetic variable on entropy production. A develop-
ment in Lorentz force is noticed subject to magnetic variable, which augments disorderness in thermal system. 
As a outcome entropy generation is increased. Influence of thermophoretic variable on entropy rate is illumi-
nated in Fig. 13. Clearly entropy optimization boosts up versus thermophoretic variable. Influence of entropy 
generation via Brinkman number is elucidated in Fig. 14. Larger ( Br ) improves the entropy rate. The conse-
quences of radiation factor on entropy profile is displayed in Fig. 15. An intensification occurs in entropy rate 
with variation in radiation effect.

Final remarks
Key main conclusions of present flow problem are displayed as:

• Velocity field is declined against magnetic field, while opposite effect holds for thermal profile.
• Larger fluid variable improves fluid flow.
• An intensification in radiation boosts up entropy rate and thermal field.
• An amplification in temperature is seen subject to slip mechanisms i.e., Brownian motion and thermophoretic 

diffusion.
• An opposite impact holds for concentration through reaction and random motion variable.
• A decrement in concentration is noticed for Schmidt number.
• A similar effect holds for entropy production and concentration through thermophoresis variable.
• An amplification in entropy production is seen subject to magnetic variable and Brinkman number.

Figure 11.  φ(τ , ξ , η) via Sc.

Figure 12.  SG(τ , ξ , η) via M.
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Figure 13.  SG(τ , ξ , η) via Nt.

Figure 14.  SG(τ , ξ , η) via Br.

Figure 15.  SG(τ , ξ , η) via Rd.
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